
HAL Id: ensl-00179685
https://ens-lyon.hal.science/ensl-00179685

Submitted on 16 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements to Conservative and Optimistic Register
Coalescing

Florent Bouchez, Alain Darte, Fabrice Rastello

To cite this version:
Florent Bouchez, Alain Darte, Fabrice Rastello. Improvements to Conservative and Optimistic Reg-
ister Coalescing. Proceedings of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems, 2008, pp.147-156. �10.1145/1450095.1450119�. �ensl-00179685�

https://ens-lyon.hal.science/ensl-00179685
https://hal.archives-ouvertes.fr


Improvements to Conservative
and Optimistic Register Coalescing ?

Florent Bouchez, Alain Darte, and Fabrice Rastello

Compsys Project
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Abstract. Register coalescing is used, as part of register allocation, to reduce the
number of register copies. Developing efficient register coalescing heuristics is
particularly important to get rid of the numerous move instructions introduced by
code transformations such as static single assignment, among others. The chal-
lenge is to find a good trade-off between a too aggressive strategy that could
make the interference graph uncolorable, possibly increasing the spill (transfer
to memory), and a too conservative strategy that preserves colorability but leaves
too many moves. The two main approaches are “iterated register coalescing” by
George and Appel and “optimistic coalescing” by Park and Moon. The first one
coalesces moves, one by one, in a conservative way. In the second one, moves are
first coalesced regardless of the colorability, then some coalescings are undone
to reduce spilling. Previous experiments show that optimistic coalescing outper-
forms conservative coalescing. We show that, with a more involved conservative
strategy, incremental conservative coalescing can be as efficient as optimistic co-
alescing. We also develop a more aggressive optimistic approach with a different
de-coalescing phase. The combination of the two approaches leads to about 10%
improvements compared to traditional optimistic coalescing.

1 Introduction

If high-level source codes contain few copy (move) instructions, this is not the case
after the many optimization phases that occur in a compiler. For example, static single
assignment (SSA) [9] introduces virtual “φ-functions” at joint points of the control-flow
graph, which semantically correspond to parallel copy instructions placed in blocks on
the incoming control-flow edges. When going out of SSA, these copies must be care-
fully removed [18, 17] or one can rely on a later register allocation phase to eliminate
them. Another example is live-range splitting, which is mandatory to improve spilling
(transfers between registers and memory). The extreme situation is, as in [2], when
live-ranges are split at each program point so as to formulate the spilling problem as
an integer linear program. Loads and stores are then nicely optimized but many copies
are created that need to be removed later. Finally, register moves can also be added to
cope, in a simple way, with register constraints or calling conventions. A later phase is
supposed to be able to remove them. In other words, there are many reasons to try to
get rid of copy instructions at assembly-code level. Register coalescing does this during
register allocation, thus tightly connected to spill optimization and register assignment.

? This work is supported by a contract with STMicroelectronics, Grenoble



2

Chaitin et al. introduced graph coloring register allocation in [8]. Each node of the
interference graph G corresponds to a program variable and an edge between two nodes
means that they interfere, i.e., cannot share the same register. If k registers are available,
a k-coloring of G, if there is one, gives a correct assignment of variables to registers. A
move can be deleted if the two variables involved in the copy are assigned the same reg-
ister. Coalescing enforces this common assignment by merging the two corresponding
nodes in the graph. For coloring, all Chaitin-like register allocators rely on the following
“simplify” rule to assign colors to variables: A node x with < k neighbors is always
colorable no matter how G \ {x} is colored, it can thus be removed (simplified) from
the graph and pushed on a stack. If this simplify phase removes all nodes, G is greedy-k-
colorable. It is also k-colorable as each node can be popped from the stack and colored
with one of the colors not used by its < k neighbors previously popped. This second
phase is the select phase. Spilling and coalescing are always optimized with this sim-
plify rule in mind, because it is the only simple rule to color general graphs.

Spilling is usually done with Briggs et al. mechanism [5, 6]. If, in the simplify phase,
all nodes have at least k neighbors, one is removed from the interference graph, pushed
on the stack, and marked as a potential spill. If, during the select phase, no color is
available for a potential spill, it is an actual spill, and loads/stores are inserted. In the
initial algorithm of Chaitin et al., spilling was decided in the simplify phase, missing
the opportunity of “luck” for coloring in the select phase. For coalescing, the initial pro-
posal of Chaitin et al. was to coalesce moves, before the simplify phase, in an aggres-
sive fashion, i.e., regardless of the colorability of the resulting graph. The consequence
is that many moves are indeed deleted but the number of potential, and even actual,
spills increases. To address this issue, in addition to aggressive coalescing, two main
approaches were explored, conservative coalescing and optimistic coalescing.

Conservative coalescing consists in coalescing a move only when one can ensure
that the resulting graph is k-colorable if the initial graph was. In Briggs’ test [5, 6], a
move is coalesced only if the resulting node has at most (k − 1) neighbors with degree
at least k. This test was used by Briggs et al., after a first phase of live-range split-
ting followed by aggressive coalescing limited to original moves, to make sure that
moves introduced by live-range splitting are not coalesced back too much. George and
Appel [10] then proposed iterated register coalescing, a fully-conservative approach,
where conservative coalescing is inter-mixed with the simplify phase and no aggressive
coalescing is performed. A second complementary test, George’s test, is proposed for
coalescing with pre-colored nodes: a node can be merged with a pre-colored node if all
neighbors of the first are neighbors of the second. As these two tests are fast but not
exact (when the test fails, it does not mean that the move cannot be coalesced conser-
vatively), better results are obtained if moves are tested several times while simplifying
nodes. For that, worklists of possibly-coalescable moves are created and updated during
the simplify phase. This increases the running time of the complete register allocator,
even with the smart implementation strategies defined by Leung and George in [14].

Iterated register coalescing is now very popular due to its clean and reproducible
design although, in terms of moves optimization, optimistic coalescing [15], proposed
by Park and Moon, was proved to be more efficient. Optimistic coalescing relies on the
fact that, although coalescing can increase the degree of the merged nodes, it can also
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decrease the degree of common neighbors and thus have positive effects. Thus, it seems
better to first perform aggressive coalescing and to decide, during the select phase, to
undo some coalescing to avoid spilling. In Park and Moon algorithm, when a coalesced
node is to be spilled, it is split back (de-coalesced) into separate nodes, some of them
are colored with a common color, the other are either colorable at the very end of the
select phase or spilled. Optimistic coalescing takes its benefit from the aggressive phase
and, despite its naive de-coalescing phase, outperforms iterated register coalescing.

Recent work [2, 7, 3, 13] has shown that register allocation can be performed in
two phases: a first spilling phase, with live-range splitting, that inserts loads, stores,
and moves so that the resulting interference graph is greedy-k-colorable, and a second
phase that coalesces moves and assigns colors to variables. In this context, register
coalescing is crucial to reduce the cost of moves added blindly by live-range splitting.
However, this is a pure coalescing problem, with no spill: starting from a greedy-k-
colorable graph, how to coalesce moves so that it remains greedy-k-colorable? The
same problem arises in the last iteration of graph coloring register allocators, i.e., when
no spill is needed. In [2], Appel and George have adapted the de-coalescing phase of
Park and Moon so that split nodes can always be colored and are never spilled. To
ensure this, live-range splitting is done so that all nodes in the interference graph have
degree < k, so this approach does not work for general greedy-k-colorable graphs.

In this paper, our goal is to address the following questions:

– Can we take advantage of the fact that the initial graph is greedy-k-colorable (no
spill needed) to improve register coalescing?

– Can we derive more involved conservative tests?
– Can we avoid testing each move several times as in iterated register coalescing?
– Can we adapt Park and Moon optimistic coalescing to greedy-k-colorable graphs

and improve the de-coalescing phase?
– Is incremental conservative coalescing (i.e., coalescing each move, one after the

other, in a conservative way) really worse than optimistic coalescing (i.e., aggres-
sive coalescing followed by de-coalescing)?

Section 2 recalls some necessary definitions and elementary properties linked to
register coalescing. Section 3 presents a more involved conservative test to try to de-
cide if the graph remains k-colorable after a given move is coalesced. This test is used
in an incremental approach whose results are comparable traditional optimistic algo-
rithm, although it is conservative. Section 4 shows how Park and Moon de-coalescing
approach can be improved, leading to roughly 10% improvements on the collection of
interference graphs provided by Appel (coalescing challenge [1]). Section 5 is an anal-
ysis of our results on these graphs, for different variants and trade-offs between running
times and quality of results, comparing also with the optimal solutions provided in [12].
Section 6 concludes, discussing further possible improvements and open problems.

2 Background material

Before going further, we need to define more precisely some of the terms used in Sec-
tion 1 and recall some important properties linked to greedy-k-colorable graphs. We
refer to our previous theoretical paper [4] for the details and proofs not provided here.
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The interference graph G = (V, E) is an undirected graph where each node v ∈ V
corresponds to a live-range of the program. There is an interference e = (u, v) ∈ E iff u
and v cannot share the same register. In addition to interferences, each copy instruction
(also called move) is represented by an affinity a = (u, v). In general, an affinity has a
weight w(a), measure of a dynamic execution count of the corresponding copy instruc-
tion. A coloring of G is a function f of V such that f (u) , f (v) whenever (u, v) ∈ E.
When f takes at most k different values, it is a k-coloring. Given a set of affinities A, a
coalescing is defined by a coloring f , with no constraint on the number of colors. An
affinity a = (u, v) is coalesced if f (u) = f (v). The coalesced graph G f is the graph
obtained from G by merging all pairs of nodes linked by a coalesced affinity.

A graph G is k-colorable if it has a k-coloring. It is chordal [11] iff it has no chord-
less cycle of length ≥ 4. Chordal graphs are of particular interest for register allocation
as the interference graph associated to variables of a strict SSA program is chordal [7,
3, 16, 13]. This is because live-ranges of SSA variables can be viewed as subtrees of
the dominance tree. As mentioned in Section 1, a graph is greedy-k-colorable iff re-
moving successively each node of degree < k leads to the empty graph, i.e., if Pro-
cedure Is kGreedy returns . Nodes can then be popped from the stack and col-
ored if needed, picking for each node a color not used by its at most (k − 1) already-
colored neighbors. An important property is that a k-colorable chordal graph is greedy-
k-colorable [4, Property 1]. In other words, the simplify phase of graph coloring register
allocators always succeeds to color a chordal graph with k colors if it is k-colorable.

Procedure Is kGreedy(G) /* test for greedy-k-colorable graphs */
Data: Undirected graph G = (V, E); ∀v ∈ V, degree[v] is set to degree of v in G
stack = ∅ ; worklist = {v ∈ V | degree[v] < k} ;1

while worklist , ∅ do2

Let v ∈ worklist ;3

foreach w neighbor of v do4

degree[w]← degree[w]-1 ;5

if degree[w] = k − 1 then worklist← worklist ∪ {w}6

push(v, stack) ; worklist← worklist \ {v} /* Remove v from G */7

if V = ∅ then return  else return 8

In the next sections, we consider the following coalescing optimization problems
as sub-problems of our coalescing strategies. They are stated here as unweighted but,
in practice and in the next sections, affinities have weights that specify how often the
corresponding moves are executed. One then seeks a coalescing of largest weight.

Problem: A 
Instance Graph G = (V, E), affinities A ⊆ V2, integer K.
Question Is there a coalescing of G, i.e., f with f (u) , f (v) whenever (u, v) ∈ E, such
that at most K affinities (u, v) ∈ A are not coalesced, i.e., satisfy f (u) , f (v)?

Aggressive coalescing is NP-complete. A simple heuristic is to sort affinities by
decreasing weights and to coalesce each affinity, one after the other, if no interference
prevents it. However, picking the right set of affinities to coalesce is hard. Some heuris-
tics for out-of-SSA conversion [18, 17] try to exploit the structure of φ-instructions
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and consider several moves simultaneously, but out-of-SSA heuristics have never been
integrated into a unified “coloring-coalescing” scheme. Also, no other sophisticated ag-
gressive coalescing strategy exists, although there is space for improvements.

Problem: C 
Instance Graph G = (V, E), affinities A, integers K and k.
Question Is there a coalescing f of G such that the coalesced graph G f is k-colorable
and at most K affinities are not coalesced?

Conservative coalescing is NP-complete. The same is true if one asks the graph G f

to be not only k-colorable, but also greedy-k-colorable. A traditional heuristic for con-
servative coalescing is to consider moves one after the other, in an incremental fashion.
No heuristic exists that can consider several moves simultaneously. In an incremental
approach, for each move, one has to consider the following problem.

Problem: I  
Instance Graph G = (V, E), one given affinity a = (x, y), an integer k.
Question Can we coalesce a to get a k-colorable graph, i.e., is there a k-coloring f
of G such that f (x) = f (y)?

Incremental conservative coalescing is NP-complete for a general graph. However,
it is polynomially-solvable if G is chordal. The proof of this result in [4] is conceptual.
In Section 3, we give a linear-time algorithm for it, which we extend as a heuristic for a
greedy-k-colorable graph. The complexity of incremental conservative coalescing for a
greedy-k-colorable graph remains open. Note that asking G f to be not only k-colorable
but also greedy-k-colorable is easy as one just has to coalesce a then to run Procedure 1
to check that the resulting graph is greedy-k-colorable. However, this approach may
still be too conservative. It may indeed happen that, to be able to coalesce the affinity a
while keeping the graph greedy-k-colorable, other nodes need to be merged.

The last sub-problem to consider is the strategy used in optimistic coalescing: how
to de-coalesce moves after a phase of aggressive coalescing so as to get a k-colorable
or, more practical, a greedy-k-colorable graph. The problem is NP-complete even if the
first phase of aggressive coalescing is trivial (i.e., when all moves can be coalesced).

Problem: D-   
Instance Graph G = (V, E) greedy-k-colorable, affinities A all coalesceable (i.e., there
is a coalescing f of G such that for all (u, v) ∈ A, f (u) = f (v)), integers k and K.
Question Is there a de-coalescing of G f (i.e., a coalescing g of G such that g(u) = g(v)
implies f (u) = f (v)), such that at most K affinities (u, v) are not coalesced (i.e., satisfy
g(u) , g(v)) and such that Gg is greedy-k-colorable?

In the next sections, we propose heuristics for these sub-problems and evaluate them
using the collection of interference graphs obtained after the spill mechanism of [2].
Significant improvements can be obtained over previously-proposed heuristics.

3 Conservative coalescing, chordal graphs, and greedy-k graphs

So far, two existing conservative tests exist, the tests of Briggs [6] and of George [10].
Let us examine why they are conservative when applied on a greedy-k-colorable graph.
Briggs Merge u and v if the resulting node has at most (k − 1) neighbors of degree ≥ k.
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George Merge u and v if all neighbors of u with degree ≥ k are also neighbors of v.
A node merged by Briggs’ test can always be simplified from the graph once its neigh-
bors of degree < k are simplified, thus the graph remains greedy-k-colorable. Although
George’s test was defined only to merge a node v with a pre-colored node u, it can be
applied for any two nodes for a greedy-k-colorable graph. Indeed, once all neighbors of
degree < k are simplified, a subgraph of the original graph remains, it is thus greedy-k-
colorable too. These rules are good enough to coalesce graphs with low register pressure
and few moves, but give poor results to coalesce the many moves introduced by a basic
(without coalescing) out-of-SSA conversion, for example. The reasons are twofold.

First, both rules are local decisions, they depend on the degree of neighbors only.
But these neighbors may have a high degree just because their neighbors are not simpli-
fied yet. In other words, the test may be applied too early in the simplify phase. This is
the reason why George and Appel proposed “iterated register coalescing” [10]. Instead
of giving up coalescing a move when the test fails, the move is placed in a sleeping list.
It is woken up if the degree of one of the nodes implied in the rule, i.e., the neighbors of
the nodes defining the move, changes. Thus, moves are in general tested several times.
Also, move-related nodes should not be simplified too early for the moves to be tested.

Second, these two tests are used to coalesce moves in a sequential way. After each
positive test, a unique merge occurs, resulting in a new greedy-k-colorable graph. This is
a limitation. Indeed, to coalesce a set of moves, it may happen that coalescing all moves
simultaneously leads to a greedy-k-colorable graph but, if moves are coalesced one by
one, none of the intermediate graphs is greedy-k-colorable. An example of this situation
is provided in [4]. In other words, aggressive coalescing followed by de-coalescing is,
intrinsically, more likely to give better results than a conservative coalescing approach
that coalesces one move at a time. We now try to overcome these two limitations.

3.1 Brute-force conservative coalescing

To address the first limitation, we evaluated the following approach. As in any incre-
mental approach, we consider moves, one by one, in decreasing order of weights. But,
to test a move, instead of relying on a local rule, we first merge the two corresponding
nodes aggressively and check if the resulting graph is greedy-k-colorable (see Proce-
dure Brute Force Coalescing). This amounts to perform a complete simplify phase,
ignoring the other affinities. If the simplify succeeds, the coalesced graph is greedy-k-
colorable and the coalescing was conservative. We then consider another affinity.

In Procedure Brute Force Coalescing, the simplify phase is conceptually per-
formed on a copy G′ of G, meaning that nodes are just temporarily simplified to check
that G is greedy-k-colorable. They will be considered again when trying to coalesce the
next affinity. However, nodes not involved in a move can be simplified for real before
each new affinity is considered. In practice, there is no actual copy of the graph, nodes
are just moved from the list of nodes in G to the simplify stack, and back to the list of
nodes. Degrees can also be stored to avoid recomputing them.

Of course, the Is kGreedy test is more costly than a local rule such as Briggs’ and
George’s test, as its complexity is linear in the number of move-related moves. How-
ever, in iterated register coalescing, there is an overhead due to the fact that moves must
be activated and evaluated several times. When the local test (Briggs’ or George’s) suc-
ceeds, the affinity is coalesced in the graph. When the test fails, the affinity is moved
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from the main list to a sleeping list. In the background, each time the degree of a node
becomes < k, the corresponding node is simplified. Also, each time the degree of a node
decreases (thanks to a simplify or a coalescing), some sleeping affinities in its neighbor-
hood (that might become coalesceable) are moved back to the main worklist. If this list
is empty, a node is frozen (and hopefully simplified): all its affinities are removed from
the graph (and the worklists). The process ends when the whole graph is simplified. A
counting mechanism can be used to reduce the number of useless evaluations [14] but,
still, the overall complexity of iterated register coalescing is not linear.

In our case, when Is kGreedy returns , we have two possibilities, either we
keep the move in some sleeping list for a possible re-evaluation, or we give up co-
alescing this move. The code of Procedure Brute Force Coalescing is the simple
non-iterated version, where each move is evaluated only once and discarded if the test
fails. Hence, only the main worklist is used, and there is no need for any freezing phase.
As our experiments show, the Is kGreedy test is much more powerful than local rules,
thus testing each move only once does not degrade performance too much. On the con-
trary, keeping moves and reconsidering them each time the graph changes would be far
too costly. In other words, we get an acceptable trade-off between execution time and
performance, by spending more time in the test but avoiding the re-evaluation of moves.
Other variants are possible, for example using local rules first to speed-up the process.

3.2 Chordal-based incremental coalescing

As mentioned before, coalescing moves one by one and requiring that, after each coa-
lescing, the graph to be greedy-k-colorable is a limitation. Indeed, to coalesce a move
and obtain a new greedy-k-colorable graph, it may be needed to coalesce other moves or
even merge nodes not linked by an affinity. This fact was pointed out by Vegdahl [19]
and also used by Park and Moon in their optimistic+ algorithm (extended optimistic
coalescing) [15]. However, they perform these additional merges, in the hope of some
benefit but with no guarantee that a coalescing is indeed enabled. Actually, for a given
move, the corresponding optimization problem is as formulated in Section 2: Deciding
if, after coalescing, the graph is k-colorable, i.e., greedy-k-colorable possibly with ad-
ditional node merges. Such a test can coalesce moves beyond traditional conservative
coalescing. As recalled in Section 2, it is polynomial for a chordal graph, NP-complete
for a general graph. It is unfortunately still open for a greedy-k-colorable graph.

We first give the optimal algorithm for chordal graphs, which we extend as a heuris-
tic for greedy-k-colorable graphs. We need a few preliminary lemmas.
Lemma 1. A chordal graph with only two simplicial nodes is an interval graph. Fur-
thermore, any perfect elimination scheme gives an interval representation.

Proof. Let G = (V, E) be a chordal graph with only two simplicial nodes u and v. (We
recall that a node is simplicial if its neighbors form a clique.) A chordal graph has a
perfect elimination scheme [11], i.e., a particular order of nodes v1, . . . , vn, such that
the neighbors of vi in G\{v1, . . . , vi−1} form a clique. Furthermore, there is such a scheme
with v1 = u and vn = v. Indeed, a chordal graph has always at least two simplicial nodes
and a subgraph of a chordal graph is chordal. Therefore, we can first pick v1 = u and
then always select a simplicial node vi , v in the perfect elimination scheme.

In this elimination scheme, for all i > 1, there exists j < i such that (v(i), v( j)) ∈ E.
Indeed, if this is not the case, the neighbors of v(i) in G \ {v1, . . . , vi−1} are the neighbors
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of v(i) in G. Thus, v(i) is simplicial in G, which is not possible unless i = n, as G has
only two simplicial nodes, v(1) and v(n). For i = n, all neighbors v( j) of v(n) are of
course such that j < n, unless v(n) has no neighbor. But, in this case, G \ {v(n)}, which
is chordal, has two other simplicial nodes, thus G has at least 3 simplicial nodes.

Each node is thus neighbor in G of a node eliminated (simplified) before. We can
prove more: if v(i) and v( j), with j < i, are neighbors in G then v(i) is also neighbor
of v(k) for all j ≤ k < i. Indeed, suppose this is not the case. Let i be the smallest for
which this property does not hold and let j be the largest such that j + 1 < i with v( j) a
neighbor of v(i) but v( j+ 1) is not. Also, v( j+ 1) is a neighbor of v( j), otherwise i is not
the smallest. This is impossible as the neighbors of v( j) in G \ {v(1), . . . , v( j − 1)} form
a clique that contains both v( j + 1) and v(i).

With the last property, we can view the nodes v(i) as points on a line, drawn from left
to right by increasing i, and G can be interpreted as the interference graph of n intervals.
Each v(i) corresponds to an interval that ends at v(i) and starts at v( j), for the smallest j
such that v( j) is neighbor of v(i). Indeed, for all j ≤ k < i, the interval corresponding
to v(k) intersects the interval corresponding to v(i). We can prove more formally that G
is an interval graph. A chordal graph is an interval graph if its complement is a compa-
rability graph [11], i.e., if there is an order ≺ of nodes with the following property: for
any three nodes x, y, z such that (x, y) < E, (y, z) < E, x ≺ y and y ≺ z imply that x ≺ z
and (x, z) < E. This is true if ≺ is the perfect elimination scheme order as (x, z) ∈ E,
x ≺ y ≺ z would imply (y, z) ∈ E, i.e., y neighbor of z. �

Lemma 2. Let G be chordal and k-colorable, with nodes v(1), . . . , v(n). If for all i,
i , 1, i , n, the degree of v(i) in G is at least k and is minimum in G \ {v(1), . . . , v(i−1)},
then v(1), . . . , v(n) define a perfect elimination scheme for G.

Proof. As G is k-colorable, the size of any clique is at most k. Thus, only v(1) and v(n)
can be simplicial for all other have degree ≥ k. Furthermore, as G is chordal, Lemma 1
shows that it is actually an interval graph and any perfect elimination scheme that
starts from v(1) and ends at v(n) gives a representation of intervals. We now show that
v(1), . . . , v(n) define a perfect elimination scheme. If not, let i be the smallest such
that v(i) is not simplicial in G \ {v(1), . . . , v(i − 1)}. Thus, for all k < i, v(k) is simpli-
cial in G \ {v(1), . . . , v(k − 1)}. As G \ {v(1), . . . , v(i − 1)} is chordal, one can complete
v(1), . . . , v(n) into a perfect elimination scheme w(1), . . . ,w(n), such that w(n) = v(n)
and, for all k < i, w(k) = v(k). Following Lemma 1, this elimination scheme gives an
interval representation, where the w(k) are points on a line, drawn from left to right by
increasing k, and where each w(k) is the right end of an interval.

Consider the subgraph H = G \ {w(1), . . . ,w(i− 1)} = G \ {v(1), . . . , v(i− 1)}. There
are two cases, depending if v(i) intersects w(i) or not. If v(i) is not a neighbor of w(i),
it cannot be a neighbor of any node already simplified because w(1), . . . ,w(n) gives an
interval representation. Therefore the degree of v(i) in H is the degree of v(i) in G, it
is thus at least k, which is not minimum in H as the degree of w(i) is at most k − 1.
Impossible. If v(i) is a neighbor of w(i), any neighbor of w(i) in H is a neighbor of v(i)
in H because w(i) is simplicial in H. Therefore, the degree of v(i) in H is larger than the
degree of w(i) in H and it cannot be minimum unless the degrees are equal. But, then,
v(i) has exactly the same neighbors as w(i) in H and is simplicial. Impossible.

This proves that v(1), . . . , v(n) is a perfect elimination scheme. �
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Lemma 2 shows that, if G is a k-colorable chordal graph and (u, v) is an affinity to
be coalesced, one can first simplify all possible nodes to end up with a subgraph G′

where all nodes have degree ≥ k, except u and v. G′ is then an interval graph. The
problem of coalescing (u, v) in a chordal graph is therefore reduced to the problem of
coalescing (u, v) in an interval graph. Furthermore, one can get a representation of G′

with intervals by a simple simplify phase: first simplify u, then simplify all other nodes,
always selecting a node with minimum degree, other than v. In this particular case,
there is no need to use a sophisticated algorithm for general interval graphs. Proce-
dure Chordal Coalescing uses the conceptual idea developed in [4, Theorem 5] for
chordal graphs, associated with the algorithmic ideas of Lemmas 1 and 2.
Theorem 1. Let G be a k-colorable graph and a = (x, y) an affinity. If G is chordal then
Procedure Chordal Coalescing returns  if and only if merging x and y leads to
a k-colorable graph. If G is only greedy-k-colorable, the test is safe, but not exact.
Furthermore, after all nodes in the path built by the algorithm are merged, the graph
gets greedy-k-colorable again.

Proof. If G is chordal, Lines 3-7 first simplify nodes so as to get an interval graph.
Then, it is easy to understand intuitively that G has a coloring such that x and y have
the same color if and only if there is sequence of (possibly dummy) intervals, from x
to y, such that each interval ends just before the next one starts (see [4, Theorem 5]).
Thus, it is sufficient to propagate a flag, starting from x, from ends of intervals to starts
of intervals and check if y is reached. The computations of the variables like x[w] and
dummy like x in the repeat loop, Lines 13-22, do this propagation. The full optimality
proof for a chordal graph is a bit technical. Its extension to greedy-k-colorable graphs
consists intuitively in considering the graph as a subgraph of a larger chordal graph. All
details are provided in the appendix. �

Theorem 1 is the basis for many heuristic variants. The idea is, starting from a
greedy-k-colorable graph, to find strategies to add interferences and/or merge nodes so
that, after coalescing one particular affinity, the graph is still greedy-k-colorable. It is
indeed very important to stay in the class of greedy-k-colorable graphs, as such graphs
can be easily colored and previously-proposed heuristics, such as the tests of Briggs
and George, can be used. Here, we proposed a technique based on chordal graphs, but
variants are certainly possible. The best would be to find an optimal test for greedy-k-
colorable graphs, unless this problem is shown NP-complete.

4 Aggressive coalescing + de-coalescing and greedy-k graphs
Merging two nodes can transform a non greedy-k-colorable graph into a greedy-k-
colorable graph. This observation is the motivation of aggressive coalescing. It is indeed
maybe more beneficial to first coalesce aggressively as many affinities as possible, then
to try to undo (de-coalesce) some coalescings if the graph is not greedy-k-colorable.

But how to de-coalesce? After aggressive coalescing, Park and Moon [15] proceeds
with the standard simplify/select phases. In the select phase, if the result of a merge
is a potential spill, it is split into the original nodes. It is not safe to color all of them
right now, as this would constrain too much the nodes simplified before, which are not
colored yet. However, if some are colored with a unique color and the other discarded,
the rest of the select phase can continue safely. Park and Moon thus choose heuristically
which nodes to color and the other are colored or spilled after the select phase.
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Procedure Brute Force Coalescing(G, A)/*coalesce if greedy-k-colorable*/
Data: Graph G = (V, E), affinities A, weight function w : A→ N
while A , ∅ do1

a = (x, y)← get max(A, w) ; A← A \ {a} ; /* affinity with biggest weight */2

if (x, y) < E then3

G′ ← G ; merge x and y in G′ ;4

if Is kGreedy(G′) =  then merge x and y in G5

Procedure Chordal Coalescing(G, a)
Data: Graph G = (V, E), a = (x, y) affinity
Result:  if a can be coalesced conservatively, possibly with additional node merges
if Briggs George Coalescing(G, a) then merge x and y in G; return  ;1

merge x and y into xy in G ;2

nodes = V ; stack = ∅ ;3

forall v ∈ V do set degree[v] to the degree of v in G ;4

while degree[xy] ≥ k and ∃v ∈ nodes, degree[v] < k do5

foreach w neighbor of v do degree[w]← degree[w]-1 ;6

push(v, stack) ; nodes← nodes \ {v} ; /* Simplify */7

if degree[xy] < k then return  ;8

split back x and y in G ; replace xy in nodes by x and y ;9

if degree[x] ≥ k then switch x and y ;10

/* Traverse the set of intervals from x to y */
like x[x]← ; dummy like x← ; alive← {x} ;11

just removed← ∅ ; like x[∅]← ;12

repeat13

v← node in nodes\{y} with smallest degree ;14

dummy like x← dummy like x or like x[just removed] ;15

foreach w neighbor of v do16

degree[w]← degree[w]-1 ;17

if w < alive then alive← alive ∪ {w} ; like x[w]← dummy like x ;18

if #alive = k then dummy like x← ;19

if #alive > k then return ;20

push(v, stack) ; nodes← nodes \ {v} ; alive← alive \ {v} ; just removed← v ;21

until nodes = {y} ;22

if like x[y] =  then return ;23

/* Else, construct the path linking x and y */
path← {y} ; current← y ;24

while v = pop(stack) , x do25

if v not a neighbor of current then26

if like x[v] then path← path ∪ {v} ; current← v ;27

merge all v ∈ path into a single node in G ;28

return 29
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Appel and George [2] pointed out that, if all nodes have degree < k in the original
graph, they can always be colored if they are not merged. Based on this observation,
they modified Park and Moon de-coalescing to ensure that no spill occurs. Their exact
mechanism is not clear but, from [2], one can guess that either they color some nodes at
the very end, as Park and Moon, but with no spill, or they color them right away, even if
this can create a cascade of other splits, even nodes that are not potential spill. How to
adapt this heuristics to greedy-k-colorable graphs is not clear. Their results, for a large
collection of graphs, are provided in the coalescing challenge web page [1].

The weaknesses of these approaches is that, instead of de-coalescing moves, pos-
sibly one by one, nodes are split back and many moves are de-coalesced, even if not
needed. Also, as this process is done in the select phase, it is not clear how to combine
it with, for example, conservative coalescing. Thus, we prefer to perform de-coalescing
based on the graph structure itself, and not the particular order of nodes on the stack.

We proceed as in Procedure De-coalescing. As long as the graph is not greedy-
k-colorable, we de-coalesce some affinities. We select these affinities as follows: during
the check for greedy-k-colorability (Procedure Is kGreedy), if we end up with a sub-
graph in which all nodes have degree≥ k, we select the cheapest affinity in this subgraph
and de-coalesce it. We continue the simplify phase until the graph becomes empty. This
way, first we avoid de-coalescing an affinity in the area where it is not needed (the
nodes already simplified), second we give up the cheapest moves first. However, as for
Park and Moon approach, de-coalescing a move can increase the degree of nodes al-
ready simplified. Therefore, in general, we need to perform several passes (in practice
3 maximum). Also, one can stop the de-coalescing even before, taking benefit of biased
coloring, if we want the graph to be just k-colorable (see the call to find coloration
in the code). Other possible variants are discussed in Section 5.

5 Experiments and evaluation
As outlined in the introduction, the coalescing problem is challenging for graphs with
many affinities and high register pressure. In particular, a graph based spill everywhere
algorithm will lead to a too simple coalescing problem. The coalescing challenge [1]
provides an interesting collection of graphs: existing state of the art coalescing algo-
rithms have already been implemented. In particular, the low number of registers (6)
allowed Grund and Hack to provide optimal solutions [12] for all but three graphs.

In their spill algorithm, Appel and George [2] performed live-range splitting at ev-
ery program point. Hence the corresponding control flow graphs can be easily rebuilt.
There are 474 graphs that correspond to regions (procedures?) of the Standard ML of
New Jersey benchmark suite, compiled for a Pentium with 6 general-purpose registers.
On average, there are ≈ 26.7 basic blocks per region, with a maximum of ≈ 1090, and
≈ 231 instructions, with a maximum of ≈ 8300. Notice also that the architecture has
many instructions with register constraints, which constrains the graph coloring (with-
out necessarily simplifying it). This collection of graphs is thus interesting and repre-
sentative. However, we should notice that, even if the coalescing problem is already
hard with few registers [4], here 6, it becomes much harder with more registers.

Clearly the order in which affinities with identical weight are considered for coa-
lescing is crucial. It seems reasonable to guide the ordering using both the knowledge
of the program structure, in addition to graph properties (such as the degree of nodes).
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To provide reproducible results, we chose a deterministic ordering, the one given by the
graph description file. In fact, this ordering is not arbitrary, since it exactly follows the
control flow graph. Notice that using another ordering does not change the overall rel-
ative comparisons of the different schemes. Also, to compare with Appel and George’s
version of optimistic algorithm, we decided to compare to the results provided in [1]
and not implement it ourselves as its description in [2] misses too many details.

From now on, BG refers to the rules of Briggs/George, Chordal refers to the heuris-
tic with chordal-based coalescing only, k-Greedy to the heuristic with brute-force co-
alescing only, Aggr is the aggressive coalescing plus de-coalescing, and our preferred
scheme, called Pref., is Aggr+BG&Chordal (by packet). Table 1 compares the dif-
ferent conservative tests BG, k-Greedy, and Chordal. For this, we considered the fol-
lowing general scheme that contains four actions: Simplify (each time their exists a
non move-related node of degree < k); BG (when worklistBG , ∅), Chordal (when
worklistCh , ∅ and worklistBG = ∅); Freeze (when both worklists are empty).
k-Greedy consists in the first 8 lines of Chordal. To run BG (resp. Chordal) alone,
Chordal (resp. BG) is disabled. Concerning the sleeping strategy, if BG fails, the affinity
is put in a sleeping worklist, here worklistCh; if Chordal fails, the affinity is discarded
immediately in the normal mode and moved to a sleeping worklist in the sleeping mode.
It might be woken up to worklistBG, pessimistically, if the degree of a neighbor de-
creases. Finally, in the “packet” version, affinities of equal weight are grouped and all
worklists (for BG and Chordal) must be empty before processing the next packet. This
allows BG to speed-up Chordal while avoiding to coalesce light-weight affinities too
early, and gives results comparable to Chordal alone. Finally, we have either performed
the conservative coalescing as a post-pass phase of an Aggr phase, or alone.

For each graph, the cost of the coalescing is the sum of the weights of the affinities
not coalesced. Table 1 gives the cost ratios optimal/heuristic. The average value is ob-
tained by weighting each graph with its number of instructions. With this metric, Aggr
without any conservative post-pass is valued at 0.667, Appel and George’s optimistic
algorithm at 0.737. If affinities are ordered by decreasing number of neighbors when
their weights are equal, Aggr+BG is valued at 0.835! The table shows that i) the best
purely conservative approach is very competitive at 0.810; ii) Chordal improves only
slightly the k-Greedy test: our test only exposes interval graphs which seem to be too
constrained. Improving this test seems possible, especially since the size of the graphs
(after the initial simplification of Chordal Coalescing) have <40 nodes in practice;
iii) BG performs poorly compared to a pure k-Greedy approach and degrades the result
when associated to a chordal based (BG & Chordal), unless it is used by packet.

We now give some very rough running time comparisons. Please note that our im-
plementations are not yet tuned for speed, so this may bias the results. In particular,
there is two highly time-consuming facts: i) our search for maximum weight affinities
takes O(#list): this is bad for BG which frequently makes such requests; ii) at each step,
Chordal always re-simplifies the full graph while non move-related nodes should be
simplified once and for all; iii) Line 1 of Chordal Coalescing is not used.

Time comparison of the different heuristics. The graphs vary a lot in size, and so does
the execution time. In Table 2, we consider five groups of graph for each BG, Chordal
and Pref. heuristics: the graphs that take <1s to be computed on a 2.6GHz processor,
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Procedure Aggressive Coalescing(G, A, w)
Data: Graph G = (V, E), affinities A, weight function w : A→ N
while A , ∅ do1

a = (x, y)← get max(A, w) ; /* affinity with biggest weight */2

A← A \ {a} ;3

if (x, y) < E then merge x and y in G4

Procedure De-coalescing(G, A, w)
Data: Graph G = (V, E), affinities A, weight function w : A→ N
repeat1

nodes← V ; stack = ∅ ;2

while nodes , ∅ do3

if ∃v ∈ nodes, degree[v] < k then4

nodes← nodes \ {v} ; push(v, stack) ; /* Simplify v */5

foreach w neighbor of v do degree[w]← degree[w]-1 ;6

else7

a← get min affinity(nodes, A) /* coalesced affinity for a non-simplified8

node, with smallest weight */
G← de-coalesce(G, a) ; /* de-coalesce the affinity */9

until find coloration(stack, G) ;10

no Aggr w/ Aggr heuristic
0.704 0.747 BG

0.800 0.790 k-Greedy
0.810 0.795 Chordal

0.772 0.776 BG & Chordal
0.769 0.800 Idem by packet
0.808 0.789 k-Greedy (w/ sleeping)
0.810 0.795 Chordal (w/ sleeping)

0.737 optimistic
0.835 Aggr+BG w/ ,order

Table 1. Comparisons vs optimal.

Execution time BG Chordal Pref.

t < 1s 432 313 428
1s < t < 10s 27 125 32

10s < t < 1min 8 21 7
1min < t < 10min 4 10 6

10min < t 3 5 1
Total ≈4h ≈10h ≈2h

Table 2. #graphs per processing time.

Fig. 1. Time used by the different phases of Pref.
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those between 1s and 10s, and so on. The table gives the number of graphs in each
category. First, Chordal is much slower than Pref.. We measured that it is more than
10x times slower on average on graphs with <1000 nodes, and more than 5x slower on
larger graphs. Second, Pref. runs even faster than the simpler BG heuristic: a bit faster
on smaller graphs, >0.3x faster on graphs between 1k and 10k nodes, and sometimes
2x or 3x faster on the biggest graphs of ≈20k. This even holds when deactivating the
initial Aggr approach: on medium to big graphs, BG takes more time testing a particular
move, over and over, than the time needed by Chordal to discard it.

Inside the Pref. heuristic. Figure 1 gives the time spent in each phase of the Pref.
heuristic in groups of graphs with similar number of nodes. The ratios are quite stable:
roughly 40% of the time is spent in the Aggr part, the remaining time in conservative
coalescing. The aggressive part is a lot faster than the de-coalescing part, as expected,
since the de-coalescing phase may need to iterate and includes a simplify process. In
practice, we measured that there are 1.6 passes of de-coalescing on average, and at most
3 passes are required: this concerns about 6% of the graphs, but none of the biggest
ones. A similar time is spent in Chordal and for the rest of the conservative coalescing
(checking BG rules, maintaining lists of nodes or affinities, simplifying). This may seem
a lot, as it performs only about 8% of the conservative coalescing, but it is worth the
time since it discards affinities that BG will not need to check again.

Which rule coalesces? On all the 474 graphs of the coalescing challenge, the Pref.
scheme de-coalesced 92896 affinities in 747 passes. Out of these and the other ones that
the aggressive did not coalesce, 90312 were conservatively coalesced. BG coalesced
itself 83179, i.e., 92% of them. Chordal tried 10232 affinities, successfully coalescing
7133, the remaining 8%. 97% of these 8% can be found by Brute Force Coalescing
(6893), so only 3% (240) actually used the ”path-searching” part of Chordal. However,
3099 affinities were promptly discarded because there was no path (33%) or the alive
set grew bigger than k (67%): for 3/4 of those, no node with degree < k could be
removed. The whole test took about 1 hour and 55 minutes and no animals were harmed.

6 Conclusion

It is a common belief that optimistic coalescing outperforms conservative coalescing.
Based on previous theoretical work [4], we developed a more involved incremental
conservative strategy than the well-known iterated register coalescing. Our heuristic
outperforms the optimistic approach by about 5%. Our conservative tests (brute force
or chordal-based) while being much more costly than a simple Briggs/George test, have
a competitive amortized cost: the iterated nature of iterated register coalescing leads to
testing many times the same affinity while our heuristic tests each affinity, only once,
to coalesce or discard it. We also developed a more aggressive optimistic approach that
works for any greedy-k-colorable graph (as opposed to Appel and George’s optimistic
algorithm) and ensures it is still greedy-k-colorable after coalescing. The two algorithms
can be combined to get about 10% improvement over traditional optimistic coalescing.

While playing with the ordering in which affinities with equal weights are consid-
ered, we measured noticeable differences of the quality of the final result. In particular,
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we verified that guiding this ordering, using both the program structure and simple con-
siderations such as node’s degree, provides better results in average. We believe this
point is worth exploring for both the aggressive and conservative coalescing problems.

Finally, not surprisingly, our incremental conservative test for greedy-k-colorable
graphs provides poor improvements over the brute force test: it is a too direct adaptation
of the optimal test for chordal graphs. Improvements are possible, especially since we
measured that the resulting graphs, after the initial simplification, have only< 40 nodes.
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Appendix

A Complete proof of Theorem 1

Proof. Lines 1, 2, 8, 9, 10, and 20 are not needed for the correctness of the algorithm if
G is chordal. They are here just to speed-up the process and for the extension to greedy-
k-colorable graphs. Lines 1 uses Briggs’ and George’s tests to decide more quickly. The
test Is kGreedy used in Brute Force Coalescing and Lines 2-8 are similar, except
that, here, the simplify phase ends possibly earlier in case the merged node xy itself can
be simplified. If not, the algorithm for chordal graphs begins at Line 11. All nodes with
degree < k, except x and y, have been simplified, and even the common neighbors of x
and y with degree ≤ k, as those will be simplifiable if x and y are finally merged. Let us
concentrate on the decision part, from Line 11 to Line 23.

According to Lemma 2, the remaining graph is an interval graph and an interval
representation is obtained by simplifying x first, then each node , y with minimum
degree (Line 14). In the repeat loop, Lines 13-22, at the i-th iteration, v (set at Line 14)
is the node v(i) in Lemma 2, just removed is v(i−1) before being updated at Line 21 for
the next iteration, and alive (updated at Line 18) contains all intervals live at point v(i).
Indeed, alive is completed by all neighbors w of v(i) not already in alive. The corre-
sponding intervals thus start just after v(i− 1) ends. Also, if at most (k − 1) intervals are
live at point v(i), one considers that a dummy interval is live at this point. If it does not
exist, dummy like x is  (Line 19). This situation is depicted in Figure 2.

It is easy to see that G has a coloring such that x and y have the same color if and
only if there is sequence of intervals, possibly dummy, such that each interval ends
just before the next one starts, and the first interval is x, the last is y. Therefore, it is
sufficient to propagate a flag, starting from x, from ends of intervals to starts of intervals
and see if y can be reached. This is what the propagation of the variables like x[w] and
dummy like x does. If there is a coloring in which x and y have the same color, then the
propagation from like x[x] =  reaches y. Let us see the converse more formally.

Let us prove that if like x[w] is set to  at iteration i (Line 18), the following
holds: if there is a k-coloring of w and of all nodes simplified later (thus colored before
in the select phase) and such that w and y have the same color, then one can build a
coloring of G such that y and x have the same color. A similar property holds for the
dummy interval at v(i) as like x[w] and dummy like x have the same value. Let us prove

w

dummyv(i − 1)

v(i)
already in alive

Fig. 2. Position of relative intervals at iteration i.



18

this property by induction on i, the implicit loop counter of the repeat loop. This is true
for x = v(1) due to the initialization at Lines 11-12. Assume the property is true for all
j < i. Let w a node added in alive at iteration i and such that like x[w] =  (the same
argument can be used for the dummy interval at v(i)). Consider a coloring of all nodes
simplified after w such that w and y have the same color. As G is greedy-k-colorable,
this coloring can be extended, popping nodes from the stack, to all nodes from w down
to v(i), without using the color of w because all these nodes interfere with w. If like x[w]
is  because like x[v(i−1)] (resp. dummy like x) is , one can color v(i−1) (resp.
the dummy interval at v(i − 1)) with the color of w. Finally, by induction hypothesis at
iteration i − 1, we can extend the coloring to G such that x and y have the same color.

It remains to prove that, with additional node merges, we can obtain a greedy-k-
colorable graph. This is done by following a path from y to x when popping nodes from
the stack (Lines 24-27). Merging all these nodes amounts to form a complete interval
from x to y, thus transforming the graph into another interval graph, with at most k
live intervals, thus greedy-k-colorable. The only subtlety is that we should also merge
some dummy intervals, which means we should add interference edges with some other
intervals alive at these points. But, these interferences already exist after the merging
of the path, otherwise, one of these intervals is fully included in a portion covered by
dummy intervals colorable with the same color as x and y, thus it would have added in
the path at Line 27, instead of a later node.

If G is only greedy-k-colorable, but not necessarily chordal, nodes are simplified in
some order v(1), . . . , v(n), and the repeat loop behaves as if G was an interval graph G′

where each interval goes from v( j) if it is added in the set alive at iteration j to v(i)
if it is simplified at iteration i. This amounts to assume that all nodes in the set alive
form a clique, even if they do not interfere, but there is no need to add these edges
explicitly. The result of Procedure Chordal Coalescing is then given with respect to
this interval graph G′, for which G is a subgraph. It is possible that G′ is not k-colorable
(Line 20) but if Procedure Chordal Coalescing returns , it is safe to merge x
and y. The additional merging of the nodes on the path then transforms G′ into another
interval graph and G into a subgraph of it, it is therefore greedy-k-colorable. Taking into
account all nodes previously simplified (Lines 3-7), the graph is still greedy-k-colorable.
�


