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Measuring overlaps in mesoscopic spin glasses via conductance fluctuations
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We consider the electonic transport in a mesoscopic metallic spin glasses. We show that the
distribution of overlaps between spin configurations can be inferred from the reduction of the con-
ductance fluctuations by the magnetic impurities. Using this property, we propose new experimental
protocols to probe spin glasses directly through their overlaps.

Understanding the physics of glasses remains one of the
deepest experimental and theoretical challenge in con-
densed matter. Considered as the simplest glassy phases,
spin glasses have attracted considerable attention both
experimental and theoretical during more than thirty
years [1, 2]. In spin glasses, magnetic moments occu-
pying random positions in a host lattice get frozen with
random orientation below a spin glass transition temper-
ature TSG. The initial theoretical efforts were devoted to
the solution of equilibrium lattice models. This culmi-
nated with the mean-field solution of the fully connected
Sherrington-Kirckpatrick (SK) model [3], now proven to
provide the exact free energy [4, 5]. However, an in-
tense theoretical debate remains around the relevance of
the SK model to the thermodynamic properties of three
dimensional spin glasses. Although the initial theoreti-
cal studies were focused on the thermodynamics, it was
long known that spin glass materials drop out of equilib-
rium below TSG, and never reach a steady state. This
has led to the development of various models of non-
equilibrium spin glass dynamics including a scaling ap-
proach [6, 7], phenomenological trap models [8], and more
recently aging studies of the mean field models (see [9]
and ref. therein). In the simplest scaling approach to
spin glasses, the thermodynamics below TSG consists, in
constrast to mean-field solutions, of a doubly degenerate
broken Z2 symmetry ground state (for Ising spins). All
the non-trivial properties of the spin glass state are then
assumed to be consequences of the extremely slow relax-
ation toward this ground state resulting from the slow
growth of small domains (droplets) of equilibrium phase,
similar to ferromagnet quench.

In view of the current understanding of the spin glass
state, it is a worthwhile goal to propose new probes of
their properties. A central quantity in current theoretical
descriptions of spin glasses is the overlap between two
spin configurations defined as (Nimp being the number
of spins)

Q12 =
1

Nimp

Nimp
∑

i=1

〈~S
(1)
i .~S

(2)
i 〉th. (1)

Configurations overlaps gives access to distances between
spins configurations, as opposed to conventional probes
like spin susceptibility. For configurations corresponding

to equilibrium states in the same sample, overlap distri-
bution is the equilibrium order parameter [2]. For config-
urations taken in the same quench but at different times,
overlaps characterize the glass aging [9]. Besides, other
physical effects such as temperature or disorder chaos [10]
are described in terms of spins overlaps. It is the pur-
pose of this letter to propose the first experimental probe
of these central quantities via the study of conductance
fluctuations in mesoscopic metallic spin glasses.

The dependance of the average conductance fluctua-
tions on magnetic impurities was first analyzed by Al-
thuler and Spivak [11]. Soon after, Feng et al. [12],
building on these results, predicted within the scaling

approach a chaotic behavior of conductance as a func-
tion of temperature in a spin glass. Parallel to these
theoretical developments, experimental measurements of
conductance fluctuations in metallic spin glasses by de
Vegvar et al. [13] (see also [14]) demonstrated for the
first time a clear signature of the spin glass freezing in
the time-reversal antisymmetric part of the four termi-
nal conductance. Later, several experiments focused on
noise measurements in Cu:Mn [15] and Au:Fe [16] (see
also [17] for similar studies in the doped semiconductor).

However, a connection between these theoretical and
experimental analyses and spin glass theories was difficult
as none of these approaches allowed a simple interpreta-
tion within the spin glass theoretical framework. This
motivates a reexamination of the description of conduc-
tance fluctuations in a spin glass in relation with spin
overlaps.

We consider a mesoscopic metallic sample of size L
containing magnetic impurities. These impurities pro-
vide three different contributions to the scattering po-
tential for the conduction electrons : (i) a scalar poten-
tial V (r) =

∑

i voδ(r− ri) where ri denotes the positions

of impurities, (ii) a spin coupling VS = J(T )
∑

i=1
~Si.~σe,

and (iii) a spin-orbit contribution Vso(~k1, ~k2) = iVso(k̂1×

k̂2).~σs1s2 . The magnetic impurities interact with each

other via a RKKY interaction [18]
∑

i6=j Jij
~Si.~Sj , and

at high enough impurity concentrations, the correspond-
ing spin glass transition temperature TSG is larger the
Kondo temperature TK . In this regime, the local mo-
ments remain unscreened at TSG and as a result, due to
the random signs of the couplings, they freeze into the
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spin glass state for T < TSG [18]. In the spin glass state,
the frozen spins act on the conduction electrons just like
a classical random magnetic field. In the rest of the let-
ter, we will focus on this regime (TSG > T ≫ TK) where
transport properties simply result from coherent diffu-
sion of electrons by both a classical random magnetic
field and the associated scalar potential.

Let us start by recalling known results about the fluc-
tuations of conductance induced by a scalar random po-
tential V (r). We denote by Lφ the dephasing or inelas-
tic scattering length, which is considered larger than the
sample size L (mesoscopic regime). The associated in-
elastic scattering rate is γφ = h̄/(2τφ) = Dh̄/(2L2

φ),
D being the diffusion constant in the sample. For the
sake of clarity, we focus on the longitudinal G = Gxx,
although the following discussion extends naturally to
other components of the conductance [19]. In this meso-
scopic regime, the conductance G is a function of the
random scattering potential V (r), and in the weak disor-
der limit, its distribution is approximately gaussian (see
[20] for a recent discussion). Its average incorporates
weak-localization corrections [21, 22], and its variance,
describing the sample to sample fluctuations, contains
contributions from both fluctuations of the diffusion co-
efficient and of the density of states (see [23] for a peda-
gogical introduction). With only a scalar potential V (r)
and in the so-called diffusion limit, the fluctuations of
this conductance read for weak disorder :

〈(δG)2〉V = F (γφ) = 6

(

e2D

hL2

)2
∑

~q

(

Dq2 + γφ

)−2
(2)

where δG = G − 〈G〉V . For a wire where diffusion
takes place in one-dimension (1D) between two absorb-
ing reservoirs, the variance (2) reduces to 〈(δG)2〉V =
8/15(e2/h)2, the so-called universal conductance fluc-
tuations in the limit L ≪ Lφ . In the other case
Lφ < L, these fluctutations reduce to 〈(δG)2〉V ≃
(e2/h)2(Lφ/L)4−d with a geometrical factor.

How are these results modified in the presence of the
random field component VS of the scattering potential ?
First, those spins that can flip during the electron dif-
fusion time (either weakly connected or maximally frus-
trated) will contribute to the enhancement of the inelastic
scattering rate γφ. We assume that the inelastic coher-
ence length of the sample, including the effects of these
quasi-free spins, is still larger than the system size at low
enough temperatures. The remaining spins are consid-
ered as classical random fields, frozen on the electrons
diffusion time-scale. These random fields “flip” the elec-
tron spin, and thus provide a finite lifetime to different
diffusion spin states. Using a semi-classical approach al-
lows us to consider a given realization of spins, without
averaging. A diffusion path is labeled by the sequence of
encountered impurities, ordered chronologically. At each
impurity j, the electron’s spin is rotated according to

Rj = eiJ ~Sj .~σ = cos(JS) + i sin(JS)Ŝ.~σ. The end action
of the random fields along the path is encoded by the
chronological product

∏

j Rj . Expanding this product
in the limit of weak J , and using the central-limit theo-
rem we obtain the typical magnetic dephasing rate of an
electron state as γm = 2πρ0 nimpJ

2〈S2〉th, where ρ0 is
the density of state, nimp the concentration of impuri-
ties and 〈〉th means an average over thermal fluctuations.
Note that in doing so, we have neglected all spatial spins
correlations, a coherent assumption in a spin glass state.
Moreover, we have assumed a good impurities sampling
by typical diffusion path, approximating the number of
impurities along typical path by Nimp.

Coming back to the conductance fluctuations, we as-
sume that both sources of disorder V (r) and VS(r) can
be treated as independent from each other (the orienta-
tion of the frozen moment is not directly correlated with
the position of the single impurity). We focus on the
average (over V ) correlations between conductances in a
given sample V (r) with two different spin configurations

{S
(1)
j } and {S

(2)
j }

(∆G)2S(1)S(2) =
〈

δG
(

V, {S
(1)
j }

)

δG
(

V, {S
(2)
j }

)〉

V
(3)

where δG(V, {S
(1)
j }) = G(V, {S

(1)
j }) − 〈G(V, {Sj})〉V .

The weak disorder expression of this average correlation
is obtained similarly to (2) using standard diagrammatic
techniques (see [23]). In doing so, one formally considers
the diffusion of the so-called Cooperons and Diffusons.
They can be viewed as the coherent propagation of pairs
of electrons along a path in the same chronological or-
der (Diffuson), of in reversed orders (Cooperon). In the
correlations (3) the two components of the Diffuson or
Cooperon see a different spin configuration. The action
of the magnetic impurities on their diffusion is

∏

j

ei(JS)Ŝ
(1)
j

.~σ(1)

e±i(JS)Ŝ
(2)
j

.~σ(2)

, (4)

where the ± sign depends on the nature of the diffusive
object. The Diffuson/Cooperon states cary a pair of spins
1/2, and are naturally decomposed into a singlet and

triplet states. In a given spin configuration (~S
(1)
j = ~S

(2)
j ),

only the triplet states couple to these random mag-
netic fields while for two different spin configurations

{S
(1)
j }, {S

(2)
j }, both the singlet and the triplet states ac-

quire a finite diffusion lifetime. From eq. (4), we obtain
the typical dephasing rate of these composite Diffusons
in the limit of weak J : γD,S

m = γm(1 − Q12), γ
D,T
m =

γm(1 + 1
3Q12) where Q12 is defined in (1). The scat-

tering rates for the Cooperons follow by Q12 → −Q12.
Now plugging these scattering rates back into the diffu-
sion propagators, we obtain the following expression for
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Temperature, T

time t

TSG

{!S
(n)
i
}

{!S
(n+1)
i

}

Texp

0

Bexp

B,EF

tw

T
′

FIG. 1: Proposed experimental protocol : the temperature
is cycled through Tg. Measurements at successive reach n of

temperature Texp correspond to different spins states {~S
(n)
i }

in a given sample, labelled by an index n. The correlations
〈δGnδGm〉B between these spin configurations, and the cor-
responding overlap Qnm are obtained by application of small
magnetic fields after some time tw. Repeating this process
gives access to the (non-average) overlap distribution for dif-
ferent waiting time tw.

the average correlations :

(∆G)2 =
1

4
F

(

γD,S
m + γφ

)

+
3

4
F

(

γD,T
m + γso + γφ

)

+
1

4
F

(

γC,S
m + γφ

)

+
3

4
F

(

γC,T
m + γso + γφ

)

(5)

where we have included the spin-orbit and inelastic de-
phasing rates. When (some) magnetic dephasing lengths
are smaller than L (< Lφ, Lso), the fluctuations are domi-
nated by the smallest dephasing rate (one of the singlets).
For γφ ≪ Ec ≪ γm(1 − Q12), we obtain for D = 2 :

〈

δG({S
(1)
j })δG({S

(2)
j })

〉

V
∝

(

e2

h

)2
Ec

γm(1 − Q12)
. (6)

where Ec is the Thouless energy. Crucially, these corre-
lations depends on the quantity Q12, which is called the
spin overlap and plays a central role in the description of
spin glasses. Indeed, the distribution of Q12 is the spin
glass order parameter in the mean-field theory.

Before pursuing further into the spin glass considera-
tions, we first discuss the disorder averaging in experi-
ments. In the above analysis, we have carefully avoided
to average over spin configurations while at the same time
averaging over the scalar potential. However, in experi-
ments, both disorder originates from the same source i.e.

the random positions of magnetic impurities. We thus

need to propose an experimental setup that simulates an
average over a scalar potential while keeping the distri-
bution of spins (quasi-) fixed. Experiments usually rely
on the ergodic hypothesis and probe these fluctuations
by varying the magnetic field or the Fermi energy. Phys-
ically the origin of conductance fluctutations are phase-
coherent contributions, encoded into the Cooperon and
Diffuson. A change in disorder changes the various dif-
fusion paths, and the corresponding interferences. How-
ever, the various phases can also be modified either by
the orbital effect of a uniform magnetic field or a change
of the Fermi energy, hence the ergodic hypothesis. Av-
eraging over the Fermi energy can be achieved in doped
semi-conductor spin glasses by applying a gate potential
[17, 24] . In metallic spin glasses, one has to resort to
the magnetic field sampling and the average in eq. (3) is

replaced by 〈δG(V, {S
(1)
j })δG(V, {S

(2)
j })〉B defined by

1

Bmax − Bφ

∫ Bmax

Bφ

δG(V, {S
(1)
j }, B)δG(V, {S

(2)
j }, B)dB

The decorrelation field Bφ corresponds to two flux quanta
through the sample, and for the variance of the con-
ductance, relatively weak field amplitude Bmax/Bφ are
necessary for a correct sampling [20]. Note that with a
magnetic field, Cooperons are dephased, and eq. (5) sim-
plifies to its first line. A crucial step for spins glasses,
is to be able to find a magnetic field Bmax at low
enough temperature such that conductance fluctuations
are enough sampled, while at the same time the mag-
netic response of the spins can be neglected. This SG re-
sponse effect can be experimentally estimated by apply-
ing an in-plane magnetic field, for which orbital effects
can be neglected at small fields. According to eq. (6),
the perturbation of the spin configuration should mani-
fests in the conductance fluctuations through the quan-

tity Q(∆B) = N−1
imp

∑Nimp

i=1
~Si(B).~Si(B +∆B). The nec-

essary condition for the proposed method is Q(Bmax) ≃ 1
with probability of order 1. Although spin glasses are
generally believed to show a chaotic magnetic response,
to our knowledge current theoretical studies have focused
on mean-field models with Ising spins, under fields larger
than 0.1TSG [25], not directly relevant in the present con-
text.

Having access to overlaps of the spin configurations
opens new perspectives in probing the metallic spin
glasses that we illustrate here by discussing three pos-
sible experimental protocols. A) the distribution of over-
laps between spin configurations corresponding to differ-
ent quench in the same sample can be obtained from the
previous ideas, as described in Fig. 1. In the limit of long
times tw, this distribution provides information on the
phase space structure of the spin glass. Obtaining this
quantity for the first time in an experimental spin glass
would be of major importance as current theoretical pro-
posals differ on its expected behavior. B) Direct access
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to spin overlaps at different times allows for an unprece-
dented analysis of the aging of experimental spin glasses
[9]. In a canonical experimental scheme, the sample is
cooled down below TSG under a small magnetic field.
This field is kept constant for a time tw and then switch
off. Magnetic field sweeps provide 〈δG(tw)δG(tw + t)〉B
and thus the overlap Q(tw, tw + t). By repeated cool
down, both the average and crucially the statistics of
this quantity can be determined. C) a procedure simi-
lar to A) allows to probe the temperature chaos of the
spin glass [12], and its relation with the rejuvenation
(T ′ < Texp) and memory (T ′ > Texp) phenomena [26].
The sample is kept at Texp for a time tw before applying
a small field sweep. The temperature is then switched
to T ′ = T ± ∆T which now remains below TSG. Succes-
sive magnetic sweep at times tn = tw + nτ are then ap-
plied at T ′. Conductance correlations provides the over-
lap Q(Texp, tw; T ′, tn) which characterizes the tempera-
ture chaos of the spin glass, and determine in particular
the dependance of the overlap length Lc on both temper-
ature variation ∆T and time tn. The behavior of Lc in
relation with predictions from the droplet theory are cur-
rently theoretically investigated (see e.g. [10, 26]). The
goal is a characterization of low energy excitations of a
spin glass state, and their slow evolution.

Let us end by commenting on the dimensionality of a
mesoscopic spin glass. To remain in the coherent trans-
port regime, sample size L has to be of the order of (or
lower than) the inelastic coherence length Lφ [27] Often
quantum diffusion takes place in an effective space of di-
mension D = 1. On the other hand, the dimensionality of
the spin glass is determined by the dynamical correlation

length. Values of the correlation length ξSG = NSG.n
1/3
imp

(nimp the density of spins) extracted from field change ex-
periments for various spin glasses [28] and extrapolation
from recent numerical simulations [29] are of the order of
NSG ∼ 30−50 spins after a waiting time tw = 1000s. For
samples with transverse dimensions Ly, Lz larger than
ξSG, the proposed conductance measurements will probe
properties of an effective 3D spin glass. Reconsidering
the experiments of [13], we obtain approximately ≈ 40
spins in the transverse dimensions Ly ≃ 900 Å, imply-
ing a 3D spin glass behavior. Moreover, this opens the
perspective of studying a possible 3D to 1D crossover for
the spin glass dynamics, and possibly determining the
associated dynamical correlation length.

To conclude, we have shown how new experimental
protocols to determine mesoscopic conductance fluctua-
tions in spin-glasses can provide access to the spin con-
figurations overlaps. We believe that these protocols can
open completely new ways of characterizing the spin glass
physics, and allowing progress in their understanding.
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