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Abstract
A chain is firmly attached at one end while the other falls freely in the gravitational field. We

report and discuss careful time-resolved measurements of the horizontal and vertical components

of the force applied by the chain to the mount. Our results interestingly complement previous

laboratory measurements and numerical simulations of the free-end dynamics.
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I. INTRODUCTION

The dynamics of a chain falling in a gravitational field is a very interesting problem to be

considered in intermediate courses on classical mechanics for teaching how to handle variable

mass systems. Among the various possible experimental configurations, we focus here in the

following one: The chain is attached to a rigid mount by its two ends, which, separated

by the horizontal distance x0, have initially the same altitude. Then, as one of the ends

is released, the chain begins to fall. The main features of the chain dynamics are that the

acceleration of the chain tip is greater than g, the acceleration due to gravity, and exhibits

a large maximum almost when the chain reaches its maximum extension1. The problem has

already been the purpose of several experimental, numerical and theoretical studies and we

suggest the introduction by Wong and Yasui for a review2.

Here we report measurements of the force acting on the mount which supplement the

existing experimental results and, especially, previous force measurements that were limited

to the vertical component of the force and to small initial spacings of the two ends1. We

extend the measurements to the horizontal and vertical components of the force and to

the entire accessible range of the initial spacing. We remind here that the force exerted

to the mount, �F , is related to the acceleration �aG of the center of mass G of the chain as
�F = M�g − M�aG, where M stands for the mass of the chain. We point out that �F can

be inferred from the motion of the center of mass, which could be determined either from

experimental images of the chain or from the numerical simulations3. However, the analysis

of the images or the numerical simulations are not readily accessible to the audience of

a laboratory course and measuring the force �F is an alternative and easier way to point

out some striking features of the chain motion. Our aim is not to give an exhaustive

description of the chain dynamics but to describe the experimental method and discuss,

at least qualitatively, some of the observations.

II. EXPERIMENTAL SETUP

The experimental setup is very similar to the one already described in reference 1 but we

designed, in addition, specific parts making possible to measure independently the vertical

and horizontal components of the force applied by the chain to the mount at the end which
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remains at rest.

We report experiments performed with a ball chain consisting of stainless-steel identical

segments that are made from rods [length l = (4.46 ± 0.01) 10−3 m] and spheres [diameter

φ = (3.26±0.01) 10−3 m] attached to each other. The total length of the chain is L = 1.022 m,

which corresponds to n = 229 segments for a total mass of M = (2.08 ± 0.01) 10−2 kg.

The experimental configuration is as follows (Fig. 1). The chain is tightly attached at

one end in O, where the force shall be measured. At the other edge, the chain ends with a

rod to which we attach a thin nylon cord (fishing line, diameter 10−4 m). We then extend

the nylon cord between two nails and a thin metallic wire (nickel, diameter 10−4 m) as

sketched in the figure 1b. In order to release the extremity of the chain, we shall suddenly

cut the nylon wire by injecting a large electric current I (about 1 A) through the metallic

wire. The time at which the end is released (the origin of time, t = 0) is obtained by means

of an acceloremeter (Dytran, 3035BG) attached to the mount holding the wire. In O, the

horizontal, Fx, and vertical, Fy, components of the force, �F , applied by the chain to the

mount are measured by means of two identical force-sensors (Testwell, KD40S, maximum

force 10 N) making a 90-degrees angle between them (Fig. 1a). On the one hand, the chain

is firmly attached to the vertical sensor by means of a thin nickel wire (diameter 100 μm)

which prevents any vertical motion without exerting any significant horizontal force. On

the other hand, the first ball is in contact with the inner surface of a metallic ring attached

to the horizontal sensor, which prevents any horizontal motion of the first link as long as

the horizontal force is positive (Fx > 0). The first link is thus not strickly trapped so as to

insure that the experimental setup does not apply any significant vertical force to the chain,

the only contribution reducing to a negligible friction force due to the contact between the

first ball and the ring. The whole system is adjusted in order to ensure that both ends of

the chain are initially at the same level, y0 = 0, and the setup can be displaced horizontally

to vary the initial horizontal separation, x0, between the two ends of the chain. Finally, the

signals from the three sensors (the accelerometer and the two force sensors) are monitored

using a 4-channels oscilloscope (Lecroy, WaveRunner 6030A). Due to the electronic noise

and the discretization by the oscilloscope, the measurements of the instantaneous force suffer

an uncertainty of about about 0.3 Mg. Due to an offset in the amplifier, we cannot garanty

a precision better than 0.1 Mg of the mean value over time.

3



III. EXPERIMENTAL RESULTS

The initial conformation formed by the chain after damping of all the disturbances is

close to a catenary curve. We then release the end at x0 and monitor the signals from the

three sensors.

A. Main characteristics of the monitored signals and definitions

We report in the figure 2 the typical signals from the oscilloscope after release of the end

in x0. Note here that we oriented the horizontal axis toward the free end and the vertical

axis downwards so as to get positive components of the force exerted by the chain to the

mount.

First, due to the release of the tip at x0, we observe in the signal from the accelerometer

(Fig. 2c), a peak in the acceleration Γ of the mount, the nickel wire is attached to, which

makes it possible to determine accurately (to within 10 −3 s) the origin of the time, t = 0.

Then, due to the fall of the chain, both components Fx and Fy of the force �F present a large

maximum a few tenth of second later (Fig. 2a and 2b). We shall denote F max
x and F max

y the

amplitude of respectively the horizontal and vertical components of the force and tmax
x and

tmax
y the corresponding times. We point out here that the measurements of the horizontal

force are relevant only as long as the chain remains in contact with the ring. Thus, in

practice, only the first maximum in Fx is reliable (figure 2a, black curve). Apparently, in

figure 2, Fx and Fy are continuous at t = 0. However, as we shall see later, the conclusion

does not always hold true and we denote ΔFx ≡ Fx(0
+)−Fx(0

−) and ΔFy ≡ Fy(0
+)−Fy(0

−).

B. Time for the vertical component of the force to reach its maximum value

The time tmax
y for the vertical component of the force to reach its maximum exhibits a

rather complex behavior as a function of the initial spacing x0 (Fig. 3): As a function of

x0, tmax
y initially decreases and then increases when the initial spacing is increased, reaching

thus a minimum for x0/L ∼ 0.6. The complex behavior cannot be accounted for analytically

but we can discuss, at least, the two limiting values at x0 = 0 and x0 = L.

The value of tmax
y in the limit x0 → 0 can be estimated analytically by considering the

case of the tightly folded chain3. In this limit, the chain tip is expected to reach its lowest
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position faster than a free falling weight, at tf � 0.847213 t0 where t0 ≡
√

2L/g denotes the

duration of the free fall over the length L. At t = tf , the velocity of the chain tip, which is

the only part of chain in motion, changes in sign. We thus expect tmax
y = tf .

The value of tmax
y in the limit x0 → L can also be estimated analytically by considering

that, according to the description reported by Tomaszewski et al.3, the dynamics of the

vertical fall of the chain tip is identical with the dynamics of the free fall. This coincidence

corresponds with the fact that, in absence of elastic contibution associated with the bending

of the chain, the section of the chain, close to the free end, remains horizontal during the

fall. The vertical velocity of the center of mass changes in sign when the chain tip reaches its

lowest position at t0. Thus, experimentally, the maximum value of the vertical component

of the force F max
y is expected to be reached at tmax

y = t0 for x0 = L, where t0 corresponds to

the time of the free fall (Fig. 3).

C. Maximum value of the vertical component of the force

The maximum value F max
y of the vertical component increases when the initial spacing

x0 is decreased. The monotonic behavior of the force when the spacing x0 is changed is in

contrast with the observation of a non-monotonic behavior of the maximum acceleration of

the chain tip as a function of the initial spacing. Indeed, Tomaszewski et al. observed the

acceleration of the chain tip to be minimum for x0/L � 0.9043. However, in spite of this

qualitative difference, we point out that the results are not contradictory because the force

exerted by the chain to the mount images the acceleration of the center of mass of the whole

chain and not that of the chain tip.

In contrast to tmax
y , F max

y , which diverges in the framework of the tightly-folded-chain

limit, cannot be predicted analytically in the limit x0 → 0. This expectation is in contra-

diction with the experimental observation of a finite limiting value of F max
y . This is mainly

due to the fact that the chain cannot be bent infinitely without loading any elastic energy

and exhibits an associated minimum radius of curvature Rmin = (4.8 ± 0.2) 10−3 m, which

is not accounted for in the model. We can nevertheless obtain an estimate of F max
y in the

limit x0 → 0 by considering, for the tightly folded chain, the acceleration of the free tip3 as
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a function of the its vertical position z:

ac(z) =
1

2
g
[
1 +

( L

L − z

)2]
, (1)

which predicts ac to diverge for z = L. However, in this limit, the radius of curvature

of the chain vanishes, which is not permitted experimentally. Due to the finite radius of

curvature Rmin, the equation (1) does not hold true up to L but only up to L − δL, where

the cut-off length δL = Nl, N denoting the number of links in motion, is about Rmin. The

maximum acceleration of the chain tip is thus expected to be about amax
c = 1

2
g [1+(L/Nl)2].

Introducing the mass of one link, M/n, we estimate the maximum vertical force to be about,

adding the contribution of the chain weight,

F max
y � Mg +

1

2

N

n

[
1 +

( L

Nl

)2]
Mg (x0 → 0). (2)

In our experimental conditions, we get, for N = 1, F max
y /(Mg) � 115 whereas we expect

the experimental limit F max
y /(Mg) � 40 for N � 3, associated with δL � 3Rmin. In order

to validate our arguments, we also checked experimentally, by changing the length L of the

chain, that F max
y depends linearly on L2, in agreement with the equation (2).

In the limit x0 → L, the maximum vertical force can be estimated by considering the

motion of a solid swinging rod. Indeed, from the optical observation of the chain motion3, we

note that the chain is rotating as an almost straight, almost vertical, rod when the maximum

force is measured (Fig. 5b). From the energy conservation, we can deduce the corresponding

angular velocity ω by writing 1
2
JOω2 = Mg L

2
, where JO = 1

3
ML2 denotes the moment of

inertia of the rod in O. The associated centripetal force in O can be written M L
2
ω2, which

leads to, the weight of the chain being taken into account,

F max
y � 5

2
Mg (x0 → L). (3)

This latter expectation, which applies as long as the chain does not deform significantly

(solid rotation around O) close to the maximum extension, is in fair agreement with the

experimental limit (Figs. 4 & 6).

D. Maximum value of the horizontal component of the force and associated time

The two arguments presented above for estimating the limiting values of F max
y both fail to

provide us with estimates of the limiting values of the horizontal component F max
x . On the
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one hand, in the limit x0 → 0, the motion is strictly vertical and, thus, does not produce any

horizontal component of the force in O. On the other hand, in the limit x0 → L, comparing

the motion of the chain to that of a swinging rod, for which the horizontal acceleration of

the center of mass vanishes around the vertical position, we predict again F max
x to be zero.

These expectations are in contradiction with the experimental observations of finite F max
x

for all x0 (Fig. 4). However, by imaging the system, we note that the chain is almost straight

and makes a finite angle with the vertical when the maximum force is measured (Fig. 5).

For small x0, the vertical component of the force, Fy, reaches its maximum value when

the chain fully extends (We remind here that the maximum force does not correspond to the

lowest position of the chain). Qualitatively, one can understand that the event is associated

with a maximum in the horizontal force in the following way: At t = tmax
y , the chain tip

suddenly goes horizontally from one side of the chain to the other, which results in a sudden

horizontal displacement of the center of mass. As a first consequence, for small values of

x0, we expect tmax
x = tmax

y , in agreement with the experimental measurements (Fig. 3).

Quantitatively, for t � tmax
y , a large portion of the chain is almost at rest (OA in Fig. 5).

The tension �TA of the chain in A results from the sudden tip-acceleration which aligns with

the chain tangent in A. In O, the portion OA being almost at rest, �F � M�g + �TA, where

we estimate the mass of the segment OA to be about the total mass M of the chain. We

thus expect, F max
x = (F max

y − Mg) tan θ, where θ denotes the angle that the tangent in

A makes with the vertical. We report, as a function of the initial spacing x0, the ratio

r ≡ F max
x /(F max

y − Mg) and, as an estimate of tan(θ), the tangent of the angle θ0 that

the chain makes with the vertical in O at t = tmax
y , which we determined experimentally

from the images (Fig. 2, inset). In spite of the uncertainty in the mass of the portion OA

and in the angle θ, which differs slightly from θ0, we observe a qualitative agreement of

the experimental results with our expectation for x0 ≤ 0.6. For larger values of x0, the

arguments presented above do not apply. First, in spite of a loss in the accuracy due to

the drastic deacrease of the maximum values of the force components (Fig. 4), we observe a

significant difference between tmax
y and tmax

x . Second, in the limit x0 → L, we observe that

the motion of the chain is similar to that of a swinging rod when the vertical force reaches

its maximum value (Fig. 5), which does not permit to distinguish a portion of the chain at

rest and a moving tip.

We can wonder why tmax
x < tmax

y . The difference is due to an angular effect. Indeed,
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considering the tension TO of the chain and the angle θ0 that the chain makes with the

vertical in O, we expect a maximum in Fx at tmax
x given by d

dt
(TO sin θ0) |t=tmax

x
= 0 and a

maximum in Fy at tmax
y given by d

dt
(TO cos θ0) |t=tmax

y
= 0. Let us now assume that TO is

maximum at a given time tm and denote δtmax
x(,y) ≡ tmax

x(,y) − tm and ω ≡ −θ̇0|t=tm (We remind

here that θ̇0 < 0). The above conditions lead, to the first order in ωδtmax
x(,y), to:

(
1

TO

d2TO

dt2

∣∣∣
t=tm

− ω2

)
sin θ0 δtmax

x = ω cos θ0 (4)
(

1
TO

d2TO

dt2

∣∣∣
t=tm

− ω2

)
cos θ0 δtmax

y = −ω sin θ0. (5)

Assuming, in addition, that the maximum in TO corresponds to a pick having the temporal

width τ , we can estimate that − 1
TO

d2TO

dt2
|t=tm � 1

τ2 . From the equations (4) and (5), we get:

tmax
y − tmax

x � 2ωτ 2

sin(2θ0)
. (6)

Thus, because of the significant change in θ0 during τ , Fx reaches its maximum value before

F max
y . For instance, in the limit x0 → L, we can estimate very roughly that, from the force

measurements (Fig. 6), τ ∼ 0.1 t0 and, from the images (Fig. 5), θ0 ∼ 0.2. Then, taking into

account the value of ω used in the section C, we obtain from equation (6) the reasonable

estimate (tmax
y − tmax

x )/t0 ∼ 0.1 (Fig. 3).

E. Discontinuities of the force components at t = 0

At last, we would like to point out the interesting behavior of the force components at

t = 0. For large initial spacing x0, one observes a jump in the components (Fig. 6).

The behavior of the vertical component at t = 0 can be accounted as follows. Initially,

whatever the initial tension imposed by the mechanical equilibrium of the chain hanging

between the point at x = 0 and x = x0, the mount sustains half the weight at each end.

At t = 0, the end at x = x0 is released. In the limit of small x0, about half the chain

remains at rest, hanging in O, and no jump in the vertical force is observed (Fig. 2). To

the contrary, in the limit x0 → L, the chain, which remains horizontal in a large part of its

length, starts falling with the acceleration of the gravity. In this case the vertical force in O

instantaneously vanishes, which corresponds to the sudden variation ΔFy = −Mg/2 of Fy

observed at t = 0 (Fig. 6).
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The behavior of the horizontal component at t = 0 can be understood in the same way,

provided the knowledge of the initial horizontal component of the force in O. The initial

component Fx can be determined by considering the mechanical equilibrium previous to the

release of the end at x = x0. At equilibrium, homogeneously subjected to the acceleration of

the gravity along its length the chain takes the shape of a catenary curve which, in cartesian

coordinates, can be described by:

y(x) = a

[
cosh

(x0

2a

)
− cosh

(
2x − x0

2a

)]
(7)

where the constant a, for a given spacing x0, is obtained from the length L of the chain :

L =

∫ x0

0

√
1 + y′(x)2dx (x0 ≤ L). (8)

Thus, at equilibrium, the angle α that the chain initially makes, at the fixed point O, with

the horizontal satisfies :

tanα = y′(0) = sinh
(x0

2a

)
. (9)

In O, the chain being assumed to be infinitely flexible, Fy/Fx = tanα and, from the me-

chanical equilibium along the vertical axis, Fy = Mg/2. Thus, the horizontal component of

the force:

Fx =
Mg

2 sinh
(

x0

2a

) . (10)

In the limit of small x0, the chain is almost vertical so that Fx � 0 at equilibrium and no

jump in the horizontal force is observed (Fig. 2). To the contrary, in the limit x0 → L, the

mechanical equibrium imposes a significant initial value of Fx which rapidly decreases once

the end in x0 is released. For instance, for x0 = 100 cm and L = 102.2 cm, the equation (8)

can be solved numerically and, from equation (10), we get Fx � 1.35 Mg. The experimental

sudden decrease of the horizontal force is in quantitative agreement with this last prediction

(Fig. 6).

IV. CONCLUSION

This study again illustrates the rich dynamical behavior of a rather simple mechanical

system. We reported original time resolved measurements of the horizontal and vertical

components of the force applied by the chain to the mount. From simple theoretical ar-

guments, we explain the main characteristics of the force components in the limits of the
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tightly folded- or maximally stretched-chain. For instance, the maximum in the vertical and

horizontal components are not reached at the same times when the initial spacing is large.

We propose that the observed time-difference is due to the fact that the chain is not vertical

when the maximum tension is reached, which, in addition, also accounts for the amplitude

of the maximum in the horizontal component of the force.

We limited our study to a few features of the chain motion, as characterized by the force

exerted to the mount. These measurements provide us with insights on a problem that can

be described by a set of exact equations, whose analytic solution is not yet available. We

are convinced that this experiment, as it, is convenient for illustrating the dynamics of a

variable-mass system in a laboratory course.
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FIG. 1: Sketch of the experimental setup. The chain is initially stretched between two points

having the same altitude y0 = 0 separated by the distance x0. (a): Detail of the fastening in O

(x = 0), where the force is measured. (b): Detail of the fastening at x0, where the chain is released.
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FIG. 2: Typical signals from the accelerometer and the force sensors. The fall of the free

end produces significant variations of the horizontal (a) and vertical (b) components of the force �F

applied by the chain to the mount. The release of the free end produces a peak in the acceleration

Γ from the accelerometer (c), which makes it possible to determine accurately the origin of time.

In (a) and (b), we report the forces in units of the chain weight Mg. In (a), we point out that the

measurements of the horizontal force is relevant only as long as Fx > 0 (black line). Grey line :

The chain is likely to have lost contact with the sensor (Fx < 0) at least once along its trajectory

(Initial spacing x0 = 25 cm).
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FIG. 3: Times for the components of the force to reach their maximum value. The times

are reported in units of t0, the characteritic time of the free fall over the distance L. The lines are

polynomial interpolations helping to guide the eye. The full squares at x0/L = 0 and x0/L = 1 are

theoretical limits of tmax
y (Sec. III B.)
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ponents are reported in units of Mg, the total weight of the chain. The lines are polynomial

interpolations helping to guide the eye. Inset: tan(θ0) (Open circles) and r ≡ Fmax
x /(Fmax

y −Mg)

(Full squares) as a function of x0 (Sec. III D).

14



1

2

3
1

2

3

θ

(

a b

θ
0

(

A

O O

FIG. 5: Images of the chain for t � tmax
y . (a): x0 = 25 cm, (b) x0 = 100 cm. We report in

each case the superposition of 3 images separated by 0.02 seconds: 1: before tmax
y ; 2: the closest to

tmax
y ; 3: after tmax

y . In (a), we observe that, for a small initial spacing x0, a large portion OA of the

chain is almost at rest whereas the chain tip is moving fast. We denote θ the angle that the chain

makes in A with the vertical. In (b), we observe that, for a large initial spacing x0, the motion of

the chain is very similar to that of a swinging rod. We denote θ0 the angle that the chain makes in

O with the vertical.
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FIG. 6: Horizontal and vertical components of the force in the limit x0 → L. For large

initial spacings, one observes at t = 0, jumps in the horizontal and vertical components of the force

�F . For instance, for x0 = 100 cm, the vertical component jumps from Mg/2 to 0 whereas the

horizontal component jumps from the value 1.35 Mg, expected from equation (10), to 0 (The thick

grey dashes indicate the initial values expected from the theoretical analysis presented in the section

III E.) Note that the thickness of the curves is only due to the electronic noise in the signals from

the force sensors and that the values right after the jumps are compatible with 0 (The experimental

accuracy in the force measurements is discussed in the section II.)
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