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Abstract

The dynamics of the tip of the falling chain is analyzed. Results of laboratory experiments are

presented and compared with results of numerical simulations. Time dependences of the velocity

and the acceleration of the chain tip for a number of different initial conformations of the chain

are determined. A simple analytical model of the system is also considered.
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I. INTRODUCTION

The problem of bodies falling in a gravitational field is so old that it is hard to imagine

anything new being added to it. However, the development of numerical simulation meth-

ods has a means for the analysis of a few interesting cases, that are difficult to analyze

analytically. The dynamics of a falling chain is among them.

A detailed and critical review of the history of the “falling chain” problems, in particular

of some erroneous approaches to them, has been given recently by Wong and Yasui1. In

one case consideration is given to a chain initially gathered in a compact heap located on a

table and close to its edge. The motion starts when one of the chain ends is brought over

the edge. If one assumes that the chain leaves the heap without friction the model becomes

tractable analytically. The surprise is that the acceleration of the chain tip is not, as one

would expect, g, but as Sousa and Rodrigues have found g/22. Wong and Yasui confirm the

result and rebuke the history of the long lasting erroneous conviction that the acceleration

should be equal g/3. They locate the source of the error and propose a fool-proof Lagrangian

approach to the falling chain problems concluding that ”‘Lagrange’s method gives definitive

answers with unmatched ease, clarity and elegance”’. They indicate at the same time that

the method of Sousa and Rodrigues is not reliable since it provides an erroneous solution

for the falling folded chain.

In the variation of the falling chain problem considered here, the chain is initially attached

at both ends to a horizontal support. Then, as one of the ends is released, the chain begins

to fall. The case in which the horizontal separation ∆x between the ends of the chain

equals 0, i.e. the chain is tightly folded, has an analytical solution. According to Wong and

Yasui, the solution was for the first time presented by Hamel3 and then repeated by Calkin

and March4. The analytical result was confirmed both in experimental measurements4 and

numerical simulations5,6. We note that Calkin also considered a different variation of the

falling chain problem in which the chain was hanging initially over a smooth horizontal peg

and then let to slip down one side7. This case in not considered in the present work.

Here, we describe results of experiments analogous to those performed by Calkin and

March4. In the initial conformation the ends of the chain of length L are located at the

same level but their horizontal separation ∆x varies in steps. In the experiments performed

by Calkin and March the time was recorded for the tension acting on the support of the fixed
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end of the chain to reach its maximum value (i.e. the time at which, as they were implicitly

assuming, the tip of the chain reaches its lowest position). Moreover, in their study, the

largest value of ∆x was around 0.3L. In contrast, for the experiments we performed the

largest value of ∆x was 0.999L, and the experimental set-up that we used allowed us to

record the entire shape of the consecutive conformations of the falling chain. Analyzing

the recorded conformations, we are able to quantitatively extract data concerning the time

dependencies of the velocity and acceleration of the chain tip. Calkin and March compared

their experimental results with the analytical solution of the ∆x = 0 model. It is clear

that the model is not valid for large ∆x. To overcome this difficulty we formulated the

complete equations of motion for the chain and we integrated them numerically, arriving

at a quantitative comparison between the experimental and numerical results. As we shall

demonstrate, the not-studied-before case in which the initial distance between the ends of

the chain is very close to L (i.e. when the chain is initially stretched to its maximum length)

proves to be very interesting since the vertical motion of the chain tip becomes identical

with the motion of a freely falling body. In what follows we shall refer to the latter as the

”‘free fall”’.

II. THE FALL OF THE TIGHTLY FOLDED CHAIN – ANALYTICAL SOLUTION

To get intuitive insight into what we can expect in the experiments with the falling chain,

let us consider first the case ∆x = 0. The complete analysis of this case can be found in

the paper by Calkin and March4, thus we provide below only its essential assumptions and

results. The basic assumption is that the conformations explored by the falling chain can

be always considered as consisting of two sections: a) the falling section of length La, which

decreases with time; b) the almost motionless section of length Lb, which increases with

time. Such a division of the chain is possible when the initial horizontal separation of the

chain ends equals zero and the chain consists of infinitely many, short and thin segments.

In this limit the chain can be seen as a tightly folded, perfectly flowing and infinitely thin

continuous filament.

Initially both ends of the chain are attached to a point of support O, the vertical position

of which y = 0. Then, at time t = 0, one of the ends of the chain is released and the chain

begins to fall. Figure 1 presents schematically the geometry of the system. We assume
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that the chain has a total length of L and that its mass, M , is distributed uniformly along

L. To simplify the final analysis of the results, we introduce a new variable h describing

the distance of the freely falling tip from its initial position. The h-axis is thus oriented

downwards, in the direction of the gravitational field. In what follows, we shall refer to h as

the fall distance. By assuming that energy is conserved it can be shown that, the velocity,

vc, acceleration, ac, and time, tc, of the chain tip versus the fall distance, h, are given by the

following formula:

vc(h) =

√(
1 +

L

L− h

)
gh, (1)

ac(h) =
1

2

[
1 +

(
L

L− h

)2
]

g, (2)

tc(h) =

h∫
0

√
L− s

gs (2L− s)
ds. (3)

Thus, it can be concluded from analyzing the above equations, that both the velocity and

the acceleration of the chain tip diverge at time tc(L), when the tip reaches its lowest position,

h = L. On the other hand, at small h the velocity and acceleration are approximated with

the well known formula describing the dynamics of the free fall:

vb(h) =
√

2gh, (4)

ab(h) = g, (5)

tb(h) =
√

2h/g. (6)

As calculated by Calkin and March, time tc(L), at which the tip of the falling folded

chain reaches its lowest position, equals

tc(L) = .847213 tb(L) (7)

where tb(L) is the time of the free fall. As clearly shown in Figure 5 of their report, the

experimentally established time of the chain fall decays with ∆x agreeing with the theoret-

ically found value only at ∆x ≈ 0.05L. In section VI we shall discuss this result in more

detail.
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III. LABORATORY EXPERIMENTS

The focus of our experimental study is the dynamics of the falling chain with particular

interest in comparing it to the dynamics of a freely falling weight. In order to accentuate

the comparison of differences in trajectories for the two cases, we designed an experimental

setup that makes it possible to record the simultaneous motions of the two objects.

The ball chain used consists of stainless-steel identical segments which are made from

rods and spheres attached to each other, see Figure 2. The total length of a segment

l = (4.46 ± 0.01)10−3 m and the diameter of the spheres are φ = (3.26 ± 0.01)10−3 m. In

addition, the minimum radius of curvature for which the chain can exist without loading

any elastic energy is Rmin = (4.8 ± 0.2) 10−3 m. We use a chain of length L = 1.022 m,

which corresponds to n = 229 segments for a total mass of M = (2.08± 0.01)10−2 kg.

The chain is tightly attached at one end to a firm support O by means of a thin thread,

see Figure 2. At the other edge located at point P = (x0, y0), the chain ends with a rod

(we open and remove the last sphere) to which we attach a thin nylon cord (fishing line,

diameter 10−4 m). The free-falling weight, a sinker (a lead weight used for sinking fishing

lines) of mass M = 10−2 kg, is then attached to the other end of the nylon cord (length

about 5 cm). We then extend the nylon cord between two nails and a thin metallic wire

(nickel, diameter 10−4 m) as sketched in Figure 2. The whole system is adjusted so as to

insure that the sinker and both ends of the chain are at the same level, y = 0. The setup

can be displaced horizontally in order to choose the initial horizontal separation between

the two ends of the chain. As the mass of the sinker M is about half the total mass of the

chain M , the system is almost always equilibrated (in addition, mechanical equilibrium is

further insured by the solid friction in the contact regions of the nylon wire with the nails

and the metallic wire). Thus, the initial conformation formed by the chain after damping

of all the disturbances, is close to a catenary curve16.

Injecting a large electric current (about 1 A) through the nickel wire results in cutting

suddenly the nylon wire at the point where they make contact; the sinker and the end of the

chain then simultaneously start to fall freely under the action of gravity. We point out that

they both fall with a small piece of nylon cord attached to them. However, as the force that

pushes the cord against the nails vanishes, the friction force vanishes as soon as the cord is

cut. In addition, during the free fall, the sections of cord have no effect on the dynamics as
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the mass of nylon is negligible in comparison to the mass of the sinker or chain.

The falling chain and weight are imaged with a standard CCD video camera (Panasonic

WV-BP550/G) and the images are recorded on a video cassette recorder. The chosen shutter

speed (1/4000 s) is adequate for obtaining clear images of both the chain and sinker (Figure

3). The filmed sequences of events are digitized afterward by means of a Macintosh computer

equipped with a frame grabber board (Data Translation DT2255). Further analysis with

image-processing software (NIH-Image) makes possible to recover 50 images per second from

the movies which are initially made from 25 interlaced images per second. The interlacing

allows us to double the time resolution but results in a loss in the spatial resolution, which

is typically of about 4 mm per pixel.

The positions of both the falling chain tip and the sinker at consecutive times ti, i =

0, 1, 2, ..., are determined from the digitized images. To simplify our discussion of the results,

the experimentally determined positions of the falling objects will be given as the vertical

distance h, and horizontal distance w which are defined by deviations of their x(t) and y(t)

coordinates from their initial values (x0, y0):

w(t) = x0 − x(t),

h(t) = y0 − y(t),
(8)

In what follows we shall refer to the variables as the vertical, h, and horizontal, w, fall

distances. According to their definitions, in the initial stages of the falling process both of

the falling distances are positive. In all experiments y0 = 0, while x0 was varied in four

steps from about 1 m to 0.25 m. Note that since the motionless end of the chain is attached

to point (0, 0), the initial horizontal separation of the chain ends is ∆x = x0. In view of

this equality, we denote the initial separation by x0. Experimental results are compared to

numerical predictions in Section VI.

IV. MODEL OF THE FALLING CHAIN AND ITS EQUATIONS OF MOTION

One can define a few discrete models of the chain; below we present one of them. Its

equations of motion will be formulated for the case, in which one of the chain ends is attached

to the fixed support while the other one is free. Let us note that similar models have been

considered before5,8,9.
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The free end of the chain moves under the action a gravitational field. To simplify the

model, we first assume that the chain is constrained to move only in the vertical plane

denoted by (x, y). The chain has mass M , length L and consists of n thin cylindrical rods

(in the following we shall refer to them as segments) with masses mi = m = M/n, i = 1..n,

and lengths li = l = L/n, i = 1..n. All the segments are considered to be rigid and cannot

be deformed. Consecutive segments are connected by joints with friction. Figure 4 shows

the geometric representation of our model.

In order to formulate the equations of motion, generalized coordinates, which rigorously

determine the state of the system, must be specified. Following our predecessors8, we de-

scribe the system using angular coordinates indicating the inclination of the consecutive

segments with respect to the horizontal x-axis.

The position of the first element is determined by the angle ϕ1. Similarly, the position of

the second element is described by the angle ϕ2, etc... The global conformation of the chain

in the plane is uniquely expressed by all angles ϕi, i = 1..n. The angles are referred to as

generalized coordinates of the system.

The Cartesian coordinates of the i-th mass center (xi, yi) can be written as follows:

xi =
i−1∑
j=1

l cos ϕj +
1

2
l cos ϕi,

yi =
i−1∑
j=1

l sin ϕj +
1

2
l sin ϕi.

(9)

Using the generalized coordinates we derive the Lagrange equations of motion and begin

by considering the energy of the system. The motion of the chain is considered as a combi-

nation of translational and rotational motions of its segments. Each segment has a moment

of inertia Ii = 1/12ml2, i = 1..n, calculated around the axis perpendicular to the (x, y)

plane and passing through the center of mass of the segment. Taking into consideration the

relations given in Equation (9), the kinetic energy of the chain is given by:

T =
1

2

n∑
i=1

(
m

(
ẋ2

i + ẏ2
i

)
+ Iiϕ̇

2
i

)
, (10)

where, the dot represents the derivative with respect to the time t. The potential energy

of the i-th segment is given by mgyi, where g is the gravitational acceleration. Thus, the
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potential energy of the chain may be expressed as:

U =
n∑

i=1

mgyi. (11)

To make our model more general, we introduce damping through Rayleigh dissipation

function10:

R =
1

2
r

n∑
i=1

(ϕ̇i − ϕ̇i−1)
2 , (12)

where, r is the dissipation coefficient. We assume that the joint which connects the first

element of the chain to the support is free of dissipation. This is equivalent to the assumption

that ϕ̇0 = ϕ̇1. A similar definition of dissipation was used preciously5,9.

The motion of the falling chain is governed by the system of Lagrange equations of the

second kind:

d

dt

(
∂L
∂ϕ̇i

)
− ∂L

∂ϕi

+
∂R
∂ϕ̇i

= 0, i = 1..n, (13)

where, L = T − U is the Lagrangian of the system. Applying (10), (11), (12) and (13) we

find the set of n equations describing the motion of a chain:

n∑
j=1

mi,jci,jϕ̈j = −
n∑

j=1

mi,jsi,jϕ̇
2
j +

r

ml2
(ϕ̇i−1 − 2ϕ̇i + ϕ̇i+1)−

g

l
aici, i = 1..n, (14)

where, ci = cos(ϕi), ci,j = cos(ϕi − ϕj), si,j = sin(ϕi − ϕj), ai = n − i + 1
2

and

mi,j =

 n− i + 1
3
, i = j

n−max(i, j) + 1
2
, i 6= j

.

Section V is dedicated to the results of the numerical solutions of Equation (14).

V. NUMERICAL EXPERIMENTS

The equations of motion derived in the previous section can be integrated numerically

thus allowing us to simulate the motion of the falling chain. In presence of dissipation,

the resulting system of equations becomes stiff and requires specific numerical methods.

We selected the RADAU5 algorithm by Hairer & Wanner (http://www.unige.ch/∼hairer/

software.html) designed for stiff problems. It is based on the implicit Runge-Kutta scheme

of order five with the error estimator of order four11.
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Numerical simulations were performed to reproduce results of the experiments described

in Section III. Thus, as the initial configuration of the chain, we used the discrete catenary

curve shown in Figure 2 with four different separations between the ends of the chain: a)

x0 = 1.019 m, b) x0 = 0.765 m, c) x0 = 0.510 m and d) x0 = 0.255 m identical to the

separations used in the laboratory experiments. These simulations were carried out for a

chain with n = 229, L = 1.02 m, M = 0.0208 kg, g = 9.81 m/s2 and time t ∈ [0, 0.5] s.

The only remaining free parameter was the dissipation parameter r. As such r was used

to find the best agreement of the numerical results with the laboratory experiments. To

compare the numerical results to the experimental data, we monitored the distance between

the positions of the chain tip found in the consecutive frames of the video recordings and

the positions found in the numerical simulations at the same times. The deviation between

laboratory and numerical data obtained in a single experiment is defined as follows:

δ =

√√√√ 1

N

N∑
i=1

(wi − ŵi)2 + (hi − ĥi)2, (15)

where the N denotes the number of analyzed frames. Points (wi, hi) and (ŵi, ĥi) for i = 1..N

are here the horizontal and vertical deviation from the initial position of the chain tip found

in consecutive frames of the laboratory and numerical experiments, respectively. In order

to find the optimal value of r providing the best fit for all four experiments a), b), c) and d)

we determined the total distance

∆ = δ(a) + δ(b) + δ(c) + δ(d). (16)

∆ depends on the chosen value of r; we have investigated its values in the range from r1 = 0

to r2 = 10−4 Nms. The optimal value of dissipation parameter, found with the use of a

least-square algorithm based on the SVDFIT procedure12, was equal r = 2.163 · 10−5 Nms.

∆(r) reaches here its minimum value equal 0.02479 m. At the specified above ends of

the analyzed range or r the deviation parameter ∆(r) was equal ∆(r1) = 0.029845 m and

∆(r2) = 0.03357 m. Table I provides a summary of how well the data for each of the four

experimental cases is fit by the optimal value of r.

Figure 5 provides a further comparison between the numerical simulations and experi-

mental results. Here the time evolution of the vertical, h, and horizontal, w, positions of

the tip of the falling chain are reported. One clearly sees an excellent agreement between

the simulated and experimental data.
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The consecutive conformations of the falling chain found in the numerical simulations

are presented in Figure 6. These conformations correspond to the same times at which we

recorded the laboratory experiments. In addition, positions of the freely falling body are

also shown in the figure. As one can see by comparing Figures 3 and 6, the shapes of the

experimental and numerical conformations are nearly identical.

VI. QUANTITATIVE ANALYSIS

Quantitative analysis of the digital images recorded in the laboratory experiments pro-

vided us with sets of discrete data representing the vertical, h, and horizontal, w, fall dis-

tances of the chain tip versus time. Using the data we have found the value of the dissipation

parameter at which numerical simulations best fit the experimental data (Table I). As seen

in Figure 5 the agreement is very good. Thus, to closely analyze the details of the falling

chain dynamics we use the data obtained at small time steps from the numerical simulations.

We begin by analyzing the interesting question concerning the relation between the time

dependencies of the vertical fall distances of the chain tip and the falling sinker (Figure 5).

It is worth noticing that in case a), where the initial conformation of the chain is straight

and horizontal, the vertical fall of the chain tip and the falling sinker are identical up to the

moment in time at which, having reached its maximum vertical fall distance, the tip starts

moving upwards. This observation becomes clear when one notices that during the fall the

chain end remains horizontal - its vertical motion must thus be identical with the falling

sinker. The chain end remains horizontal because the chain displays no elasticity and no

energy is stored in bent regions. This phenomenon, found both in the laboratory experi-

ments and confirmed by the numerical simulations, suggests the existence of an approximate

analytical treatment of the problem. However, we have thus far not been able to formulate

an analytical solution.

In cases b), c) and d) the vertical fall distance of the chain tip, up to the moment of time

thmax at which the vertical fall distance of the chain tip reaches its maximum value hmax,

is seen to be always ahead of the vertical fall distance of the sinker. This observation is

sometimes summarized by the general statement, that the chain falls faster than a body.

To further understand this we analyze the time dependencies of the velocity vc and the

acceleration ac of the chain tip. In order to do so we have performed a series of numerical
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experiments with x0 in the range of [0.1, . . . , 1.02) m. All other parameters of the numerical

simulation were the same as defined in the previous section. The smallest value of the initial

separation x0 was equal to 0.1 m due to the fact that smaller initial separations produced

very complex chain-fall dynamics. This fact was seen in both numerical simulations and

laboratory experiments. We also note that, by velocity and acceleration we mean here the

moduli of the velocity and acceleration vectors.

Figure 7 presents plots of both the velocity and the acceleration versus time for four initial

spacings x0. Two characteristic features in these plots are the peak heights and the times at

which these maxima occur. In Figure 8a, the dependence of vmax on x0 and vhmax (i.e. the

velocity of the chain tip at its lowest position hmax) on x0 is displayed. At small x0 there

exists a short interval within which vmax slightly increases reaching its global maximum at

x0 ≈ 0.1314 m. Then, over a broad interval, vmax decreases reaching its global minimum

value at x0 ≈ 0.9040 m. Up to this value of x0, the velocity vhmax is smaller than the

maximum velocity vmax. For x0 > 0.9040 m, when the maximum extension of the chain is

approached, the two velocities become practically equal.

As Figure 9a reveals, the time tvmax , at which the velocity of the chain tip reaches its

maximum value, precedes in general the moment of time thmax at which the chain tip reaches

its lowest position hmax. The lowest position of the chain tip is reached fastest for x0 ≈

0.5500 m (i.e. when the initial horizontal distance between the chain ends is approximately

half of its total length), while thmax is longest when the chain is initially straight. Figure 9a

provides also a comparison between the time tvmax of the maximum velocity and the time

tc(L) of the velocity divergence found in the analytically solvable model presented in Section

II. As seen in the figure, the two times are close to each other at the values of x0 at which

vmax reaches its global maximum and minimum. In the whole range of x0 located between

the two values, tvmax is less than tc(L).

Figure 9b provides the relation between the maximum fall distance of the chain tip, hmax,

and the fall distance, hvmax , at which the tip reaches its maximum velocity as a function of

the initial separation of the chain ends. As before one can clearly see that in general the

maximum velocity is reached before the chain tip reaches its maximum fall distance. Let

us note that in the whole studied range of x0 the maximum fall distance never reaches the

theoretically possible value L, although as the plot of hmax vs. x0 suggests, it tends to it at

x0 → 0.
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The last question we have addressed concerning the velocity data is the correlation be-

tween the value of the peak velocity, vmax, and the time, tvmax , at which it is reached. As we

have demonstrated before, the peak of the velocity is highest at a small initial separation

of the chain ends, but one should not draw the conclusion that it is thus reached in the

shortest time. As seen in Figure 9a the initial separation of the chain ends at which the

velocity peak is reached fastest amounts to about x0 ≈ 0.7000 m.

Figure 7b presents plots of the acceleration of the chain tip versus time for a few values

of the initial separation x0. As in the case of the velocity plots, we also observe here distinct

peaks. Figure 8b demonstrates clearly, that the highest peak in acceleration is observed at the

smallest initial separation of the chain end. Its value, at the experimentally studied case of

x0 = 0.255 m, amounts to 7352 m/s2, thus it is about 40 times larger than the value observed

at x0 = 0.765 m, where it equals to 186.3 m/s2. That such large values of the acceleration

are realistic was demonstrated by Krehl et. al.13 who studied the dynamics of the cracking

whip. One may ask about the relation between the dynamics of the falling chain and that

of the whip14,15. At the first sight the two systems seem to be completely different since in

the cracking whip problem the gravitational forces are in general neglected. Let us notice,

however, that the end of the folded whip attached to the whip handle is subject to a strong

acceleration. Changing the laboratory reference frame to the non-inertial frame moving with

the end of the handle, we introduce into the system strong inertial forces equivalent to the

gravitational ones. Thus, all conclusions to which we arrived considering the falling chain

are applicable also in the case of the accelerated whip. In particular, it becomes clear that

there exists a special conformation, to which the whip should be brought before its handle

starts accelerating, for which the whip tip will eventually reach the maximum, exceeding

the speed of sound velocity, thus allowing one to produce the crack sound.

The last question we considered analyzing results of the laboratory and numerical exper-

iment was if the acceleration ahmax which the chain tip reaches at its lowest position hmax is

the maximum acceleration amax. Figure 8b demonstrates that this is not generally the case.

VII. SUMMARY AND DISCUSSION

The experimental and numerical work here reveals new and interesting facts concerning

the dynamics of the falling chain. Let us summarize them.
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1. The dependencies of both the velocity and acceleration on time display distinct peaks

the height of which depends on the initial separation of the chain ends. The highest

peaks are observed for small initial separations. There exists an approximate, ana-

lytical description of tightly folded chain dynamics explaining the origin of the rapid

increase of the velocity and acceleration. The theory is however unable to predict

the finite height of the peaks. (In the analytical model both the velocity and the

acceleration diverge.)

2. For our case, the velocity peak is highest at x0 = 0.1288 L, whereas its amplitude is

smallest for x0 = 0.8863 L.

3. Quite fascinating, we find that in the case for which the initial separation of the chain

ends is largest, the dynamics of the vertical fall of the chain tip proves to be identical

with the dynamics of the free fall. This corresponds with the fact that the end section

of the chain remains horizontal during the fall. This observation suggests the existence

of an approximate analytical treatment.

4. As a rule, the time at which the chain tip reaches its maximum velocity generally

comes before the time at which it reaches its lowest vertical position. Only at the

initial separation of the chain ends larger than 0.8863 L we find otherwise.

5. The ratio of the amplitudes of the highest and smallest acceleration peaks is about

166.5, which is unexpectedly large. This may have some practical implications, since

at the time when the acceleration reaches its highest value, the force acting on the

chain tip also becomes very large and may lead to damage of the chain.

Dynamics of the falling chain hides certainly a few more interesting details. The same,

even to a larger extent, concerns the dynamics of the falling rope, since in this case the

dissipation plays a much more important role and elasticity becomes a crucial factor.
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Tables

TABLE I: Deviation between experimental and numerical results, δr for three different values of

the dissipation parameter r = 0, 2.163 · 10−5 and 10−4 [m].

Experiment: δ0 [m] δ2.163·10−5 [m] δ10−4 [m]

a) 0.008406 0.007672 0.01038

b) 0.006851 0.006654 0.00659

c) 0.006191 0.005912 0.00669

d) 0.008397 0.004552 0.00991
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Figure Captions

FIG. 1: Geometry of the conformation of the tightly folded chain at time t > 0. The position of

the falling chain is described in terms of h. Section a) of the chain is falling down while section b)

is motionless; ca and cb are their centers of mass.
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FIG. 2: Schematic of the experimental setup used in this study.
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FIG. 3: Successive conformations of the falling chain vs. time. The left end of the chain remains

attached to the frame, while the right end is free to fall due to gravity. In b), c) and d), white lines

have been sketched into the photographic sequence to connect the free falling end of the chain to

the freely falling sinker for the last five images before the maximum extension of the chain (length

L = 1.022 m, time spacing between the successive images 1/50 s, initial separation between the

chain ends: a) x0 = 1.019 m, b) x0 = 0.765 m, c) x0 = 0.510 m, and d) x0 = 0.255 m).
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FIG. 4: Schematic representation of the model. ϕi corresponds to the angle of inclination, m the

mass or the chain segment and g the gravitational acceleration.
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FIG. 5: The comparison of the vertical, h, and horizontal, w, fall distances of the falling chain

tip found experimentally (circles) and numerically (solid lines). The parabola of the free fall is

also shown (dotted lines). The initial separation between the chain ends is: a) x0 = 1.0195 m,

b) x0 = 0.765 m, c) x0 = 0.51 m, and d) x0 = 0.255 m. Numerical data were obtained for

r = 2.163 · 10−5 Nms. The deviations between the numerical and experimental results are given in

the central column of table I. See text.
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FIG. 6: Successive conformations of the falling chain vs. time found in numerical simulations.

Simulations were performed with n = 229, L = 1.02 m, M = 0.0208 kg, g = 9.81 m/s2 and the

value of r = 2.163 · 10−5 Nms, for which the numerical solutions of the equations of motion show

a best fit to the results of the laboratory experiments. The initial conformations of the chain

were discrete catenary curves with a) x0 = 1.0195 m, b) x0 = 0.765 m, c) x0 = 0.51 m and d)

x0 = 0.255 m. Positions of the freely falling body are shown on the right hand sides of the figures;

dotted lines connect them with the respective positions of the tip of the falling chain.
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FIG. 7: Time evolution of the numerically determined moduli of the velocity and the acceleration

of the falling chain tip. Initial separation of the chain ends: a) x0 = 1.0195 m, b) x0 = 0.765 m, c)

x0 = 0.51 m, d) x0 = 0.255 m. r = 2.163 · 10−5 Nms.
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FIG. 8: Moduli of the velocity a) and acceleration b) of the chain tip versus the initial horizontal

separation of the chain ends. vmax and amax are, respectively, the maximum velocity and acceler-

ation reached by the chain tip during its fall. vhmax and ahmax are the velocity and acceleration of

the chain tip observed at the moment of time at which the tip reaches its lowest position. Picture

b is plotted with a logarithmic scale. Gravitational acceleration g is marked with a dashed line.

Plots presented in the figure were obtained numerically at r = 2.163 · 10−5 Nms, for which the

numerical solutions of the equations of motion best fit experimental results. See text.
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FIG. 9: a) Characteristic times, thmax and tvmax versus initial separation x0. thmax is the time at

which the chain tip reaches its lowest position; tvmax is the time at which it reaches its maximum

velocity vmax. The dashed line represents the time tc(L) ≈ 0.386722 at which the velocity diverges

in the analytical model considered in section 2. b) Characteristic distances hmax and hvmax versus

initial separation x0. hmax is the largest vertical fall distance reached by the chain tip; hvmax is the

vertical fall distance of the chain tip at which it reaches its maximum velocity. Plots presented in

the figure were obtained numerically at r = 2.163 · 10−5 Nms, for which the numerical solutions of

the equations of motion fit best results of the laboratory experiments. See text.
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