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QUASI-FUCHSIAN ADS REPRESENTATIONS ARE ANOSOV

Let Γ be a cocompact lattice in SO(1, n).

), then it is quasi-Fuchsian, ie. it is faithfull, discrete, and preserves an acausal subset in the boundary of anti-de Sitter space. In the present paper, we prove the reverse implication. It also includes:

-A construction of Dirichlet domains in the context of anti-de Sitter geometry, -A proof that spatially compact globally hyperbolic anti-de Sitter spacetimes with acausal limit set admit locally CAT(-1) Cauchy hypersurfaces.

Introduction

This paper is a complement to the preceding one by Q. Mérigot [START_REF] Mérigot | Anosov AdS representations are quasi-Fuchsian[END_REF]. We will use all the notations, definitions and results therein. Let's just remind that a representation ρ : Γ → SO 0 (2, n) is quasi-Fuchsian, or GHCregular if it is faithfull, dicrete and preserves an achronal topological (n -1)dimensional sphere Λ ρ in the conformal boundary Ein n of AdS n 1 , the socalled limit set. Except in § 5.3.2 we assume that Λ ρ is acausal. Our main purpose is to prove the reverse of Theorem 1.1 in [START_REF] Mérigot | Anosov AdS representations are quasi-Fuchsian[END_REF], namely: Theorem 1.1. Let Γ be a lattice in SO 0 (1, n). Then, any quasi-Fuchsian representation in SO 0 (2, n) with acausal limit set is (SO 0 (2, n), Y)-Anosov.

As in [START_REF] Mérigot | Anosov AdS representations are quasi-Fuchsian[END_REF] the proof deeply involves anti-de Sitter geometry, and is based on the fact that quasi-Fuchsian representations are precisely holonomy representations of spatially compact, globally hyperbolic Lorentzian manifolds locally modelled on AdS n+1 . We will also consider the case where no special hypothesis is made on the group Γ (see § 5.3.1). We give arguments in favor of the idea that Anosov representations coincide with "quasi-Fuchsian" representations even if Γ is not a priori assumed to be isomorphic to a lattice in SO 0 (1, n). A crucial point is the fact that GHC-regular AdS-spacetimes with acausal limit set admit Cauchy surfaces which are CAT(-1), implying that the associated holonomy representation is still Anosov, but now in a weaker, non-differentiable sense. More generally, in the last § we give a list of groups admitting quasi-Fuchsian representations into SO 0 (2, n) that we expect to be exhaustive.

A criteria for Anosov representations

A technical difficulty arising when one wants to prove that a representation is Anosov is to ensure the exponential decay. The following lemma shows that this feature follows from the compactness of the ambient manifold N of the Anosov flow and a weaker contraction property somewhere along the orbit. Compare with [Mér07, § 5.1.1].

Proposition 2.1. Let ρ : Γ → SO 0 (2, n) be a representation, and assume the existence of continuous maps ℓ ± ρ : N → Ein n and of a continuous and Γ-equivariant family of Riemannian metrics g p defined in a neighborhood of ℓ ± ρ (p) in Ein n such that, for all p in N , there is t > 0 such that, for all w in T ℓ + ρ (p) Ein n (respectively in T ℓ - ρ (p) Ein n ), we have g Φt (p) (w, w) ≥ 2g p (w, w)

(respectively g Φt (p) (w, w) ≤ g p (w, w)/2). Then, ρ is (SO 0 (2, n), Y)-Anosov.

Proof. We simply prove that the hypothesis above imply the exponential decay and exponential expansion expressed in Remark 5.1.2 in [START_REF] Mérigot | Anosov AdS representations are quasi-Fuchsian[END_REF]. Let π ρ : E ρ → N be the flat Ein n -bundle associated to ρ, and let s ± : N → E ρ be the sections induced by ℓ ± ρ . Since the the family (g p ) (p∈ N ) is Γ-equivariant, it induces for every p in N a metric g p ± on the fiber π -1 (p) near s -(p) and s + (p). Denote by V ± (p) the vertical tangent bundle at s ± (p). For every p in N and every t define: (w, w) g p + (w, w) Obviously, for s, t > 0:

α -(p, t + s) ≤ α -(p, s)α -(Φ s (p), t) α + (p, t + s) ≥ α + (p, s)α + (Φ s (p), t)
By hypothesis, and since N is compact, there is a finite covering (U i ) (1≤i≤k) of N , and a sequence (T i ) (1≤i≤k) such that for any i in {1, . . . , k} and any p in U i we have α -(p, T i ) ≤ 1/2. Put T = sup{T i |1 ≤ i ≤ k} and a = sup{α -(p, t)|t ∈ [0, T ], p ∈ N }. For any p in N there exist sequences (t j ) (0≤j≤J) and (i j ) (0≤j≤J) such that t 0 = 0, t J-1 ≤ t ≤ t J , Φ t j (p) lies in U i j and t j+1 = t j + T i j . Then:

α -(p, t) ≤ α -(p, T i 0 )α -(Φ t 1 (p), T i 1 ) . . . α -(Φ t J -1 (p), t -t J-1 )
≤ (1/2) J-1 a ≤ a(1/2) t/T -1 since t ≤ JT . It follows that α -(p, t) decreases exponentially with t. Similarly, α + (p, t) increases exponentially with t. The proposition follows.

Dynamical properties

In this § we consider a GHC-regular representation ρ : Γ → SO 0 (2, n) with acausal limit set Λ ρ . We don't assume that the group Γ is isomorphic to a lattice in SO 0 (1, n). Let (γ n ) (n∈N) be a sequence in Γ escaping to infinity. It will be convenient to consider the image sequence (ρ(γ n )) (n∈N) as a sequence in SO 0 (2, n+1) through the inclusion SO 0 (2, n) ⊂ SO 0 (2, n+1) so that our dynamical study applies in Ein n+1 , and hence in the ρ(Γ)-invariant conformal copy of AdS n+1 inside Ein n+1 .

In [START_REF] Frances | Lorentzian Kleinian groups[END_REF] (see also [BCD + 07, § 7]), C. Frances studied the dynamical behavior in Ein n+1 of (ρ(γ n )) (n∈N) . Up to a subsequence, one the following holds (we will just afterwards remind ingredients of the proof):

(1) Balanced distortion: There are two lightlike geodesics ∆ + , ∆ -in Ein n+1 , called attracting and repelling photons, and two continuous applications π + : Ein n+1 \∆ -→ ∆ + and π -: Ein n+1 \∆ + → ∆ - such that:

-the fibers of π + (respectively π -) are past lightcones C -(x) of points in ∆ -(respectively of points in ∆ + ), -for every compact subset K ⊂ Ein n+1 \∆ -, the sequence ρ(γ n ) uniformly converges on K to π + , -for every compact subset K ⊂ Ein n+1 \∆ + , the sequence ρ(γ -1 n ) uniformly converges on K to π -.

(2) Unbalanced distortion: There are two points x + , x -in Ein n+1 , called attracting and repelling poles, such that:

-x + |x -≤ 0, -for every compact subset K of Ein n+1 contained in Ω -(x -) := {x ∈ Ein n+1 / x|x -< 0} (resp. Ω + (x -) := {x ∈ Ein n+1 / x|x -> 0}) the sequence ρ(γ n ) uniformly converges on K to the constant map x + (resp. (x + ) * ), -for every compact subset K of Ein n+1 contained in Ω -(x + ) := {x ∈ Ein n+1 / x|x + < 0} (resp. Ω + (x + ) := {x ∈ Ein n+1 / x|x + > 0}) the sequence ρ(γ -1 n ) uniformly converges on K to the constant map x -(resp. (x -) * ).
Remark 3.1. Our presentation differs from Frances formulation. Indeed, we consider the dynamic in Ein n+1 , which is the double covering of the Einstein universe as defined in [START_REF] Frances | Lorentzian Kleinian groups[END_REF] ie. as the projection of C n+1 in the projective space P(R n+3 ), and not the projection in the sphere of rays S(R n+3 ). C. Frances had no need to distinguish future cones from past cones since they have the same projection in P(R n+3 ).

A nuisance of the option to consider the double covering is the nonuniqueness of pairs of attracting/repelling poles. Indeed, the opposite pair (-x + , -x -) is also convenient. Moreover, if x -|x + = 0, we have four choices (±x + , ±x -) of pairs of attracting/repelling poles.

Remark 3.2. Every ρ(γ n ) belongs to the subgroup SO 0 (2, n) of SO 0 (2, n + 1), ie. preserves the conformal embedding AdS n+1 ⊂ Ein n+1 and its boundary ∂ AdS n+1 ≈ Ein n . In that situation, all the limit objects ∆ ± , x ± involved in the various cases in the description of the asymptotic behavior of (ρ(γ n k )) (k∈N) are contained in this boundary. In particular, they avoid AdS n+1 .

The dichotomy balanced/unbalanced is based on the Cartan decomposition of SO 0 (2, n + 1). More precisely, consider the quadratic form q 2,n+1 :=

-4a 1 b 1 -4a 2 b 2 + x 2 1 + . . . + x 2 n-1 on R n+3 : observe that (R n+3 , q 2,n+1 ) and (R 2,n+1 , q 2,n+1 ) are isometric (the isometry is (a 1 , b 1 , a 2 , b 2 , x 1 , . . . , x n-1 ) → ((a 1 + b 1 )/2, (a 2 + b 2 )/2, x 1 , . . . , x n-1 , (a 1 -b 1 )/2, (a 2 -b 2 )/2)).
Let A be the free abelian subgroup of rank 2 of SO 0 (2, n + 1) comprising elements a(λ, µ) acting diagonally on R n+3 in the coordinates (a 1 , a 2 , b 1 , b 2 , x 1 , . . . , x n-1 ), so that every x i is unchanged, the coordinates a 1 , a 2 are multiplied by exp(λ), exp(µ), and the coordinates b 1 , b 2 are multiplied by exp(-λ), exp(-µ). It is a real split Cartan subgroup of SO 0 (2, n + 1), and we consider the Weyl chamber A + ⊂ A comprising a(λ, µ) such that 0 ≤ µ ≤ λ. The Cartan decomposition Theorem ensures that every ρ(γ n ) can be written in the form

ρ(γ n ) = k n a n l n such that a n = a(λ n , µ n ) belongs to A + and k n , l n belong to the stabilizer K of the negative definite 2-plane {a 1 = b 1 , a 2 = b 2 , x 1 = . . . = x n-1 = 0} (it is a maximal compact subgroup). Observe that el- ements of K are isometries of the Euclidean norm (u, v, x 1 , . . . , x n ) 2 0 := u 2 + v 2 + x 2 1 + ... + x 2 n . Since (ρ(γ n )) (n∈N)
escapes from any compact, the sequence (λ n ) n∈N) is not bounded from above. By compactness of K there is a converging subsequence, ie. a subsequence (γ n k ) (k∈N) such that k n k , l n k converge to some elements k ∞ , l ∞ of K, and such that lim k→+∞ λ n k = +∞, and

lim k→+∞ exp(µ n k -λ n k ) = ν with 0 ≤ ν ≤ 1.
3.0.1. Balanced distortion. The balanced distortion case is the case ν > 0. Denote by P -, P + the codimension two subspaces {a 1 = a 2 = 0} and {b 1 = b 2 = 0} respectively. Consider the following linear endomorphisms of R n+3 :

Π + 0 (a 1 , b 1 , a 2 , b 2 , x 1 , . . . , x n-1 ) = (a 1 , 0, νa 2 , 0, . . . , 0) Π - 0 (a 1 , b 1 , a 2 , b 2 , x 1 , . . . , x n-1 ) = (0, b 1 , 0, νb 2 , 0, . . . , 0) They induce maps π + 0 : S(R n+3
) \ S(P -) and π - 0 : S(R n+3 ) \ S(P + ). Clearly, as a sequence of transformations of S(R n+3 ), (a n k ) (k∈N) converges uniformly on compacts of S(R n+3 ) \ S(P -) to the map induced by π + 0 , and a similar remark applies for the inverse sequence (a -1 n k ) (k∈N) . It follows that the sequence (ρ(γ n k )) (nk∈N) converges uniformly on compacts of

S(R n+3 ) \ S(l -1 ∞ P -) towards k ∞ • π + 0 • l ∞ and that (ρ(γ -1 n k )) (nk∈N) converges uniformly on compacts of S(R n+3 ) \ S(k ∞ P + ) towards l -1 ∞ • π - 0 • k -1 ∞ .
The description of the dynamic in Ein n+1 given above follows by observing that the intersections P ± ∩ C n+1 are isotropic 2-planes.

3.0.2. Unbalanced distortion. It is the case ν = 0. Identify the sphere S(R n+3 ) of rays with the 0 -unit sphere. The attracting fixed points of the action of a n in S(R n+3 ) are ±x + 0 where x + 0 = (1, 0, . . . , 0), and the repelling fixed points are ±x - 0 where x - 0 = (0, 0, 1, 0, . . . , 0). Observe that the q 2,n+1 -orthogonal (x + 0 ) ⊥ is the hyperplane {b 1 = 0}: it is also the orthogonal of x - 0 for the Euclidean norm 0 . Similarly, (x - 0 ) ⊥ = {b 2 = 0} is the 0 -orthogonal of x + 0 . For every ǫ > 0 let C - 0 (ǫ) be the spherical ball in S(R n+3 ) of radius π/2ǫ centered at x + 0 . It can also be defined as the connected component containing x + 0 of the complement in S(R n+3 ) of the ǫ-neighborhood of (x - 0 ) ⊥ . Every vector in R n+3 splits as a sum rx + 0 + y with y in (x - 0 ) ⊥ . Under the action of a(λ n , µ n ) the component rx + 0 is multiplied by exp(λ n ) whereas the norm of the component y is multiplied by at most exp(µ n ). It follows easily:

Lemma 3.3. Let a(λ n , µ n ) be a sequence in A + with no balanced distortion. For any ǫ > 0 and any η > 0 there is N > 0 such that, for every n > N , the restriction of

a(λ n , µ n ) to C - 0 (ǫ) is η-Lipschitz, with image contained in C + 0 (π -η).
The description of the dynamic of unbalanced converging subsequences on Ein n+1 given above follows easily; the attracting pole x + is simply the image of x + 0 by k ∞ , and the repelling pole is x -= l -1 ∞ x - 0 . We entered in such a detail that the next lemma is now obvious. Consider the hemisphere D -= {x ∈ S(R n+3 )/ x|x -< 0}. For every ǫ > 0 let C -(ǫ) be the set of points in D -at distance ≥ ǫ from (x -) ⊥ ∩ S(R n+3 ). Since k n , l n are isometries for 0 : Lemma 3.4. For any ǫ > 0 and any η > 0 there is N > 0 such that, for every k > N , the restriction of ρ(γ n k ) to C -(ǫ) is η-Lipschitz, with image contained in the ball centered at x + and of radius η.

The statement we actually need is: Corollary 3.5. Assume that x + belongs to ρ(γ n k )D -for k sufficiently big. Then the differential at of the inverse of ρ(γ n k ), as a transformation of the unit sphere S(R 2,n+1 ) expands all the vectors tangent to the sphere at x + by at least a factor ν k , such that ν k → +∞ when k → +∞.

Balanced distortion is the typical behavior of converging subsequences (ρ(γ n k )) (k∈N) when ρ(Γ) acts properly discontinuously on AdS n+1 . But our situation here is different: by hypothesis, the group ρ(Γ) preserves an achronal limit set Λ ρ , which is not pure lightlike since E(Λ ρ ) = ∅ ([Mér07, Lemma 3.6]).

Proposition 3.6. No sequence in ρ(Γ) has balanced distortion.

Proof. Assume a contrario that some sequence (ρ(γ n )) (n∈N) has balanced distortion. Denote by ∆ ± the repelling and attracting photons. Since Λ ρ is an acausal topological sphere, it intersects ∆ + at an unique point x + Since Λ ρ is ρ(Γ)-invariant, the image by π + of Λ ρ \ ∆ -is x + . The fibers of π + are past cones of elements of ∆ -. Hence, Λ ρ \ ∆ -is contained in the past cone

C -(x + ) Since ∆ -∩ Λ ρ is a compact embedded segment, Λ ρ \ ∆ -is dense in Λ ρ (this argument is correct when the dimension of Λ ρ is ≥ 2. For the case where Λ ρ is a topological circle, see [Mes07, ABB + 07], or [BBZ07, § 6.2]). Hence Λ ρ is contained in C -(x + ). It is impossible since Λ ρ is not pure lightlike.
Remark 3.7. The ambiguity on the definition of pairs of attracting/repelling poles, mentioned in Remark 3.1, can be removed for GHC-regular representations by selecting as poles the ones contained in Λ ρ . Indeed:

-Λ ρ contains an attracting pole. Indeed, since it is not contained in a cone C(±x -), Λ ρ intersects Ω + (x -) or Ω -(x -), and the ρ(γ n )-orbit of a point in this intersection accumulates on ±x + , that therefore belongs to Λ ρ . Similarly, Λ ρ contains a repelling pole.

-Λ ρ contains one and only one attracting pole. Indeed, x + and -x + cannot both belong to Λ ρ since Λ ρ is not pure lightlike. Similarly, Λ ρ contains one and only one repelling pole.

Observe that the condition x -|x + ≤ 0 is fulfilled since Λ ρ is achronal.

Convex hull of GHC-representations

4.1. The convex hull. According to [Mér07, Lemma 3.9] the limit set Λ ρ and the regular domain E(Λ ρ ) are contained in U ∪ ∂U where U is an affine domain of AdS n+1 . In particular, it is contained in an affine chard V of S(R 2,n ). We can consider the convex hull Conv(Λ ρ ) of Λ ρ in this affine chard. This convex hull does not depend on the choice of V . Moreover, since

E(Λ ρ ) is convex, it contains Conv(Λ ρ ) (cf. [Mér07, Remark 3.11]).
For more details, see for example [START_REF] Barbot | Causal properties of AdS-isometry groups I: Causal actions and limit sets[END_REF]. Alternatively, we also can define Conv(Λ ρ ) as the projection S(C) where C is the set of barycentric combinations t 1 x 1 + . . . t k x k where t i are positive real numbers such that t 1 + . . . t k = 1 and

x i elements of C n ⊂ R 2,n the projections S(x i ) of which belong to Λ ρ . Lemma 4.1. The convex hull Conv(Λ ρ ) is compact; its intersection with ∂ AdS n+1 is Λ ρ , and the "finite part" Conv(Λ ρ ) ∩ AdS n+1 = Conv(Λ ρ ) \ Λ ρ is contained in E(Λ ρ ).Fix a ρ(Γ)-invariant future oriented timelike vector field V on E(Λ ρ ).
Proof. The compactness of Conv(Λ ρ ) arises from the compactness of Λ ρ . Let x = t 1 x 1 + . . . t k x k be an element of R 2,n projecting in S(R 2,n ) on an element of Conv(Λ ρ ). For every y such that S(y) belongs to Λ ρ , according to [Mér07, Corollary 2.11]:

x|y = k i=1 t i x i |y ≤ 0 Moreover, if x|y vanishes, then every y|x i vanishes. But since Λ ρ is acausal, y|x i = 0 implies y = x i : according to [Mér07, Proposition 3.10] Conv(Λ ρ ) \ Λ ρ is contained in E(Λ ρ ). The lemma follows since E(Λ ρ ) is contained in AdS n+1 . Lemma 4.2. If Conv(Λ ρ ) has empty interior, then ρ is Fuchsian. Proof. If Conv(Λ ρ ) has empty interior, it is contained in a projective hy- perplane S(v ⊥ ). If q 2,n (v) > 0 then S(v ⊥ ) ∩ AdS n+1 is an isometric, totally geodesic embedding of AdS n . In a well-chosen conformal chard AdS n+1 ≈ S 1 × D n this AdS-wall is {x n = 0}. It is a contradiction since its closure should contain Λ ρ whereas Λ ρ is a graph over ∂D n . Similarly, if q 2,n (v) = 0 then Λ ρ would be pure lightlike. Hence, up to renormalization, v lies in AdS n+1 . If v ′ = v is another element of AdS n+1 then the intersection S(v ⊥ ) ∩ S((v ′ ) ⊥ ) ∩ AdS n+1 , if not empty, is contained in a totally geodesic hypersurface in S(v ⊥ ) ∩ AdS n+1 : its closure cannot contain the topological (n -1)-sphere Λ ρ . Therefore, v is unique: it is a global fixed point for ρ(Γ).
Since we already know that Fuchsian representations are Anosov ([Mér07, § 5.2]), we assume from now that Conv(Λ ρ ) has non-empty interior. The limit set Λ ρ is the projection of an acausal closed subset Λ ρ in Ein n and

E(Λ ρ ) is the 1-1 projection of a domain E( Λ ρ ) in AdS n+1 ≈ R × D n . Recall that there are two maps f - ρ , f + ρ such that E( Λ ρ ) = {(θ, x)/f - ρ (x) < θ < f + ρ (x)} (cf. [Mér07, Remark 3.3]).
Proposition 4.3. The complement of Λ ρ in the boundary ∂ Conv(Λ ρ ) has two connected components. Both are closed edgeless achronal subsets of AdS n+1 . More precisely, in the conformal model their lifting in AdS n+1 are graphs of 1-Lipschitz maps

F + ρ , F - ρ from D n into R such that f - ρ < F - ρ < F + ρ < f + ρ
For a similar study when Λ ρ is not necessarily a topological sphere but in the case n = 2, see [Bar05a, § 8.10]. For the proof of this proposition, we need a few lemmas. Proof. Let D be a timelike geodesic in AdS n+1 . It is contained in a totally geodesic embedding A of AdS 2 in AdS n+1 , and the intersection A∩Conv(Λ ρ ) contains the convex hull in A of Cl(A) ∩ Λ ρ . We are thus reduced to the (easy) case n = 2. In that case, A \ D has two connected components, and each of them contains a connected component of ∂A. The boundary ∂A has two connected components l 1 , l 2 , and each of these connected components is an inextendible timelike curve in Ein 1 ⊂ Ein n+1 , which therefore intersects Λ ρ at an unique point x i . Then, the segment [x 1 , x 2 ] intersects D.

Lemma 4.5. Support hyperplanes in S(R 2,n ) to Conv(Λ ρ ) at points inside AdS n+1 are spacelike.

Proof. Let x be a point in AdS n+1 ∩ Conv(Λ ρ ), and let P be a support (projective) hyperplane at x to Conv(Λ ρ ). This support hyperplane is a projection S(v ⊥ )for some v in R 2,n . If q 2,n (v) > 0, then S(v ⊥ ) disconnects any affine domain, in particular, the affine domain V containing E(Λ ρ ) ∪ Λ ρ , and it follows easily, since Λ ρ is a topological sphere, that the affine hyperplane S(v ⊥ ) ∩ V disconnects Λ ρ . It is a contradiction since this affine hyperplane is a support hyperplane in V and hence cannot disconnect the convex hull.

If q 2,n (v) = 0, then the affine hyperplane V ∩ S(v ⊥ ) is tangent to the hyperboloid ∂U at S(v) (up to a slight change of affine domain V , we can always assume that S(v) belongs to V ). If it disconnects Λ ρ , we obtain a contradiction as above. If not, it means that S(v) belongs to Λ ρ . Write x as a sum t

1 x 1 +. . . t k x k where x i belongs to Λ ρ : 0 = v|x = t 1 v|x 1 +. . . t k v|x k .
Since every v|x i is a nonpositive number, they all vanish, and it implies that v = x i for every i. Hence x = v; it is a contradiction since x is assumed in AdS n+1 .

Proof of Proposition 4.3. Lift Conv(Λ ρ ) in AdS n+1 ≈ R×D n as a subdomain Conv( Λ ρ ) in E( Λ ρ )∪ Λ ρ . For every x in D n , the line R×{x} is a timelike geodesic. According to Lemma 4.4 it intersects Conv( Λ ρ ). Moreover, since this intersection is convex, it contains a geodesic segment [F - ρ (x), F + ρ (x)]×{x}. If an element y in ]F - ρ (x), F + ρ (x)[×{x} lies on the boundary of Conv( Λ ρ ), then every support hyperplane to the convex hull at the projection of this point must contain the projection of the timelike segment [F - ρ (x), F + ρ (x)] × {x}: it contradicts Lemma 4.5. Therefore, the boundary of Conv( Λ ρ ) is the union of the graphs of F - ρ and F + ρ . It follows quite easily that these graphs are closed, hence, F + ρ and F - ρ are continuous. Consider the closed subset

E := {F - ρ = F + ρ } in D n .
For every x in D n , take a small chard in the Klein model around (F + ρ (x), x) such that F - ρ and F + ρ expresses locally as graphs of maps from an affine hyperplane into R.

Since Conv(Λ ρ ) is convex, F + ρ is convex and F - ρ is concave. It follows that the coincidence locus E is also open. Since D n is connected, if E is not empty we get the equality F - ρ = F + ρ .
It is impossible since the interior of E(Λ ρ ) is not empty. Therefore, according to Lemma 4.1:

f - ρ < F - ρ < F + ρ < f + ρ
Finally, for every x in D n , let S(v ⊥ ) be a support hyperplane to Conv(Λ ρ ) at the projection of (F + ρ (x), x). According to Lemma 4.5, S(v ⊥ ) is a totally geodesic embedding of H n . In particular, it lifts as the graph of a 1-Lipschitz

map ϕ + v : D n → R. One of the region {(θ, y)/θ > ϕ + v (y)}, {(θ, y)/θ < ϕ + v (y)} is disjoint from Conv( Λ ρ ), and since F - ρ (x) < F + ρ (x) = ϕ + v (x)
, it is the former. Hence on D n we have F + ρ ≤ ϕ + p . But since convex domains are intersections of half-spaces containing them, we get:

F + ρ = min v ϕ + v Since every ϕ + v is 1-Lipschitz, the same is true for F + ρ . Similarly for F - ρ .
We denote the components of ∂ Conv(Λ ρ ) as

S + ρ , S - ρ . Denote by S + ρ , S - ρ their projections in M = ρ(Γ)\E(Λ ρ ).
Lemma 4.6. S ± ρ are Cauchy hypersurfaces in M . Proof. Since S ± ρ is homeomorphic to R n the quotient S ± ρ = S ± ρ is a K(Γ, 1) space, as Γ\H n . The cohomology groups H n (S ± ρ , R) and H n (Γ\H n , R) are therefore isomorphic. Since the later is non zero, the former is non zero: the compactness of S ± ρ , and thus the Lemma, follows. As an immediate corollary, we get that the projection of Conv(Λ ρ ) \ Λ ρ is the compact domain of M , bounded by the two disjoint Cauchy hypersurfaces S ± ρ . We denote it C(M ), and call it the convex core of M . Remark 4.7. It can be easily infered from Lemma 4.5 that S ± ρ are furthermore acausal, ie. that F ± ρ are contracting. Remark 4.8. Let v be an element v such that q 2,n (v) > 0. They are totally geodesic embeddings of AdS n . We call AdS-wall the intersections of AdS n+1 with the orthogonal v ⊥ . The half AdS-spaces defined by v are the domains

H + (v) = {x ∈ AdS n+1 / v|x ≥ 0} and H -(v) = {x ∈ AdS n+1 / v|x ≤ 0} = H + (-v).
According to Lemma 4.4, the intersection between any AdSwall ∂ H(v), and Λ ρ is a topological (n -2)-sphere. Moreover, in a suitable conformal chard H + (v) is the domain

{(θ, x 1 , . . . x n ) ∈ S 1 × D n /x n > 0}. It follows that S(v) = ∂ H ± (v) ∩ Conv(Λ ρ ) is a topological n-dimensional disk, in particular compact, and cuts Conv(Λ ρ ) in two parts H ± (v) = H ± (v) ∩ Conv(Λ ρ ), that we call convex caps.
4.2. Metric on the convex hull. In the sequel we need to define a ρ(Γ)metric on Conv(Λ ρ ). Since the action is cocompact, all these metrics are quasi-isometric one to the other (see § 4.4) and the choice is not important. However, in order to sustain our argumentation, we choose a specific metric.

Let Ω be a bounded open domain in P(R n ), ie. an open domain contained in an affine chard and such that the closure Ω in this affine chard is compact. The Hilbert distance between two points x, y in Ω is:

d H (x, y) := log(a, b, x, y)
where a, b are the two intersections between ∂Ω and the projective line containing x and y, and where (a, b, x, y) is the cross-ratio. It is a distance function, and the associated metric is proper, geodesic and every projective transformation preserving Ω preserves the Hilbert distance of points. Moreover, geodesics are intersections between projective lines and Ω (see [START_REF] Busemann | Projective geometry and projective metrics[END_REF]).

The interior of the convex hull Conv(Λ ρ ) is a bounded open domain, hence admits a well-defined ρ(Γ)-invariant Hilbert metric. However, in the sequel we will need metrics defined on Conv(Λ ρ ) \ Λ ρ and not only on its interior. Hence we have to enlarge Conv(Λ ρ ) to another convex domain, still bounded and ρ(Γ)-invariant, but containing the boundaries S ± ρ . A suitable solution is to consider, for ǫ > 0 small enough, the domain Conv(Λ ρ ) ǫ in AdS n+1 made of points x such that every causal curve in AdS n+1 joining x to an element of Conv(Λ ρ ) is of Lorentzian length ≤ ǫ. It follows quite easily from the compactness of ρ(Γ)\ Conv(Λ ρ ) that for ǫ small enough Conv(Λ ρ ) ǫ is contained in E(Λ ρ ). The proof that Conv(Λ ρ ) ǫ is still convex is straightforward, we refer to [BBZ07, Proposition 6.31] for a proof formulated in dimension 2+1, but valid in any dimension. Observe also that Conv(Λ ρ ) ǫ is still bounded, and that its interior contains Conv(Λ ρ ) \ Λ ρ .

In the sequel, we fix once for all ǫ and denote by d H the restriction to Conv(Λ ρ ) of the Hilbert metric of Conv(Λ ρ ) ǫ .

Remark 4.9. If ]a, b[ is a spacelike geodesic joining two points in Ein n then for any x, y in ]a, b[ the AdS-length of the piece of geodesic between x and y is log(a, b, x, y) (see e.g. [Sal99, Theorem 2.2.1.11], it is a generalization of the well-known fact that the Hilbert metric on the Klein model of the hyperbolic space is isometric to the hyperbolic metric). It follows that in the case where a, b lies on Λ ρ this length is the Hilbert distance d H (x, y).

Dirichlet domains.

If Γ acts freely and properly discontinuously on a proper complete metric space X, there is a well-known way to construct a fundamental domain of its action: the Dirichlet domain (see [START_REF] Ratcliffe | Foundations of hyperbolic manifolds[END_REF]). Here the action we consider does not preserve a Riemannian metric, but the construction of Dirichlet domain extends easily in our situation: Definition 4.10. Fix an element x 0 of Conv(Λ ρ ). For every γ in Γ, let

D(γ) be the domain {x ∈ E(Λ ρ )/ x|x 0 > x|ρ(γ)x 0 } (here we consider E(Λ ρ ) as a subset of AdS n+1 ⊂ R 2,n ). The Dirichlet domain D(Γ) is the intersection ∩ γ∈Γ D(γ).
Remark 4.11. Since the quotient M is globally hyperbolic, it admits no closed causal curve. Therefore, x 0 and ρ(γ)x 0 are not causally related: the q 2,n -norm of (ρ(γ)x 0x 0 ) is positive. The domain D(γ) is the interior of the intersection between E(Λ ρ ) and the half AdS-space H -(ρ(γ)x 0x 0 ). Lemma 4.12. The complements H(γ) = E(Λ ρ ) \ D(γ) form a locally finite family of subsets of E(Λ ρ ).

Proof. Assume by contradiction that a compact K of E(Λ ρ ) intersects infinitely many H(γ n ). According to Proposition 3.6 and Remark 3.7 we can assume, up to a subsequence, that the action induced in the Klein model by ρ(γ -1 n ) converges uniformly on K to a point x -in Λ ρ .

On the other hand, there is a sequence of points (x n ) (n∈N) in K, converging to some x, and such that for every n:

x n |x 0 ≤ x n |ρ(γ n )x 0 = ρ(γ -1 n )x n |x 0 Since the ρ(γ -1 n )
x n has q 2,n -norm -1, the convergence in the Klein model towards x -means that for some sequence

λ n → 0 the λ n ρ(γ -1 n )(x n ) con- verges to a representant x-in C n of x -.
Hence

x n |x 0 ≤ 1 λ n x 0 |λ n ρ(γ -1 n )x n
The left term converges to x|x 0 , and since 1 λ n converges to +∞ and 

x 0 |λ n ρ(γ -1 n )x 0 converges
E(Λ ρ ) = ∪ γ∈Γ ρ(γ)Cl(D(Γ))
Proof. Let x be in E(Λ ρ ); consider the map ξ : Γ → R defined by ξ(γ) = x|ρ(γ)x 0 . If there is a sequence γ n such that ξ(γ n ) increases, the argument used in the proof above with the constant sequence x n = x leads to a contradiction. Hence ξ attains its maximum at some γ 0 , ie. ρ(γ 0 )x 0 |x ≥ ρ(γ)x 0 |x for every γ in Γ. It follows that ρ(γ 0 ) -1 x belongs to Cl(D(Γ)).

Lemma 4.14. The iterates ρ(γ)D(Γ) are disjoint one from the other.

Proof. If x lies in ρ(γ)D(Γ), then for every h in ρ(Γ) \ ρ(γ) we have:

x|ρ(γ)x 0 > x|hx 0 If moreover x lies in ρ(γ ′ )D(Γ) with ρ(γ ′ ) = ρ(γ) then: x|ρ(γ ′ )x 0 > x|ρ(γ)x 0
We obtain a contradiction with the above in the case h = ρ(γ ′ ). This compactness implies that Dconv (Γ) is the intersection between the convex hull and a finite sided convex polyhedron. Hence Dconv (Γ) itself is also convex. 4.4. Quasi-isometry between the group and the convex hull. A map f : X → X ′ between two metric spaces (X, d), (X ′ , d ′ ) is a quasi-isometry if for some a > 0, b > 0 we have (1/a)d(x, y)-b < d ′ (f (x), f (y)) < ad(x, y)+b, and if moreover any point in X ′ is at distance at most b from the image of f .

According to Lemma 4.12 the set S made of elements γ of Γ such that ρ(γ) Dconv (Γ) ∩ Dconv (Γ) = ∅ is finite, and according to Lemma 4.13, 4.14 S is a generating set of Γ. We consider the Cayley graph (Γ S , d S ), ie. the simplicial metric space admitting as vertices the elements of Γ, and such that two vertices γ, γ ′ are connected by an edge of length 1 if and only if γ ′ γ -1 lies in S.

Since Γ acts cocompactly on Conv(Λ ρ ), the map:,

 : (Γ S , d S ) → (Conv(Λ ρ ), d H )
associating to any vertex γ the element ρ(γ)x 0 of ρ(γ) Dconv (Γ) is a quasiisometry.

A key feature is that the group Γ we consider is (Gromov) hyperbolic; for definitions and properties of hyperbolic spaces or groups, we refer to [Gro, GdLH + 90]. By definition, the Gromov boundary of a hyperbolic geodesic space (X, d) is the space of complete geodesic rays modulo the equivalence relation identifying two rays staying at bounded distance one from the other. Any quasi-isometry between hyperbolic spaces extends as a homeomorphism between their Gromov boundary: the image by a quasi-isometry of a geodesic ray is quasi-geodesic, ie. a map c : [0, +∞[→ X such that, for some a, b > 0:

1/a|t -s|b ≤ d(c(t), c(s)) ≤ a|s -t| + b Moreover, for every a, b > 0, there is a constant D such that for every (a, b)-quasi-geodesic ray c : [0, +∞[→ X there is a geodesic ray c : [0, +∞[ such that, for every t, the distance c(t) to the image of c 0 is less than D, and the distance of c 0 (t) to the image of c is less than D. We say that c is at bounded distance ≤ D from c 0 .

It follows that the quasi-isometry between Γ S and H n extends to a homeomorphism between ∂Γ and the conformal sphere ∂H n . Proposition 4.16.  extends as a homeomorphism  between the Gromov boundary ∂Γ ≈ ∂H n and the limit set Λ ρ .

Proof. Let (γ n ) (n∈N) be the sequence of vertices of Γ S visited by a complete geodesic ray r 0 in (Γ S , d S ). According to the above, there is a constant D ≥ 0 such that the image (r 0 ) is at bounded d H -distance ≤ D from a geodesic ray in (Conv(Λ ρ ), d H ), ie. a projective segment [x, y + [ where x lies in Conv(Λ ρ ) and y + an element in ∂ Conv(Λ ρ ) ǫ . Since this geodesic ray, of infinite d H -length, is contained in Conv(Λ ρ ) the limit point y + actually lies in Λ ρ .

On the other hand, according to Proposition 3.6 every subsequence of (γ n ) (n∈N) admits a subsequence (γ n k ) (k∈N) with mixed or bounded distortion: there is an attracting pole x + in Λ ρ such that (ρ(γ n k )) (k∈N) converges uniformly on compacts of E(Λ ρ ) to the constant map x + . In particular,

x k = (γ n k ) = ρ(γ n k )(x 0 ) converges to x + . If x + = y + then ]x + , y + [ is a complete geodesic in (Conv(Λ ρ ), d H ) of infinite length.
Hence there is a complete geodesic c in Γ S such that (c) is a quasi-geodesic at bounded distance from ]x + , y + [. Therefore the geodesic ray r 0 alternatively approximates both ends of c: it is a contradiction since these ends are distinct whereas a geodesic ray admits ony one accumulation point in ∂Γ.

Therefore x + = y + . It follows that x + does not depend on the subsequence, and that y + is the extremity of any d H -geodesic ray at bounded distance from (r 0 ). Hence the map  : [r 0 ] ∈ ∂Γ → x + ∈ Λ ρ is well-defined.

We now prove the continuity of . Let V be a neighborhood of x + in Λ ρ . Let U be a neighborhood of x + in Ein n+1 disjoint from x 0 , such that U ∩ Λ ρ ⊂ V and that U ∩ AdS n+1 is convex. Finally, let H + (v) be a convex cap contained in U such that x + is in the interior of the topological disk H + (v) ∩ ∂ Conv(Λ ρ ). The geodesic segment [x 0 , x + [ crosses S(v) at some point x 1 . Let x 2 be another point of that segment sufficiently close to x + so that the Hilbert distance between x 2 and H -(v) is bigger that 2D, where D is the constant such that for every geodesic ray in Γ S there is a d H -geodesic in Conv(Λ ρ ) at uniform distance D from (r).

The point x 2 is at distance D from an element ρ(γ k )x 0 of (r 0 ). Let now W be the neighborhood of [r 0 ] such that every element [r] of W is represented by a geodesic ray r starting from id and containing γ k . Then, (r) is at bounded distance D from the geodesic segment [x 0 , ([r])[. Hence [x 0 , ([r])[ contains a point y 2 at distance ≤ D from ρ(γ k )x 0 , hence at distance ≤ 2D from x 2 . According to our choice of x 2 , this point y 2 lies on the same side of the wall S(v) than x 2 , ie. in

H + (v). Hence [x 0 , ([r])[ crosses S(v) before reaching ([r]). Since U is convex, it follows that ([r]) lies in U , hence, in V . The continuity of  is proved.
If [r] and [r ′ ] are two distinct elements in ∂Γ, there is complete geodesic c : R → Γ asymptotic to r near -∞ and to r ′ near +∞. The quasi-geodesic (c) is at bounded distance from a geodesic ](

[r]), ([r ′ ])[ in Conv(Λ ρ ). It follows that ([r]) = ([r ′ ]).
Finally, for any x in Λ ρ , the d H -geodesic ray [x 0 , x[ is at bounded distance from the image by  of a quasi-geodesic ray in Γ S , hence from the image by  of a geodesic ray. It follows that  is onto. Since ∂Γ is compact, the bijective map  is an homeomorphism. The proposition is proved.

Remark 4.17. It was convenient for the proof above to consider (Γ S , d S ). But this metric space is quasi-isometric in a Γ equivariant way to H n and also T 1 H n . Hence, a corollary of Proposition 4.16 is that any quasi-isometry c : T 1 H n → Conv(Λ ρ ) extends as a homeomorphism  c between the Gromov boundary ∂ T 1 H n and Λ ρ . 4.5. The geodesic flow of the GHC-regular spacetime.

Definition 4.18. The non-wandering subset, denoted N (Λ ρ ), is the subset of E 1 AdS n+1 comprising elements (x, v) such that the two extremities ℓ ± (x, v) lie in Λ ρ . The geodesic flow on N (Λ ρ ) is the flow φt N such that φt N (x, v) = (x t , v t ) where x t is the point on the geodesic tangent to (x, v) at distance t (along the geodesic) from x, and v t the vector tangent at x t to this geodesic.

This definition is ρ(Γ)-equivariant, we denote by N (ρ) the quotient of N (Λ ρ ) by ρ(Γ) and φ t N the flow on N (ρ) induce by φt N . The projection p(N (Λ ρ )) is obviously contained in Conv(Λ ρ ). Since ℓ ± are continuous, and since Λ ρ , C(M ) are compact, the quotient N (ρ) is compact.

Proposition 4.19. There is a Γ-equivariant homeomorphism f : T 1 H n → N (Λ ρ ) mapping orbits of the geodesic flow φt on orbits of φt N . Proof. The orbit space of φt is ∂H n ×∂H n \D, whereas the orbit space of φt N is Λ ρ × Λ ρ \ D (where D denotes the diagonal in both cases). Moreover, the quotient maps p φ : T 1 H n → ∂H n × ∂H n \ D and p N : N (Λ ρ ) → Λ ρ × Λ ρ \ D are locally trivial R-fibrations. By proposition 4.16, there is an equivariant homeomorphism  ×  between the orbit spaces; the question is to lift this homeomorphism in a Γ-equivariant way to a map f so that:

p N • f = ( × ) • p φ
The way to perform such a lift is quite well-known. Take a finite collection (T i ) 1≤i≤l of small transversals to φt in T 1 H n so that for any p in T 1 H n there is a positive real number t in ] -1, +1[ such that φ t (p) lies on γT i for some γ in Γ. Observe that such a family is locally finite: given x, there are only finitely many γ fulfilling this condition. Now, since p N is a fibration, and if the T i are chosen sufficiently small, for every i, the restriction of ( × ) • p φ to T i lifts to a map f i : T i → N (Λ ρ ) such that, on T i :

p N • f i = ( × ) • p φ For every p in T 1 H n , for every triple α = (i, γ, t i ) with -1 ≤ t i ≤ 1 such that φt i (p) lies in γT i define x α (p) = ρ(γ)f i ( φt i (p))
. All these points lie on the same φN -orbit. Now select a partition of unity (f i ) 1≤i≤l ) on N = Γ\ T 1 H n subordinate to the covering (U i ) 1≤i≤l ) where U i = {φ t (p)/ -1 < t < 1, p ∈ T i }. It associates to every x α a weight, namely the value of f i at the projection in N of p. Define f(p) as the barycenter of x α with respect to these weights. It defines a continuous Γ-equivariant map f mapping orbits of φt into orbits of φt N . Now it follows from the hyperbolicity of H n that a diffusion process along the orbits transform this map to another map, that we still denote f, which is injective along the orbits (see [START_REF] Ghys | Flots d'Anosov sur les 3-variétés fibrées en cercles[END_REF][START_REF] Gromov | Three remarks on geodesic dynamics and fundamental group[END_REF]). This map obviously satisfies the condition p N • f = ( × ) • p φ and is Γequivariant. It follows that it is injective. An homological argument ensures that it is a homeomorphism.

We can now improve the content of Proposition 4.16.: Proposition 4.20. For any complete geodesic ray [x 0 , x + [ in Conv(Λ ρ ) there is a sequence (γ n ) (n≥1) in Γ and a convex cap H + such that:

(1) the convex caps H + n := ρ(γ n )H + shrink uniformly to x + , (2) the repelling pole x -belongs to d -:= ∂ Conv(Λ ρ ) ∩ H -, (3) the attracting pole x + belongs to every

d + n := ρ(γ n )d + where d + := ∂ Conv(Λ ρ ) ∩ H + .
Proof. For every x in [x 0 , x + [, let v(x) be the velocity, ie. the unit vector tangent to [x 0 , x + [ and oriented towards x + . Since N (ρ) is compact, the φ t Norbit of the projection of (x 0 , v 0 ) (where v 0 = v(x 0 )) admits an accumulation point. Let (x ∞ , v ∞ ) be a lifting in N (Λ ρ ) of this accumulation point, and let H + be a convex cap such that the wall S intersects [x 0 , x + [ and such that the final extremity ℓ + (x ∞ , v ∞ ) lies in the interior of d + . Fix also a positive real number ǫ, and let W be a small neighborhood of (x ∞ , v ∞ ) in N (Λ ρ ) made of points of the form φt N (y, w) where: --ǫ < t < ǫ, -y lies in S, -the tangent vector w points in the direction of H + , ie. the final extremity of the φt N -orbit of (y, w) lies in the interior of d + . By construction, there is a sequence (γ n ) (n∈N) and a sequence of points x n in [x 0 , x + [ converging to the final extremity x + such that (x n , v n ) (where

v n := v(x n )) intersects ρ(γ n )W . By replacing γ n by γ n γ -1 1 and (x ∞ , v ∞ ),
H + and W by their images by ρ(γ 1 ) we can assume that γ 1 is trivial and that x 1 belongs to W . Hence x + = ℓ + (x 1 , v 1 ) lies in the interior of d + . Moreover, ρ(γ n ) -1 v n points in the direction of H + : it follows that x + belongs to every H + n , and that x 0 belongs to H - n . Up to a subsequence, we can assume that (ρ(γ n )) (n∈N) is a converging subsequence with unbalanced distortion. The ρ(γ n )x ∞ stay at uniformly bounded distance form x n ; it follows that they converge to x + and that x + is the attracting pole of (ρ(γ n )) (n∈N) . On the other hand, every H - n contains x 0 : therefore, these convex caps do not shrink to a point. The repelling pole x -lies in d -. Hence the positive convex caps H + n shrink to the attracting pole x + . The proposition is proved. 4.6. End of the proof of Theorem 1.1. Let ℓ ± ρ : T 1 H n → Λ ρ be the composition of  : ∂Γ → Λ ρ with ℓ ± : T 1 H n → ∂Γ: they together define a map (ℓ + ρ , ℓ - ρ ) : T 1 H n → Y. In order to achieve the proof of the main Theorem we just have to construct the metrics g p satisfying the hypothesis of Proposition 2.1.

Fix a ρ(Γ)-invariant future oriented timelike vector field V on E(Λ ρ ). For every x in Conv(Λ ρ ) we simplify the notations by denoting simply h x the metric gx,V (x) on ∂U (x) ⊂ Ein n introduced in [Mér07, § 5.2.2]. We define g x as the metric h ρ(γ)x 0 where γ is an element of Γ such that ρ(γ) Dconv (Γ) contains x. This family of metrics has a drawback: it is not continuous.

A way to construct a continuous family of metrics is the following: Let ς : T 1 H n → S + ρ be the composition of the homeomorphism f of Proposition 4.19 with the projection π : N (Λ ρ ) → Conv(Λ ρ ): it is a Γ-invariant homeomorphism. For p = (x, v) in T 1 H n define the metric g p 0 as the metric h ς(p) on the open neighborhood ∂U (ς(p)) of ℓ + ρ (p) and ℓ - ρ (p). These metrics vary continuously with p.

Now the key observation is that to check the expanding property for g p 0 is equivalent to check the same property for g p . Indeed:

Lemma 4.21. For every δ > 0, there is a constant C δ > 1 such that for every x and y in Conv(Λ ρ ) such that d H (x, y) < δ, and for every vector w tangent to Ein n at a point of Λ ρ the following inequalities hold:

C -1 δ h y (w, w) ≤ h x (w, w) ≤ C δ h y (w, w) Sketch of proof. When y is fixed, for example, y = x 0 , the lemma follows from the compactness of the d H -ball centered at x 0 and the continuity of x → h x . The general case follows by ρ(Γ)-equivariance.

Hence, g p 0 and g p only differ by a factor C δ where δ is the diameter of Dconv (Γ). Therefore, the last step in the proof of Theorem 1.1 is: Proposition 4.22. Let p = (x, v) be an element of T 1 H n . Then for every C > 0, there is a time t > 0 such that for every tangent vector w to Ein n at ℓ + ρ (p) the inequality g φt (p) (w, w) ≥ Cg p(w, w) holds.

Proof. Let r 0 = [x 0 , x + [ be the π-projection of the image by f of the positive φt -orbit of p. Observe that x + = ℓ + ρ (p). Let H + be the convex cap and (γ n ) (n≥1) be the sequence obeying the conclusion of Proposition 4.20.

According to Lemma 4.21, it is enough to prove that for every C > 0 there is a positive integer n such that the h γnx 0 -norm of any w in T x + Ein n is bounded from below by its h x 0 -norm multiplied by C. Since the metrics are ρ(Γ)-equivariant, we have to prove:

h x 0 (d x + ρ(γ n ) -1 w, d x + ρ(γ n ) -1 w) ≥ Ch x 0 (w, w)
This inequality only involves the metric h x 0 . But since Λ ρ is a compact subset of ∂U (x 0 ), the h x 0 -norm of vectors tangent to points in Λ ρ is equivalent to their 0 -norm -here by 0 we mean the restriction to Ein n of the spherical metric on S(R 2,n ) induced by the Euclidean norm. Hence, to achieve the proof, we just have to check that Corollary 3.5 applies, ie. , with the notations introduced in § 4.5, that the attracting pole x + belongs to ρ(γ n )D -.

The repelling pole x -belongs to d -(Item (2) of Proposition 4.20). Hence, the positive convex cap H + is at positive distance from (x -) ⊥ in the unit sphere S(R 2,n ), ie. is contained in D ǫ for ǫ sufficiently small. Hence ρ(γ n )D - contains d + n . Since x + lies in d + n (Item (3) of Proposition 4.20), we obtain as required that x + belongs to ρ(γ n )D -.

Conclusion

5.1. Closure of the set of quasi-Fuchsian representations. In the Riemannian context, the set of quasi-Fuchsian representations is not closed. But the situation for quasi-Fuchsian representations in SO 0 (2, n) of lattices in SO 0 (1, n) is different. Whereas quasi-spheres in ∂H n+1 may degenerate, the limit sets of a sequence of quasi-Fuchsian representations (ρ k ) (k∈N) in SO 0 (2, n) always converge, up to a subsequence, to a closed achronal topological sphere Λ in Ein n , since the space of 1-Lipschitz maps f : S n → S 1 is compact. It is easy to see that if the representations ρ k converge to some representation ρ, then Λ is preserved by ρ(Γ).

Question 5.1. Is Λ acausal?

If this question admits a positive answer, the limit representation ρ is Anosov (faithfullness and discreteness follow from classical arguments). In other words, Anosov representations would form an entire component of Rep(Γ, SO 0 (2, n)).

An element in favor of a positive answer is the (2+1)-dimensional case: up to finite index, SO 0 (2, 2) is isomorphic to SO 0 (1, 2) × SO 0 (1, 2), and quasi-Fuchsian representations (ie. GHC-regular representations) decomposes as a pair (ρ L , ρ R ) of cocompact Fuchsian representations the surface group Γ into SO 0 (1, 2). Since Fuchsian representations form a connected component of Rep(Γ, SO 0 (1, 2)), our assertion follows. Moreover, Einstein space Ein 2 is homeorphic to a double covering of P(R 2 ) × P(R 2 ) so that the limit set is a lifting of the graph of a topological conjugacy between the projective actions of Γ on the projective line induced by ρ L and ρ R . This topological conjugacy is a homeomorphism, meaning that Λ is acausal. For more details, see [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF][START_REF] Barbot | Causal properties of AdS-isometry groups I: Causal actions and limit sets[END_REF][START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi blackholes[END_REF]. 5.2. Convex cocompact lattices. Theorem 1.1 extends, mutatis mutandis, to the case where Γ is a non elementary convex cocompact subgroup of SO 0 (1, n), ie. a discrete subgroup acting cocompactly on the convex hull in H n of its limit set in ∂H n (the non elementary hypothesis meaning that we require that the cardinal of this limit set is infinite). The definition of Anosov representation extends in this context by taking as dynamical system (N, φ t ) not the entire Γ\ T 1 H n , but the non-wandering subset of the geodesic flow in Γ\ T 1 H n : it is not anymore a manifold, but a compact lamination with a flow (the restriction of the geodesic flow). The set of (SO 0 (2, n), Y)-Anosov representations is open, and it is still true that they correspond to faithfull, discrete representations admitting as limit set a closed acausal subset in Ein n , but which now is not a topological sphere.

The main difference is that the associated domains E(Λ ρ ) in AdS n+1 are not globally hyperbolic. However, the action of ρ(Γ) on E(Λ ρ ) is still free, properly discontinuous and strongly causal, ie. the quotient spacetime ρ(Γ)\E(Λ ρ ) is strongly causal. In dimension 2 + 1 (when n = 2) these spacetimes are the so-called BTZ multi-black holes (see [START_REF] Bañados | Black hole in three-dimensional spacetime[END_REF][START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi blackholes[END_REF]). 5.3. Other MGHC spacetimes. In this paper, we focused on the case where Γ is a lattice in SO 0 (1, n). But observe that Theorem 4.7 in [START_REF] Mérigot | Anosov AdS representations are quasi-Fuchsian[END_REF] (GHC-spacetimes are GH-regular), Proposition 3.6 (no balanced distortion) and § 4.1 (definition of the convex hull and the boundary surfaces S ± ρ ) remains true without this hypothesis. 5.3.1. GHC-representations with acausal limit set are weakly Anosov. In this § we consider a GHC-regular representation ρ : Γ → SO 0 (2, n), but with no other assumption on the group Γ. However we assume that Λ ρ is acausal so that Lemma 4.1 holds.

Define the length of Lipschitz curves c : I → S ± ρ as the integral over I of the Lorentzian norm of the tangent vector (defined everywhere), and then the distance d± (x, y) between two points x, y in S ± ρ as the infimum of the length of Lipschitz curves joining x to y. It is not hard to see that d± is indeed a distance, providing to S ± ρ a length space structure. Observe that ( S ± ρ , d± ) is not in general a Riemannian space, neither Finslerian. However, this metric structure induces the manifold topology on S ± ρ , which admits a compact quotient: it is therefore a complete, proper metric space. By generalized Hopf-Rinow Theorem ([BH99, Proposition I.3.7]) ( S ± , d± ρ ) is geodesic: between two points x, y, there is always a curve joining the two points realizing the distance.

Proposition 5.2. ( S ± ρ , d± ) are complete CAT(-1) spaces. For definition of CAT(-1) spaces, we refer to [BH99, § 2.1] or [START_REF] Ballmann | Lectures on spaces of nonpositive curvature[END_REF].

Proof. We only consider the upper convex boundary S - ρ , the case of S + ρ is similar (or obtained by reversing the time orientation). According to the Cartan-Hadamard Theorem (see e.g. [BH99, Theorem 4.1]) to be a CAT(-1) space is a local property: since S - ρ is simply connected, we just have to prove that every point x admits a neighborhood where the dis metric of curvature ≤ -1 (in the sense of [BH99, Definition II.1.2]).

In the Klein model S - ρ is locally the graph of a convex function from an open domain of R n into R. More precisely, there is a coordinate system (t, x1 , . . . , xn ), -ǫ < x i < ǫ, -η < t < η on a neighborhood U of x so that:

-x has coordinates (0, . . . , 0), -U ∩ S - ρ is the graph of a convex map ψ :]ǫ, ǫ[ n →]η, η[, -{t = 0} is a support hyperplane for ψ, -every tangent vector with negative norm for -dη 2 + dx 2 1 + ... + dx 2 n has negative norm for the AdS metric.

Shrinking ǫ if necessary, we moreover can assume that the gradient of ψ has almost everywhere dx 2 1 + ... + dx 2 n -norm less than 1. By convolution, we obtain smooth convex maps ψ ν which uniformly converge to ψ when the parameter ν > 0 converges to 0. Moreover, the norm of their gradient is bounded from above by 1, it follows that the graphs S ν of ψ ν are spacelike. Finally, this uniform convergence implies that for any Lipschitz curve c : I →]ǫ, ǫ[ n , the AdS length of s → (c(s), ψ ν (c(s)) uniformly converges to the AdS-length of s → (c(s), ψ(c(s)). Hence the graphs S ν , equipped with their induced (Riemannian) length metric, converge in the Gromov-Hausdorff topology to the restriction of dto U ∩ S - ρ (cf. [BH99, I.5.33]). We can compute the sectional curvatures of the smooth hypersurfaces S ν . Since ψ ν is convex, its second fundamental form is positive definite, and since the ambient AdS metric has sectionnal curvatures -1 the Gauss equation implies that S ν have sectional curvatures -1. They are therefore of curvature ≤ -1. The proposition follows since Gromov-Hausdorff limits of length spaces of curvature ≤ -1 have curvature ≤ -1 ([BH99, Theorem II.3.9]).

CAT(-1) spaces enjoy many nice properties. For example, they are hyperbolic in the Gromov sense; hence the group Γ is Gromov hyperbolic. Furthermore:

Corollary 5.3 (Proposition II.2.2 in [START_REF] Bridson | ume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF]). ( S ± ρ , d± ρ ) are uniquely geodesic: given two points x, y there is an unique geodesic joining them.

We therefore can define the geodesic flow of S ± ρ , even if S ± ρ has no unit tangent bundle.

Definition 5.4. Let G ± ρ denote the space of complete unit speed geodesics of S ± ρ , ie. isometries c : R → S ± ρ , endowed with the topology of uniform convergence on compact subsets. The geodesic flow φt ± is the flow defined by: φt ± (c)(s) = c(s + t) The group ρ(Γ) acts naturally, freely and properly discontinuously on G ± ρ . We denote by G ± ρ the quotient space, and by φ t ± the flow on G ± ρ induced by φt ± . This flow is not differentiable but weakly (or topologically) Anosov: there are two continuous Γ-invariant foliations F s ± , F u ± on G ± ρ , invariant by the geodesic flow such that for every pair p, q of points in the same leaf of F s (respectively F u ) there is a real number t 0 such that the distance between φt+t 0 ± (p) and φt ± (q) decreases (respectively increases) exponentially with t. This claim follows quite easily from the CAT(-1) property -it is actually a general property of Gromov hyperbolic spaces admitting compact quotients: see [Gro, § 8.3], and for more details, [START_REF] Champetier | Petite simplification dans les groupes hyperboliques[END_REF], [Mat]. The fact that the spaces we consider are CAT(-1) greatly simplifies the definition of the geodesic flow.

It should be clear to the reader that the methods used in the present paper prove that the GHC-regular representation ρ satisfies the (SO 0 (2, n))-Anosov property as defined in [Mér07, Remark 5.4] or appearing as hypothesis in Proposition 2.1 -observe that in these formulations the differential of the flow is not involved. The arguments in [Mér07, § 5.3] still apply for this non-differentiable version of (G, Y )-Anosov property. In other words, we can state that GHC-regular representations with acausal limit sets are precisely weakly (G, Y )-Anosov representations. Moreover, we guess that weakly Anosov representations form an open subset of Rep(Γ, G): the differentiable setting should be avoided through arguments in [START_REF] Sullivan | Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups[END_REF]. Anyway, for the pair (SO 0 (2, n), Y), it comes through the discussion abovea representation is GHC-regular with acausal limit set if and only if it is (SO 0 (2, n))-Anosov -and the fact that GHC-regular representations form an open domain: using the arguments in [START_REF] Mess | Lorentz Spacetimes of Constant Curvature[END_REF] one can show that small deformations of holonomy representations of MGHC AdS-spacetimes are still holonomy representations of MGHC spacetimes (see also the introduction of [START_REF] Bonsante | Deforming the Minkowskian cone of a closed hyperbolic manifold[END_REF] for more details).

Anyway, we don't discuss or justify furthermore this notion of weaky Anosov representations because we believe that weakly (G, Y )-Anosov representations are (differentially) (G, Y )-Anosov in the sense of Labourie. This statement would be a corollary of a positive answer to the following question: Question 5.5. Let ρ : Γ → SO 0 (2, n) be a GH-regular representation with acausal limit set. Is there a ρ(Γ)-invariant smooth (ie. C r with r ≥ 3) convex Cauchy hypersurface? Indeed, we could replace the Cauchy hypersurfaces S ± in the discussion above by this smooth convex one, ie. with curvature ≤ -1, hence, with differentiable Anosov geodesic flow. Concerning this question, observe that the main task in [START_REF] Barbot | Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS[END_REF] was to give a positive answer to this question in dimension 2 + 1.

Finally, as before, we can address the question:

Question 5.6. Is the space of (weakly) (SO 0 (2, n), Y)-Anosov representations closed? which, as in the case where Γ is a lattice of SO 0 (1, n), essentially reduces to the proof that the limit set of a sequence of (SO 0 (2, n), Y)-Anosov representations is acausal. 5.3.2. Classification of MGHC spacetimes of constant curvature -1.

Question 5.7. Let ρ : Γ → SO 0 (2, n) a GHC-representation with acausal limit set. Is Γ isomorphic to a lattice of SO 0 (1, n)?

A natural way to find a positive answer to this question is to exhibit in the associated MGHC spacetime a Cauchy hypersurface with constant Gauss curvature -1: one of the main results of [BBZ] is precisely that such a Cauchy hypersurface exists in the (2 + 1)-dimensional case. Of course, in this low dimension, this kind of argument is sophisticated, since it is only a matter to prove that the genus of the Cauchy surfaces is ≥ 2, which can be obtained with more elementary arguments. However, this last idea does not extends in higher dimension, whereas most part of the content of [BBZ] applies in any dimension.

Another way to give a positive answer would be to study the functional on Anos Y (Γ, SO 0 (2, n)) associating to a representation the volume of the convex core in the associated spacetime. Indeed, according to Lemma 4.2, this functional vanishes only on Fuchsian representations.

Finally, it is easy to produce GHC-regular representations with nonacausal limit set: let (p, q) be a pair of positive integers such that p + q = n, and let Γ be a cocompact lattice of SO 0 (1, p) × SO 0 (1, q). There is a natural inclusion of SO 0 (1, p) × SO 0 (1, q) into SO 0 (2, n) arising from the orthogonal splitting R 2,n = R 1,p ⊕ R 1,p . The isotropic cone of R 1,p (respectively R 1,q ) is contained in C n and projects in Ein n on the union of two spacelike spheres Λ ± p ≈ S p-1 (respectively Λ ± q ≈ S q-1 ). Every point in Λ ± p is joined to every point in Λ ± q by a lightlike geodesic segment in Ein n : let Λ be the union of lightlike geodesic segments joining a point of Λ + p to a point in Λ + q and avoiding Λ - p ∪ Λ - q . We leave to the reader the proofs of the following facts: -Λ is a non pure lightlike achronal topological sphere, -The convex hull Conv(Λ) of Λ in AdS n+1 coincide with the regular domain E(Λ).

The group Γ ⊂ SO 0 (1, p) × SO 0 (1, q) ⊂ SO 0 (2, n) preserves Conv(Λ) = E(Λ); the quotient spacetime M (Γ) = Γ\E(Λ) is MGH. Moreover, it is spatially compact: indeed, the set of orthogonal sums u + v where u (respectively v) is an element of R 1,p such that q 1,p (u) = -1/2 (respectively an element of R 1,q of q 1,q -norm -1/2) admits two components in AdS n+1 , one lying in E(Λ). This component is a spacelike hypersurface isometric to H p × H q and Γ-invariant. Its projection in the quotient M (Λ) is a compact spacelike hypersurface, hence a Cauchy hypersurface.

Remark 5.8. By Margulis superrigidity Theorem ([Mar91]), if p, q ≥ 2 every Γ into SO 0 (2, n) either has finite image, or conjugate in SO 0 (2, n) to the inclusion Γ ⊂ SO 0 (1, p) × SO 0 (1, q) ⊂ SO 0 (2, n). It follows that every MGHC spacetime of constant curvature -1 with fundamental group isomorphic to a lattice Γ in SO 0 (1, p) × SO 0 (1, q) is isometric to a spacetime M (Γ) described above.

Remark 5.9. When n = 2, the only possibility is p = q = 1. It is the case of Torus universe (see [BBZ07, § 7], [Car03, § 3.3]).

Question 5.10. Let ρ : Γ → SO 0 (2, n) be a GHC-regular representation with non acausal limit set. Is Γ isomorphic to a lattice of some product SO 0 (1, p) × SO 0 (1, q) ? Our personal guess is that all the questions reported above admit a positive answer.

Conjecture 5.11. Every GHC-regular representation into SO 0 (2, n) is either a quasi-Fuchsian representation of a lattice in SO 0 (1, n), or a representation of a lattice in SO 0 (1, p) × SO 0 (1, q) with p + q = n, p ≥ 1, q ≥ 1.

Lemma 4. 4 .

 4 Every timelike geodesic of AdS n+1 intersects Conv(Λ ρ ).

  to the negative number x 0 |x -, the right term converges to -∞. Contradiction. A first corollary of this lemma is that D(Γ) is open, and its closure Cl(D(Γ)) is the intersection of the closures of the D(γ).

  Lemma 4.13. The Γ-iterates of Cl(D(Γ)) covers E(Λ ρ ), ie. :

  The two lemmas above proves that Cl(D(Γ)) is a fundamental domain for the action of ρ(Γ) on E(Λ ρ ). From now we restrict to the intersection Cl(D(Γ)) ∩ Conv(Λ ρ ) and denote it Dconv (Γ). Since the quotient C(M ) = ρ(Γ)\ Conv(Λ ρ ) is compact: Proposition 4.15. Dconv (Γ) is a compact fundamental domain for the action of ρ(Γ) on Conv(Λ ρ ).
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