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Thermal conductivity associated to the bead-bead contact
decorated by a liquid bridge

An experimental study based on the response of a chain subjected to thermal cycles
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Abstract. We report an experimental study of the heat transport along a chain of macroscopic beads: at
one end, one bead is periodically heated and we record the resulting temperature variations of another bead
as a function of position and time. The experimental results show that the chain behaves like a high-order
low-pass filter. The measurement of the associated cut-off frequency makes possible to determine accurately
the resistance of the bead-bead contact: we make use of the experimental setup for studying the effects of
liquid bridges decorating the bead-bead contacts, which provides important clues for understanding the
thermal properties of partially wet granular matter.

PACS. 66.70.+f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves
– 81.05.Rm Porous materials; granular materials – 91.60.Ki Physical properties of rocks and minerals;
thermal properties

1 Introduction

The transport of electricity, sound or heat in a dense as-
sembly of solid particles addresses interesting and puzzling
questions. Even if granular materials are widely used in
industry, one is still far from understanding entirely how
the transport coefficients relate with the physics of the
contacts between the particles and the geometry of the
contact network (texture). For instance, for over a century
[1,2], electrical transport in metallic powders has gener-
ated interest. These systems exhibit fascinating proper-
ties, such as highly non-linear and hysteretic electrical
conductivities as well as extreme sensitivity to electromag-
netic waves [3]. The propagation of soundwaves in granu-
lar materials also exhibits very interesting features; non-
linearities such as a slight dependence of the transmission
amplitude on the frequency of the source at low vibration
amplitude and an extreme sensitivity to the position of
each grain [4]. The propagation of soundwaves is so sen-
sitive to the texture that it is likely to be altered by the
vibration itself or by small changes in the temperature.
However, the propagation of non-linear waves in a one-
dimensional chain of beads under static stress has been
experimentally proven to follow the prediction of Hertz
theory as long as plastic deformations of the grains at the
contacts are not involved [5].

In the same way, the transport of heat in granular ma-
terials addresses puzzling questions which are relevant to
be answered as thermal properties of granular matter are
of great practical importance. Indeed, the most common

materials used to insure thermal as well as acoustic insula-
tion in buildings consist in assemblies of solid particles or
fibers. For instance, glasswools are efficient thermal insu-
lators that also present the advantage to be low-cost, im-
putrescible and fire resistant as they are produced mainly
from recycled glass and sand [6]. Moreover, because of
their ductility, they can absorb any unevenness of the sub-
strate. Another important application worth to be men-
tionned here is the use of granular materials as buffers in
nuclear-waste deposits [7]. Experimental and theoretical
studies of the heat transport in granular materials have
already been reported [2,9–11]. They pointed out the cru-
tial role played by the physics of the contacts between
the grains. Accordingly, humidity has been experimentally
proven to increase significantly the thermal conductivity
as water tends to decorate the contact points [12].

Whereas this latter study considered the thermal prop-
erties of the bulk granular material, involving thus the tex-
ture of the material, there does not exist, to our knowl-
edge, any experimental study dedicated to the thermal
properties of the decorated contacts alone. In the present
article, we report an experimental study of the thermal
conductivity of a one-dimensional chain of beads in the
same spirit as preceding studies of electric conductivity
[3] and sound propagation [5] that made it possible to
analyze the physics of the contacts in absence of texture
effects. The response of the system to temperature cycles
shows that a periodic medium can be an efficient thermal-
insulator in the sense that, for instance, the chain is very
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efficient in filtering temperature changes as it acts as a
high-order low-pass filter. We determine the correspond-
ing cut-off frequency in order to obtain reliable measure-
ments of the thermal resistance associated to the bead-
bead contact. We make use of the experimental setup for
studying the effects of liquid bridges decorating the bead-
bead contacts.

The content of the manuscript is organized as follows:
in the section 2, we introduce the principle of the experi-
ment and describe the experimental setup and procedure.
In the section 3, we report our experimental results ob-
tained in the cases of dry or wet contacts and compare to
theoretical predictions. Finally, we conclude in the section
4.

2 Experimental setup and procedure

The experiment consists in heating periodically one end
of a linear chain of beads and in recording the resulting
temperature of the nth bead as a function of time t. In
the next section 2.1, we describe the experimental setup
whereas the section 2.2 is dedicated to the procedure used
to analyze the thermal response of the system to the heat
injection (Fig. 1).

2.1 Experimental setup

The chain consists of 10 centimetric ball-bearing steel-
beads (AISI 304, diameter d = 1 cm, from Marteau &
Lemarié) aligned with the help of three PTFE plates [see
the chain cross-section in the inset (Fig. 1)] that insure
small thermal contact with the remaining part of the ex-
perimental setup which consists of a stainless steel frame.
The contact between the beads is insured by pushing (sta-
tic axial force F ) the chain at one end against a fixed steel
cylinder located at the other end. A force sensor (Entran,
ELA-B2E-10KN) is used to measure F to within 10 N
(F < 10 kN).

In order to inject heat at one end of the chain, the first
bead is equiped with a small heating wire (Constantan, di-
ameter 100 µm, typical resistance r ≃ 1 Ω) placed at its
center. We impose the periodic voltage U(t) = U0

(

1 +

sin 2πνt
)

from a home-made linear power-amplifier driven
by a function generator (Stanford Research Systems, DS345).
A first multimeter (Keithley, 2001) is used to measure the
voltage difference U(t) across the heat source (Fig. 2). In
our experimental conditions, the frequency ν ranges from
1/3600 to 1/30 Hz whereas the maximum voltage 2U0 is
of about 3 V. The power P (t) injected in the first bead
thus writes:

P (t) = P0

[3

4
+ sin 2πνt +

1

4
sin

(

4πνt +
3π

2

)]

(1)

where P0 = 2U2
0/r (we neglect here the variation of r with

the temperature). We point out that the bead is continu-
ously heated with the mean power 3

4P0 and that the vari-
ation with time of the heating power P (t) contains two

Fig. 1. Sketch of the experimental principle.

The chain consists in 10 centimetric steel-beads align with the
help of three PTFE plates (inset). In order to insure the con-
tact between the beads, a static force F is applied at one end
(bead 10). The first bead (bead 1) is heated by means of a
small resistive wire located at its center: the heating voltage
is measured by means of a first multimeter. In order to ob-
tain the local temperature of the chain, the bead n (n = 6
in the sketched situation) is equiped with a Pt-sensor which
resistance is measured with the help of a second multimeter.
In addition, the temperature of the surrounding air, between
beads 7 and 8, is measured by means of a second Pt-sensor
(not sketched in this figure).

harmonics. We shall make use of this latter property for
studying simultaneously the response of the system at the
three frequencies 0, ν and 2ν.
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Fig. 2. Experimental T (2) and U vs. time t.

We report, for ν = 1/3600 Hz, the temperature T (2) of bead
2 and the voltage U as functions of time t during 2 hours in
the permanent regime (the total duration of the experiment is
10 hours, corresponding to 10 periods of the excitation). The
mean temperature is about 2.5 K above the temperature Ta

of the surrounding air (δT
(2)
0 ≃ 2.5 K). The amplitude of the

temperature variations at ν is about 2.21 K whereas it is about
0.46 K at 2ν (dry contacts, F = 100 N).

The bead n (the index n refers to the position of the
bead in the chain) is equiped with a temperature sen-
sor (Pt100, from Heraeus) located at its center. A second
multimeter (Keithley, 196), used in 4-wires configuration,
measures the resistance Rs of the sensor so that the local
temperature of bead n, T (n)(t), is known to within about
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10−3 K. As we do not regulate the overall temperature
of the experimental setup, we measure, in addition, the
outside air temperature, Ta, by means of a second tem-
perature sensor (Pt100) located in air and connected to a
third multimeter (Keithley, 196).

The function generator and the three multimeters are
connected to a computer through a IEEE interface. For
given experimental conditions (position n of the sensing
bead, applied force F , dry or wet contacts), a simple C-
routine automatizes the experiment: for a chosen set of
heating powers P0 and frequencies ν, the voltage U(t)
and the temperature T (n)(t) are measured (sampling fre-
quency 1 Hz) and saved to the hard-drive (Fig. 2). Analy-
sis of the data is performed afterwards (Igor Pro 4, Wave-
Metrics, Inc.).

2.2 Transfer function

From equation (1), if the system has a linear response,
we expect the temperature T (n)(t) to exhibit the same
spectral components as P (t), this is to say, harmonics at
frequencies 0, ν and 2ν. From the raw data (Fig. 2), we

extract five relevant quantities; the amplitudes, δT
(n)
1 and

δT
(n)
2 , the phases, φ

(n)
1 and φ

(n)
2 , of the two harmonics at

the frequencies ν and 2ν and the mean temperature differ-

ence δT
(n)
0 between the bead n and the outside atmosphere

(0 frequency). To do so, we interpolate the experimental
temperature-difference ∆T (n)(t) ≡ T (n)(t) − Ta with

∆T (n)(t) = δT
(n)
0 +δT

(n)
1 sin (2πνt + φ

(n)
1 )

+δT
(n)
2 sin (4πνt + φ

(n)
2 ). (2)

The origin of time t in equation (2) is accurately obtained
by interpolating U(t) with a sine-function and by choosing
the origin such as U(0) = U0 and dU

dt (0) > 0.
We first check that the response of the system is linear:

the amplitude of each of the harmonics, δT
(n)
1(,2), scales like

U2
0 (thus, is proportional to the heating power) whereas

the corresponding phase, φ
(n)
1(,2), does not depend on U0

(Fig. 3).

Thus, from the quantities δT
(n)
0 , δT

(n)
1 , δT

(n)
2 , φ

(n)
1

and φ
(n)
2 , we can determine experimentally the power-to-

(temperature of the bead n) transfer-function, H(n)(ν) ≡
H(n)ejθ(n)

, as follows: a first set of data points is obtained
from the first harmonics at the frequency ν. From the

first harmonics, we get H(n) = δT
(n)
1 and θ(n) = φ

(n)
1 .

In equation (1), we notice that the power injected in the
first harmonics at ν is 4 times larger than that injected
in the second harmonics at 2ν, and that there is phase-
shift 3π

2 between them. Thus, from the same experiment,
the second harmonics provides another set of data points

as H(n) = 4δT
(n)
2 and θ(n) = φ

(n)
2 − 3π

2 at the frequency

2ν. Note that, by construction, H(n) has the dimension
of temperature and is proportional to P0. Strictly speak-
ing, we should divide H(n) by P0 to get the power-to-
(temperature of the bead n) transfer-function, but, as we
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Fig. 3. Amplitude δT
(3)
1 and phase φ

(3)
1 vs. U2

0 .

As an example, we report the amplitude, δT
(3)
1 , and phase, φ

(3)
1 ,

measured for bead 3 as functions of the square heating-voltage

U2
0 . The amplitude of the harmonics δT

(n)

1(,2)
is proportional to

U2
0 and the phase Φ

(n)

1(,2)
does not depend on U0, which proves

that the response of the system is linear.

will not change P0 in what follows, we will report H(n) as
the temperature defined above. In figure 4, we report the

typical experimental result for H(2)(ν). We observe that
the data evaluated from the first and second harmonics
superpose down to temperature variations of amplitude
about 10−3 K.
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Fig. 4. Experimental H(2) and θ(2) vs. frequency ν.

As an example, we report the amplitude, H(2), and the phase,
θ(2), as functions of the frequency ν. The data evaluated from
the first or the second harmonics are marked with different
symbols. We observe that the responses estimated from the
first and second harmonics respectively superpose down to
temperature variations of amplitude about 10−3 K (the lines
are only guides for the eye).

We shall explain in the section devoted to the exper-
imental results (section 3) how the response of the chain
can be extracted from these data, provided we are able to
model the response of the experimental setup.

2.3 Experimental procedure

The experimental procedure is as follows: for chosen ex-
perimental conditions (applied force F , dry or wet con-
tacts), in order to obtain the response of the system, we
first place the bead containing the temperature sensor at
a chosen position n. For a series of excitation frequencies
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ν, we record the temperature variation T (n) as a func-
tion of time t in the permanent regime. The response at
a different position n is obtained after opening the ex-
perimental setup and changing the position of the sens-
ing bead. The experimental procedure makes possible to

determine H(n)(ν) for n ∈ [2, 7] in the frequency range
1/ν ∈ [30, 3600] s. Measurements at frequencies smaller
than 1/3600 Hz are, in principle, possible but note that
we record the temperature variations for 10 periods, which
then would lead to an experimental time larger than 10
hours. For frequencies larger than 1/30 Hz, the temper-
ature variations become small (amplitude typically less
than 10−3 K) and the response of the system is deter-
mined with poor accuracy. We always make sure that the
measurements are reliable by checking that the phase of
the measured harmonics is locked (i.e. that the phase is
not arbitrary with respect to that of the heating voltage)
and exclude the data points that do not satisfy this con-
dition.

3 Experimental results

In the following, we make use of the experimental setup
for studying the thermal properties of the chain in dif-
ferent experimental conditions. In the next section 3.1,
we consider the case of dry contacts in air: the analysis
of the whole set of experimental data makes possible the
modeling of the thermal response of the whole experimen-
tal setup. Then, section 3.2 is dedicated to the study of
wet contacts obtained by addition of liquid droplets in the
bead-bead contact-regions.

3.1 Dry contacts

3.1.1 First experimental observations

In figures 5 and 6, we present the whole set of experimen-
tal data obtained for the chain of steel beads with dry
contacts and F = 100 N (the static applied force is small
and only insures that the beads are at contact). At first
sight, the chain behaves like a low-pass filter which order
depends on the position n of the bead within the chain
(the larger n is, the larger is the order of the filter). Nev-
ertheless, we cannot immediately extract the caracteristic
frequency of the filter without exploring in details the re-
sponse of the experimental setup.

For instance, consider only the response of the system
at zero frequency. Due to thermal losses, one would expect

the mean temperature δT
(n)
0 (accordingly H(n)(0)) to van-

ish (i.e. T (n)(t) → Ta) for n → ∞. However, even if we ob-
serve that H(n)(0) decreases almost exponentially when n
is increased, the mean temperature-difference H(n)(0) sur-
prizingly does not vanish for large n (Fig. 7). The exponen-
tial decay of H(n)(0) to a finite temperature-difference is
the most obvious experimental manifestation of the non-
trivial response of the experimental setup. It turns out
that, the response at zero frequency is not enough for us

0.001

0.01

0.1

1

H
(n

)  (
K

)

2 4 6 8

0.001
2 4 6 8

0.01
2 4 6 8

0.1

ν (Hz)

n=2
n=3
n=4
n=5
n=6
n=7

 

Fig. 5. Amplitude H(n) vs. frequency ν.

The amplitude H(n) decreases faster with increasing frequency
ν for larger n (F = 100 N, dry contacts, the lines are only
guides for the eye).
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Fig. 6. Phase θ(n) vs. frequency ν.

The absolute phase-shift θ(n) increases faster with increasing
frequency ν for larger n (F = 100 N, dry contacts).

to measure the thermal losses to the outside atmosphere:
the whole set of experimental data is necessary for obtain-
ing a correct model of the experimental situation, which
we discuss in the next section.
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Fig. 7. Experimental H(n)(0) vs. bead position n.

We observe that the temperature difference at zero frequency
between the bead n and the atmosphere decreases almost ex-
ponentially when n increases but does not vanish far away from
the heat source (large n).

3.1.2 Dynamical response

From the experimental data presented in figure 5, we can
extract the dependance of the amplitude H(n) on the po-
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sition n at a given frequency ν (Fig. 8). We observe again
that, even at non-zero frequency, the amplitude H(n) de-
creases exponentially when n increases but does not vanish
for large values of n. We write:

H(n)(ν) = H(0)(ν) exp [−k′(ν)n] + H(∞)(ν) (3)

and report in figure 9 the experimental values of H(∞)(ν)
[Eq. (4)] and k′(ν) = ℜ(k) [Eq. (5)] which can be ac-
counted by the modeling of the experimental situation as
follows (Fig. 10): We consider the beads as heat capaci-
tors (heat capacity C) connected one to its two neighbors
through thermal resistors (resistance R), and we assume
that the thermal losses to the frame can be associated to
the thermal resistance, β along the chain (n ≥ 2) and γ
at bead 1. Detailed description of the model is proposed
in the appendix.
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Fig. 8. Amplitude H(n) vs. bead position n.

We observe that, for a given frequency ν, the amplitude H(n)

does not vanish far away from the heat source (large n). The
result holds true in the frequency range explored experimen-
tally and we measure that the limit H(∞) decreases when the
frequency ν is increased (Fig. 9).
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Fig. 9. Asymptotic amplitude H(∞) and k′ vs. ν.

We observe experimentally that the asymptotic amplitude
H(∞) decreases, according to equation (4), when the frequency
ν is increased. In addition, k′ = ℜ(k) obeys equation (5), which
makes possible to caracterize the thermal conduction along the
chain.

We observe a good agreement of the experimental data
(Fig. 9) with

H(∞)(ν) ∼ 1
√

1 +
(

2πν
ωc

)4
(4)

for ωc = (0.8 ± 0.01) 10−3 rad s−1 where ω−1
c ≡ C

√
βγ

from the model [see appendix, equation (18)]. In addition,
we expect k′ to be the real part of k, defined by

cosh (k) =

[

1 +
1

ω0τc

]

+ j
2πν

ω0
. (5)

where ω−1
0 ≡ RC/2 and τc ≡ βC. From equation (5)

and the experimental data, we get ω0τc = 1.87± 0.03 and
ω0 = (7.6±0.1) 10−3 rad s−1. Note that the first quantity,
ω0τc ≡ 2β/R, is the ratio of the resistance β associated
to the energy losses to the resistance R of the bead-bead
contacts whereas ω0 ≡ 2/(RC) characterizes the transport
of heat along the chain alone.

Fig. 10. Sketch of the experimental situation.

3.1.3 Quantitative analysis

In this section, we shall compare the experimental value
of the contact resistance, which we can extract from the
experimental ω0, with a theoretical modeling due to G. K.
Batchelor and R. W. O’Brien [2].

First, one can find in the litterature the heat capacity
cs = 0.5 J g−1 K−1 and the density ρs = 8 g cm−3 of
steel (AISI 304), which lead to C = 2.1 J K−1 for d =
1 cm. Thus, from the experimental value of ω0, one obtains
the experimental value, Rexp = (126 ± 1) K W−1, of the
resistance of the bead-bead contact.

Second, we can consider theoretically the heat flux Ψ ≡
(T (n)−T (n+1))/R from bead n to bead (n+1). According
to the Hertz theory, due to the axial applied force F , the
radius ρ of the contact region is given by [8]:

ρ = F 1/3

[

3(1 − σ2)d

8E

]1/3

(6)

where E = 2 1011 Pa is the Young modulus and σ =
0.29 the Poisson ratio of the material the beads are made
of. In our experimental conditions (F = 100 N), we find
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ρ = 0.12 mm. In addition, the heat conductivity of steel,
ks = 16.2 W m−1 K−1, is large compared the thermal
conductivity of air, ka = 0.025 W m−1 K−1. Denoting
ζ = ks/ka and ξ = 2ζρ/d (in our experimental conditions,
ζ ≃ 650 and, from the radius ρ of the contact region,
ξ ≃ 15.6), we can write

2Ψ

πkad(T (n) − T (n+1))
= H0(ζ) + Hc(ξ) + ∆Hm(ξ). (7)

In equation (7), H0(ζ) stands for the dimensionless heat-
flux across the air layer in the case of a point-like contact.
Provided that ζ ≫ 1,

H0(ζ) = 2 loge

(ks

ka

)

+ A − 3.9 (8)

where A is a constant of the order of unity which depends
on the outer field conditions and is independant of ζ. The
second contribution Hc(ξ) in equation (7) accounts for the
dimensionless heat-flux across the contact circle of finite
radius ρ. In the limit ξ ≫ 1, Hc(ξ) ∼ 2ξ/π. We point
out that, from [2], Hc(ξ) obeys this asymptotic behavior
typically for ξ > 10. Finally, the last contribution to the
heat flux in equation (7), ∆Hm(ξ) accounts for the differ-
ence between the real flux across the air layer and the flux
expected in the case of a point-like contact. In the limit
ξ ≫ 1, ∆Hm(ξ) ∼ −2 loge ξ but we note that this asymp-
totic behavior is expected for very large values of ξ. From
the experimental value of ξ, we expect ∆Hm(ξ) ≃ −0.5 [2].
Finally, from equation (7), we obtain the theoretical value
Rtheo = 2546/(18.5 + A) K W−1 which agrees quantita-
tively with the experimental value Rexp ≃ 126 K W−1 for
A ≃ 1.7, which is of the order of unity. Thus, we conclude
from the excellent agreement (in spite of the uncertainty
in the value of A) between Rexp and Rtheo that measure-
ments of the frequency ω0 provides reliable values of the
contact resistance R.

In the next section 3.2, we make use of the experimen-
tal setup for analyzing the effect of liquid bridges decorat-
ing the regions of contact between the beads.

3.2 Wet contacts

As already mentionned in the introduction, humidity has
been experimentally proven to increase significantly the
thermal conductivity of an assembly of glass beads as wa-
ter decorates the contact points [12]. Our experimental
setup is particularly suitable for studying the effects of
liquid decorating the contact points: indeed, a change of
the physical conditions in the contact region is expected
not to affect any of the model parameters (τc, τb, α as
defined in the appendix) excepted the cut-off angular fre-
quency ω0, which relates to the resistance of the contact.
Thus, one can save experimental time and study the evo-
lution of ω0 alone by analyzing the response of the system
at a given position n only.

3.2.1 Experimental procedure

We shall report the evolution of the thermal resistance R
of the bead-bead contact as a function of the size of the
liquid bridges that decorate the contact regions. As an
example, we choose to study the response of the system
at the bead 4: we know from the study of the dry system
that the amplitude of the temperature variations is large
enough for giving significant results and that the order
of the ’filter’ is also large enough for providing accurate
measurements of the cut-off frequency ω0. This choice is
anyway in a large manner arbitrary.

Φ

Frame

Bridge

Bead Bead

Fig. 11. Photograph of a liquid bridge.

We measure the diameter Φ of the liquid bridge on photographs
of the bead-bead contact-region (Φ = 2.17 mm, the lateral size
of the photograph is 1 cm).

Nonvolatile liquid bridges (identical along the chain)
are created by placing a given amount of silicon oil (Rhodor-
sil, 47V5000) in each of the bead-bead contact-region.
We expect, from the large viscosity of the liquid (ν =
5000 cP), the temperature gradient not to induce any
significant convective flow and the transport of heat to
be only due to diffusion. We image the system from side
(Fig. 11), which makes possible to measure the diameter,
Φ, of the liquid bridge (the variability along the chain re-
mains less than 2%). We measure φ before and after mea-
surement of the thermal response of the system in order
to make sure that the bridges where equilibrated during
the experimental time.

3.2.2 Results

We report in figure 12, the amplitude H(4) as a function
of the frequency ν for the dry system and three different
diameters Φ. The experimental results exhibit an excellent
agreement with the theoretical expression (18) in which we
use the experimental parameters, τb = 318 s, τc = 246 s,
α = 2289 and Pτb/C = 13.3 K determined previously for
the dry system and adjust only the value ω0 of the cut-off
frequency. From the experimental value of ω0, provided
that the thermal inertia of the bridges remains negligible
compared to that of the beads, we can easily determine
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Fig. 12. Amplitude H(4) vs. 2πν.

The amplitude H(4) is affected by the presence of liquid bridges
in the contact regions between the grains: we observe that, at
a given frequency ν, H(4) increases with the diameter Φ of the
bridges. The presence of liquid leads to a decrease in the ther-
mal resistance R of the contact. The experimental data (sym-
bols) are successfully accounted by the theoretical description
of the system [lines, from equation (18) with different values
of ω0].
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Fig. 13. Resistance R vs. bridge diameter Φ.

We observe that the thermal resistance of the contacts de-
creases when the diameter of the liquid bridge is increased.
The dashed line is a guide for the eye while the horizontal
black line corresponds to the value, R∞ = 56.6 K W−1, es-
timated for beads totally immersed in oil [from equations (7)
and (8) with A = 1.7]. The grey line corresponds to equation
(9).

the thermal resistance of the contact R which is found to
decrease when the bridge diameter φ is increased (Fig. 13).

The theoretical description of the thermal resistance
associated with a bead-bead contact of finite size dec-
orated by a liquid bridge is, to our knowledge, not yet
available. The extension of the model briefly summarized
in section 3.1.3 to this latter case appears to be difficult
and we will limit the discussion of the experimental results
to a few comments.

First, we can obtain an estimate of the thermal re-
sistance R∞, one would measure for beads immersed in
silicon oil, and compare this latter value to the minimum
of R reported in figure 13. The thermal conductivity of the
silicon oil kso = 0.16 W m−1 K−1. In this case, ζ ≃ 101
and ξ ≃ 2.4 (for F = 100 N). Replacing ka by kso in
equation (8), we get H0(ζ) ≃ 5.33 + A, which accounts
for the heat transport through the fluid layer around the
contact (A is again a constant of the order of unity). More-
over, we know from reference [2] that, for a value of ξ as

small as 2.4, the value 2ξ/π ≃ 1.5 largely overestimates
the real value of Hc(ξ), which is associated to the con-
duction through the contact circle of radius ρ, and that
the correction ∆Hm(ξ) remains much smaller than unity.
Thus, we can neglect Hc(ξ) and ∆Hm(ξ) in equation (7),
which leads to R∞ ≃ 398/(5.33 + A) K W−1. If we as-
sume that the value A = 1.7 remains unchanged when
the beads are immersed in air or in silicon oil, we get
R∞ ≃ 56.6 K W−1 (Fig. 13). We observe that the resis-
tance of the contact R approaches R∞ when the diameter
Φ of the bridge is increased. Even if R remains about 30%
larger than R∞ for Φ/d ≃ 0.3, we consider that the agree-
ment between our experimental data and the theoretical
estimate of R∞ again reinforce the validity of our measure-
ments. Moreover, we are tought by the model that, in the
case of beads immersed in oil, the heat is mainly tranfered
through the liquid layer around the contact region and not
through the circle of contact (indeed, Hc(ξ) ≪ H0(ζ)). We
expect the conclusion to hold true in the case of a large
liquid bridge decorating the contact region. This povides
us with an important clue for understanding the smooth
variation of R with the diameter φ of the bridge.

We could expect from equations (7) and (8) and from
the ratio air- to oil-conductivity, R to suddenly decrease
when the liquid is introduced in the contact region. How-
ever, we observe experimentally that R decreases almost
linearly when Φ is increased. This feature may be quali-
tatively understood as follows: in the case of dry beads,
about half of the heat is transfered through the real bead-
bead contact, the second half passing through the air gap
around the contact in spite of the small radius ρ of the con-
tact circle. Think now about what would append, if the
radius ρ was slightly increased by δρ. We would mainly
expect Hc(ξ) to increase linearly with δρ as Hc(ξ) ∝ ρ,
∆Hm(ξ) to remain negligible, and H0(ζ) not to change.
Note that to increase ρ by δρ is thus equivalent to dec-
orate the contact with a steel bridge of diameter Φ =
2(ρ + δρ). The corresponding variation δR of the resis-
tance would then be given by δR = −Rδρ/ρ {from equa-
tion (7), δ[loge(R)] = −δ[loge(Hc)]}. Thus, introduction
in the contact region a small quantity of oil, which con-
ductivity is smaller than that of steel, is expected to only
continuously decrease the resistance of the contact and
not to produce any discontinuous change in R. If we as-
sume that the addition of oil produces the same effect as
the addition of steel excepted that the transport of heat
occurs in oil instead of in steel, we can roughly estimate

δR

R
= −kso

ks

Φ − 2ρ

2ρ
(9)

which leads to dR
dΦ ≃ −5.2 K W−1 mm−1. As the presence

of the liquid bridge modifies also the temperature field
in the bead, leading to a spreading of the temperature-
field lines and, thus, to reduced thermal resistance. The
slope given by equation (9) is expected to overestimate the
experimental value for small Φ, which is observed exper-
imentally (Fig.13). Obviously, due to assumptions which
remain open to criticism, this quantitave estimate must
be considered with caution. However, we consider that
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the reasoning presented above is qualitatively correct for
explaining the smooth dependancy of the resistance R on
the diameter Φ, when the contact region is decorated by
a liquid bridge.

4 Conclusions

First, we would like to point out several flaws of our exper-
imental situation; due to long thermal times (especially
2π/ω0 ≃ 15 mn) the experimental times are long [for
instance, more than 10 hours are needed for measuring
H(n)(ν) at five relevant frequencies ν]; the study of R as
a function of the applied force F or of the nature of the
surrounding gas, which is in principle possible, would re-
quire a huge experimental effort. Indeed, as at least the
times τb and τc would depend on F or on the nature of
the surrounding gas, characterization of the whole exper-
imental setup would be necessary. The analysis could not
be limited to the response of the system at a given po-
sition n in the chain, which would increase significantly
the experimental time. Note however that the bevavior of
H(n)(ν) as a function of n at one given frequency ν would
be, in principle, enough for determining ω0. Such studies
remain to be done although we already attempted, before
drawing our conclusions, to measure the resistance of the
contacts in air, nitrogen, carbon dioxide and helium and
obtained sensible qualitative-results. However, these stud-
ies were limited to the thermal response at a given position
n as a function of the frequency ν, which unfortunately
turned out not to be sufficient to determine R afterwards.

In conclusion, we have shown that the study of the
heat transport along a chain of beads is a pertinent way
to access the thermal properties of the contact. The ex-
perimental method is applied successfully to the case of
dry contacts in the sense that the measured resistance R
can be accounted by a classical model by Batchelor et al

[2]. We made use of the experimental setup for studying
the effect of liquid bridges decorating the contact regions
and observed a smooth decrease in the thermal resistance
when the diameter of the bridge is increased. Even if a
theoretical description of this latter experimental situa-
tion is not yet available, simple arguments, which extend
the model of the dry contact, allow to understand, at least
qualitatively, the experimental results. This work provides
important clues for understanding the transport of heat
in partially wet granular materials.
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Appendix

Modeling of the experimental situation

We observe experimentally that the temperature oscilla-
tion at a given frequency ν decreases exponentially when

n increases and tends to a finite value for large values of
n. These experimental observations are accounted by the
following modeling of the experimental system (Fig. 10).

The thermal conductivity of the chain can be accounted
as follows : we consider each bead as a thermal mass, C, in
contact with its two neighbors (excepted bead 1) through
identical thermal resistors, R. We assume that the ther-
mal losses through the PTFE plates, which are used to
align the beads, can be described as the effect of a single
thermal resistor, β, which connects locally each bead to
the remaining part of the experimental setup. Let us de-
note T (n)(t) the temperature of the bead n at time t. We
can thus write, taking ω0 ≡ 2/(RC) and τc ≡ βC,

∂T (n)

∂t
=

ω0

2

[

T (n+1) + T (n−1) − 2T (n)
]

− 1

τc

[

T (n) − Tf (xn)
]

(n > 1) (10)

where Tf (xn) denotes the temperature of the experimen-
tal setup at the position xn ≡ (n − 1)d of the bead n (di-
ameter d). We will assume that the chain is long enough
to be considered as semi-infinite: the boundary condition
far away from the heat source then only writes T (n+1) =
T (n), (n → ∞). We will further assume that the con-
tact between the first bead with the metallic part, that
constrains the chain along its axis, can be described by a
simple termal resistor, γ. The first bead is heated by in-
jecting the heating power P (t) so that the energy balance
leads to, taking τb ≡ γC,

∂T (1)

∂t
=

ω0

2

[

T (2) − T (1)
]

− 1

τb

[

T (1) − Tf(0)
]

+
P

C
. (11)

Let us now assume that the experimental setup, apart
from the PTFE plates and the chain, behaves like a semi-
infinite rod (diffusion coefficient D) in contact with the
outside atmosphere (at temperature Ta) through the con-
ductance per unit length 1/η. Furthermore, we assume
that the thermal contact between the beads and the rod
along the chain is bad enough for the temperature of the
rod not to be affected by the corresponding heat sources
(i.e. β is large and the diffusion in the rod is fast). As a
consequence, we can write :

∂Tf

∂t
= D∆Tf − 1

τl
(Tf − Ta). (12)

where τl = ηCf is the characteristic time associated with
the thermal losses to the atmosphere (Cf is here the heat
capacity per unit length of the metallic frame). We will
consider that the temperature profile Tf (x, t) only results
from energy injection at x = 0 from bead 1 (we thus as-
sume that γ ≪ β). Writing the energy balance at the
contact between bead 1 and the rod leads to :

T (1) − Tf(0)

γ
= −DS∇Tf(0) (13)
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where S stands for the cross section of the rod.
After having written, the general set of equations (10)

and (12) and the boundary conditions (11) and (13), we
consider the harmonic response of the experimental setup
as a function of the frequency ν = ω/(2π) by writing :

Tf (x, t) = T0 exp(jωt − kfx), (14)

T (n)(t) = T
(n)
0 exp(jωt), (15)

and
P (t) = P (ω) exp(jωt). (16)

From equation (12), we get k2
f = η+jω

D whereas the bound-

ary condition (13) leads to T
(1)
0 = T0(1 + α) with α ≡

γDSkf . In addition, equation (10) imposes :

T
(n)
0 = T

(0)
0 exp[−(n − 1)k] (17)

+T0
exp[−(n − 1)kfd]

1 + ω0τc[1 − cosh (kfd)] + jωτc

with cosh (k) =
[

1 + 1
ω0τc

]

+ j ω
ω0

. The constants T
(0)
0 and

T0 are obtained as functions of P by using the second
boundary condition (11).

In the limit |kfd| ≪ 1, which is well satisfied in our
experimental conditions, equation (17) reduces to

CT
(n)
0

Pτb

=
{

1 +[α + j(1 + α)ωτc] exp [−(n − 1)k]
}

/

{

(1 +jωτc) [α + j(1 + α)ωτb] (18)

+
1

2
ω0τb[1 − exp (−k)][α + j(1 + α)ωτc]

}

We point out that the diffusion coefficient in the rod, D,

only appears, in this final expression proposed for |T (n)
0 |,

in the coefficient α. We are in the limit |nkfd| ≪ 1, which
leads to |kfd| ≪ 1 when we consider the limit n ≫ 1
(the diffusion in the rod is fast) but, even in this limit,
α ≡ γDSkf can remain finite. Note that, from equation

(18), the amplitude T
(n)
0 of the temperature oscillations

decreases exponentially when n is increased and reaches,

for n large, the value, T
(∞)
0 which magnitude remains fi-

nite as observed experimentally [Fig. 9, Eq. (4)].
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