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In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the Fluctuation-Dissipation Theorem (FDT). In non-equilibrium steady systems, Fluctuations Theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = RI 2 in the system by just studying the PDFs symmetries.

Introduction

In the last decade, Fluctuation Theorems (FT) [START_REF] Evans | [END_REF]2] appeared in nonequilibrium statistical physics. These new theorems relate the asymmetry of fluctuations of energies (or powers) with the dissipated power required to maintain a nonequilibrium steady state of a system. Thus FT give a measure of the distance from equilibrium. Indeed, FT can be extremely useful to probe nonequilibrium states in nanophysics and biophysics where energies involved are typicaly small and thermal agitation cannot be neglected: in those systems, the variance of fluctuations is of the order of the average values. Moreover, standard Fluctuation-Dissipation Theorem (FDT) [3,4,5] is derived for equilibrium systems only and so it may fail to describe states far from equilibrium. FT are a generalization of FDT out of -possibly far from -equilibrium. In order to safely apply FT in complex systemse.g. in biophysics or nanotechnologies -it is important to test them in all simple cases where theoretical predictions can be accurately checked. In spite of the large theoretical effort, just a few experiments have been conducted on this topic [6,7]. For this reason, we test in this letter their use on a simple electrical system. Electrical systems are particuliarly interesting, because they are one of the first where FTD was formalized: Johnson [8] and Nyquist [9] related equilibrium fluctuations of voltage U across a dipole with the resistive part of this dipole. Moreover, all parameters in the setup can easily be controled. Thus, out of equilibrium, electrical circuits are a key example to stress the differences between FT and FDT, and to verify the validity of FT.

Our system is an electrical dipole constituted of a resistance R in parallel with a capacitor C (Fig. 1). We drive it out of equilibrium by making a constant current I flow in it. Noting k B the Boltzmann constant and T the absolute temperature, the injected power is typically of some k B T per second, of the same order as in biophysics or nanoscale physics experiments. This represent the fun- damental case of a system in contact with two different (electrons-) reservoirs, one of the simplest and most fundamental problems of nonequilibrium physics [10]. Using a powerful analogy with a forced Langevin equation [11], a precise formulation of FT was recently given [12] in this case. Nyquist FDT as well as FT are checked experimentally, by looking at the injected power and the dissipated heat in the system.

Experimental setup

The circuit we use is composed of a resistor in parallel with a capacitor, as depicted on Fig. 1. The resistance is a standard metallic one of nominal value R = 9.52 MΩ. In parallel, we have an equivalent capacitor of value C = 280 pF. This accounts for the capacitance of the all set of coaxial connectors and cables that we used. The time constant of the circuit is τ 0 ≡ RC = 2.67ms. Using a 50 GΩ resistance, we inject in the circuit a constant current I ranging from 0 to 6 × 10 -13 A. This current corresponds to an injected power I 2 R ranging from 0 to 1000k B T /s. Experiments are conducted at room temperature T = 300 K. The typical values of the injected energy for, e.g., I = 1.4×10 -13 A and τ = 10τ 0 are of order of a few hundreds of k B T , which is small enough to ensure that the resistance is not heating; expected changes of temperature are estimated to be less than 10 -14 K over a one hour experiment. Moreover, the resistance is thermostated: all the heat dissipated by Joule effect is absorbed by the thermal bath.

The fluctuating voltage U across the dipole is measured with a resolution of 10 -11 V sampled at 819.2 Hz. This is achieved by first amplifying the signal by 10 4 , using a FET amplifier, with a 4 GΩ input impedance, a voltage noise level of 5 nV/ √ Hz and a current noise of 10 -15 A/ √ Hz. The signal is then digitized with a 24-bits data acquisition card at frequency 8192 Hz, and decimated by averaging ten consecutive points.

Fluctuation-Dissipation theorem

The electrical dipole of Fig. 1 is a pure resistance R in parallel with a capacitor C; its complex impedance reads Z(f ) = 1/(1/R + i2πRCf ) where i 2 = -1 and f is the frequency. The effective dissipative part is the real part ℜ(Z) of Z. It was experimentally observed by Johnson [8], and then demonstrated by Nyquist [9] that the potential difference U across the dipole fluctuates with a stationary power spectral density S(f )df such that

S(f )df = 4k B T ℜ(Z)df , (1) 
At equilibrium I = 0, in average no current is flowing in the circuit, and mean U is zero. Integrating over all positive frequencies, one gets the variance of U :

U 2 = k B T R τ 0 = k B T C . (2) 
Eqs. ( 1) and ( 2) are the expressions of the Fluctuation-Dissipation theorem (FDT) for electrical circuits.

The exact value of our capacitance was determined by fitting the power density spectrum of equilibrium fluctuations (at imposed I = 0 A) by a Lorentzian low-pass transfer function (eq.( 1)), as illustrated on Fig. 2b. Application of FDT leads with a very good accuracy to the determination of R, in perfect accordance with the measured nominal value (Fig. 2). When I = 1.4 × 10 -13 A, we found the same power spectral density for U , and performing the same treatments gave the same estimates of R and C. We therefore conclude that FDT is still holding in our system driven out of equilibrium.

Fluctuation theorems

The power injected in the circuit is P in = U I, but only the resistive part dissipates, so the dissipated power is P diss = U i R , where i R is the current flowing in the resistor (Fig. 1). As already noted [13], in average, one expects P in = P diss ≡ P, where the brackets stand for time average over sufficiently long times compared to τ 0 . This is very well checked in our experiment. P in and P diss fluctuate in time because U itself is fluctuating. If one assumes that fluctuations of U have a Gaussian distribution, which is the case at equilibrium when I = 0, then P in has also a Gaussian distribution, because I is constant. On the contrary, i R fluctuates, as we see from Kirchoff's laws:

I = i R + C dU dt , so P in = P diss + 1 2 C dU 2 dt , (3) 
and therefore, the probability distribution of P diss is not Gaussian [12]. It is worth noting that for large current I, some orders of magnitude larger than the one we use, P in and P diss will be much larger than the conservative part C 2 dU 2 dt and therefore the probability distributions of both the injected and dissipated power will be practically equal and usually Gaussian, as it is expected in macroscopic systems.

We call g τ (t) = 1 Reasoning with energies instead of powers, we define W τ (t) = τ P in τ (t), the energy injected in the circuit during time τ , analogous to the work performed on the system (positive when received by the system). In the same way, we write Q τ (t) = τ P diss τ (t), the energy dissipated by Joule effect during time τ , analogous to the heat dissipated by the system (positive when given by the system to the thermostat). We used values of τ spanning from fractions of τ 0 up to hundreds of τ 0 .

For a given value of I, we measure U (t) and compute P in and P diss . We then build the probability density functions of cumulated variables W τ and Q τ using 10 6 points; their typical distributions are plotted on Fig. 3. As expected, fluctuations of W τ are Gaussian for any τ whereas heat fluctuations are not for small values of τ . They are exponential for small τ : large fluctuations of heat Q τ are more likely to occur than large fluctuations of work W τ .

Then we study the normalized symmetry function: where E τ stands for either W τ / W τ or Q τ / Q τ . If the Fluctuation Theorem for the work W τ holds, then one should have [11,12], for large enough τ , the relationship lim τ →∞ f W (τ, a) = a. In contrast, if the Fluctuation Theorem for the heat Q τ holds, then for τ → ∞, the asymptotic values of

S E (τ, a) ≡ k B T τ P ln p(E τ = a) p(E τ = -a) , (4) 
S Q (τ, a) are S ∞ Q (a) = a for a ≤ 1, S ∞ Q (a) = 2 for a ≥ 3,
and there is a continuous parabolic connection for 1 ≤ a ≤ 3 that has a continuous derivative [11,12]. From histograms of Fig. 3, we compute the symmetry functions S W (τ, a) and S Q (τ, a) (Fig. 4).

Work fluctuations First, for any given τ we checked that the symmetry function S W (τ, a) is linear in a (Fig. 4a). We measured the corresponding proportionality coefficient σ W (τ ) such that S W (τ, a) = σ W (τ )a. This coefficient σ W (τ ) tends to 1 when τ is increased (see Fig. 5).

Heat fluctuations We found that S Q (τ, a) is linear in a only for a < 1, as expected [11,12]. Again, as τ → ∞, the limit slope of the symmetry function is 1 whereas for FIG. 5: (a): dependence on τ of the slope of SW in Fig. 4. Slope is converging from above. (b): distance between SQ(τ ) for finite τ and theoretical prediction of SQ for infinite τ , for several values of a = Q/ Q . for a < 3, convergence is from below, whereas it is from above for a > 3.

a > 3, S Q (τ, a) tends to two.

Asymptotic symmetry functions and convergence In [11,12], expressions for the convergence towards the asymptotic limits S ∞ W (a) and S ∞ Q (a) are given in terms of τ . We can check these predictions with our data. The convergence for the work W τ is very well reproduced by these predictions, as can be seen on Fig. 4a: continuous straight lines are theoretical predictions for small values of τ , using eqs. ( 9) and ( 10) from [12], with no adjustable parameters. On Fig. 5a the slope σ W (τ ) of the experimental symmetry function is plotted. The continuous line is the prediction of [12], which perfectly agrees with our data.

For the heat, we distinguish two regimes for the convergence towards the asymptotic symmetry function. For a = Q τ / Q < 3, we find that when τ is increased, symmetry functions are converging to the asymptotic function from below (Fig. 4), which is the opposite of what is observed for the work. On the contrary, for a > 3, convergence to the asymptotic function is from above, thus enhancing the peculiarity of the point a = 3. On Fig. 5, we have plotted the evolution of S Q (τ, a) versus τ for several fixed values of a. The convergence from above for a ≥ 3 and from below for a < 3 is clear. For increasing values of τ , only smaller and smaller values of a are accessible because of the averaging process. Therefore the accessible values of a are quickly lower than 1, and only the linear part of S Q (τ, a) can be experimentally tested. Nevertheless, for intermediate time scales τ we see in Fig. 4 that the data converge towards the theoretical asymptotic nonlinear symmetry function [11,12] (smooth curve in Fig. 4b).

We observed that the convergence reproduced on Fig. 5 depends on the injected current I, as pointed out in [12]. Other experiments with a larger current ( P = 186k B T /s) give a faster convergence; corresponding results will be reported elsewhere.

Conclusions

We have shown experimentally that the asymmetry of the probability distribution functions of work and heat in a simple electrical circuit driven out of equilibrium by a fixed current I, is linked to the averaged dissipated power in the system. The recently proposed Fluctuation Theorems for first order Langevin systems are then experimentally confirmed. Exploiting formula (4), FT can be used to measure an unknown averaged dissipated power P = lim τ →∞ Qτ τ by using only the symmetries of the fluctuations, i.e. computing S W or S Q and measuring their asymptotic slope.

We operated with energies of order of k B T in order to have strong fluctuations compared to the averaged values. It is worth noting that as the driving current is increased up to macroscopic values, the fluctuations become more and more negligible, therefore Fluctuation Theorems become harder and harder to use, and therefore less relevant.
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 1 FIG.1: Model circuit : an electrical dipole is composed of a resistive part R and a capacitive part C. Due to thermal fluctuations of charges positions, a fluctuating voltage U is observed. We drive the system away from equilibrium by imposing a constant flux of electrons, via a constant current I.
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 2 FIG. 2: (a): For I = 0 A, Johnson-Nyquist noise has a Gaussian distribution. Relation (2) is verified. (b): The noise is white up to the cutoff frequency f0 of the RC dipole. We use FDT to extract from the energy of the noise the value of the resistive, dissipative part of the circuit R: for low frequency, the noise level spectral density is constant, equal to √ 4kBT R in a band [f ; f + df ]. A Lorentzian fit of the spectrum (thin line) additionally gives τ0 = RC.

  ′ )dt ′ the time-averaged value of a function g over a time τ .
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 3 FIG. 3: Histograms of Wτ and Qτ when a current I = 1.4 × 10 -13 A is flowing in the dipole. This corresponds to Wτ = Qτ = τ P with P = RI 2 = 45kBT /s.
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 4 FIG.4: Normalized symmetry functions SW and SQ for Wτ and Qτ when I = 1.4 × 10 -13 A (same conditions as Fig.3). (a): For any τ , SW is a linear function of a = Wτ / Wτ . Straight lines are theoretical predictions from[12]. For τ → ∞, SW (a) tends to have a slope 1. (b): On the contrary, SQ(a) tends to a limit function (continuous black curve) which is a straight line of slope 1 for a < 1 only.