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Abstract Using a very simple experimental setup, we study
the response of a thin layer of immersed granular mate-
rial to an ascending liquid-flow; a pressure difference �P is
imposed between the two horizontal free surfaces of a thin
layer of glass beads, such that the liquid tends to flow up-
wards, and the resulting flow-rate v is measured.As generally
observed in fluidized beds, the layer destabilizes when the
pressure force exactly compensates the weight of the grains.
At the free surface, one then observes the formation of a local-
ized fountain of granular material the characteristic size of
which is found to be proportional to the grain size and, sur-
prizingly, independent of both the flow-rate and the thickness
of the granular layer. Simple theoretical arguments account
for the main experimental features.

Keywords Fluidized beds · Instability · Flow localization

1 Introduction

Understanding the mechanical behavior of immersed gran-
ular materials is of great practical importance as assemblies
of grains immersed in a fluid are involved in many industrial
processes (for instance, fluidized beds in which the grains are
usually suspended by means of an ascending air-flow [1]) or
geophysical situations (for instance, sand ripples, which form
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on the ocean floor, play an important role in the transport of
sediments [2]).

Submitted to shear, granular matter has been identified
to present friction-like mechanical-properties [3]; the mate-
rial starts flowing only for a large enough shear-stress and,
when the grains are flowing, the shear-stress only slightly
depends on the shear-rate. It is important to notice that, in
most of the experimental situations, submitted to shear, gran-
ular materials only flow within a thin layer, which is usually
of about a few grain-size thick [4]. These conclusions hold
true even when the grains are immersed in a liquid [5]. The
presence of the interstitial fluid (gas or liquid) can lead, in
some experimental situations, to puzzling phenomena. For
instance, in the case of fine powders, J. Duran observed the
formation of droplets from a thin tapped granular-layer [6]
and, when placed on an inclined surface, these droplets are
shown to climb the slope [7]; these observations can be ac-
counted by the air flow within the grains. Another puzzling
example is provided by the sedimentation dynamics of a col-
loidal gel during which one observes a fast sedimentation
process accompanied by a localized destabilization of the
upper free-surface [8]; we can consider that, during sedimen-
tation, the assembly of colloidal particles is submitted to an
ascending liquid-flow that destabilizes the granular packing.
In order to better understand such phenomena, which often
involve a localization of the grains motion, it seems relevant
to study the effect of a flow of the interstitial fluid within the
solid grains.

Interested in the filtering of water, H. Darcy studied the
flow of water through a granular packing at rest and estab-
lished his famous empirical law that relates the flow-rate
to the pressure gradient [9]. However, in practice, the re-
sponse of the granular material can be slightly more complex.
For instance, in the case of a deformable granular medium,
the flow can induce a permeability anisotropy [10]. These
studies apply to cases in which the fluid flow tends to com-
pact the granular packing. To the contrary, a large ascending
air- or liquid-flow can be used to fluidize the granular mate-
rial [1]. Fluidized beds have been widely studied because
of their very important engineering applications [11–13]: for
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instance, many industrial devices are used to mix, sort, dry or
thermally treat the solid grains. In general, the efficiency of
the process depends on the homogeneity of the flow in planes
perpendicular to the main upward liquid or gaseous flow that
insures the fluidization of the granular material. Thus, most
of the devices roughly consist of a vertical cylinder, the height
of which is much larger than its diameter. Even if one can
distinguish the spouted beds in which the fluid is locally in-
jected at the bottom of the granular column [14], the gas or
liquid is generally forced to flow homogeneously from the
bottom at a well-controlled constant flow-rate. The different
regimes observed when the flow-rate is changed have been
widely studied and empirical or theoretical descriptions of
the main experimental features are available. However, in
order to account for observations in small-size systems (for
instance, the droplets cited above [6,7]), it is relevant to con-
sider cases in which the dimension of the system in the direc-
tion of the flow compares to the characteristic size of the
structures that appear within the bed.

In the present article, we aim at the description of the
destabilization of a thin immersed granular-layer submitted
to an ascending liquid flow: We shall see that the destabi-
lization of the layer generally leads to the appearance of a
single localized instability. We consider that the layer is thin
as long as the depth of the bed remains of the order of the
characteristic size of the structure in the horizontal plane.
Special attention has been paid to the design of a very sim-
ple experimental setup that makes it possible to impose a
homogeneous hydraulic pressure-difference across a hori-
zontal granular layer and to measure the resulting flow-rate.
We determine the transition between the stable and unsta-
ble layer as well as the geometrical characteristics of the
instability observed at the free surface. The observations are
accounted by simple theoretical arguments.

2 Experimental setup

The experiment consists in measuring the liquid flow result-
ing from a pressure difference imposed to water between the
upper and lower free-surfaces of an immersed layer of granu-
lar material. The experimental setup is made of three different
parts (Fig. 1): One finds the sample in part A, whereas the
overpressure �P is imposed by the system presented in part
B. Finally, we use the tools sketched in part C to measure the
resulting flow-rate.

A granular layer (thickness h) is confined by a vertical
cylinder (total height 20 cm, top of the experimental setup in
part A) and lies at the bottom on a thin metallic grid (squares,
100 µm, thickness ∼0.2 mm), which avoids the grains to fall
down into the lower chamber. The inner diameter d of the
cylinder can be varied (d = 3.4 or 9.1 cm) and, in order
to avoid the grains to slide at the side-walls and jetting to
possibly occur preferably at the boundaries, glass spheres
are glued onto the inner surface (diameter 400 µm, always
larger than the typical grain-size). The whole system is filled
with water and, when an ascending flow is imposed through

the column of grains, the excess of water freely overflows at
the top end of the vertical cylinder. Thus, in our experimental
conditions, the height of liquid above the grains is constant
(accuracy 1 mm) and does not depend on the flow-rate, v. In
addition, we image the free surface of the granular material
along the vertical with the help of a digital camera.

The constant pressure difference �P is imposed to the
system as follows: The lower chamber of part A is connected
through a flexible pipe to the container of part B, which can
be displaced up and down along the vertical (accuracy 1 mm).
Water from tap is injected at the bottom of the moveable con-
tainer and the excess of water freely flows out to the sink
through a hole situated above. The water level in the cham-
ber does not depend on the liquid flow in the pipe connecting
parts A and B and is known to within 1 mm. We denote �z
the height difference between the free surfaces of water in
parts A and B, so that the pressure difference between the
bottom and the top of the granular column writes �PT =
ρg

(
�z + h

)
where ρ � 103 kg m−3 is the density of water

and g � 10 m s−2, the acceleration due to gravity. The rela-
tion holds true as long as hydrostatics applies (i.e. as long
as the water-flow does not lead to any significant pressure
drop in the pipes and containers. We discuss this point in the
next section 3. In the following, we denote �P ≡ ρg�z the
contribution of the height difference �z to the overpressure
�PT ; �P then excludes the equilibrium contribution ρgh of
the hydrostatics, and according to this definition, the water
tends to flow upwards when �P > 0. The maximum height
difference is �z = 10 cm, corresponding to �P � 103 Pa,
whereas, taking into account the uncertainty in the liquid lev-
els, the accuracy in �P is about 30 Pa.

In order to characterize the ascending flow through the
granular material, the water is collected at the top of the ver-
tical tube (part A) and directed to a graduated cylinder (part
C). Depending on the experimental conditions, we measure
either the liquid volume V (within 1 mL) for a given time
τ or the time τ (within 0.1 s) for collecting a given volume
V . Taking into account the surface area A = π(d/2)2 of the
cylinder cross-section, we can define the flow-rate, or Darcy
velocity, v ≡ V/(Aτ), which is hence measured with an
accuracy better than 1%.

The granular material consists of spherical glass beads
(sodosilicate glass, Matrasur Corp.). The samples are fil-
trated, so that the size dispersion is roughly 10% of the mean
diameter φ of the grains (from 80 µm to 400 µm).

3 Experimental results and interpretation

The experimental procedure is as follows: A given amount of
granular material (up to 60 mL, the corresponding height h
can be either larger or smaller than the inner diameter d) is
placed in the vertical cylinder of part A. The sample is then
stirred in order to remove any air bubble still trapped in the
granular material. A pressure difference �P is imposed by
lifting the container of part B up to a chosen vertical position.
After a short transient, the system reaches a steady regime
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Fig. 1 Sketch of the experimental setup. The granular layer (part A, at the center) is subjected to an ascending water-flow imposed by changing
the vertical position of the container sketched in part B (on the left-hand side). The resulting flow-rate is measured with the tools sketched in part
C (on the right-hand side) [see text for details]

during which we measure the flow-rate v and image the free
surface.

3.1 Typical response of the granular layer

We report in figure 2 the typical behavior of v in the steady-
state as a function of �P . One observes two linear regimes
on both sides of a sharp transition which occurs at the crit-
ical pressure-difference �P ∗. For �P < �P ∗, v is propor-
tional to �P , and observation of the free surface from above
proves that the granular material remains at rest in this regime.
For �P > �P ∗, v depends linearly on �P according to
v = v∗ + S(�P − �P ∗) (the slope S is larger than the slope
measured below the transition). In this regime, some grains
move; at the free surface of the granular layer, the motion of
the grains is marked by the appearance of a small bump that
moves freely and explores randomly the whole cross-section
of the cylinder (Fig. 3).

In order to understand how the grains start moving at the
transition, we reproduce the experiment in a 2D-cell1. The
experimental setup is similar to that presented in section 2
but the cylinder of part A is replaced by a thin cell consisting
of two glass plates (8 × 10 cm2) spaced by 1 cm. The system
is then imaged from the side. We observe that, at �P = �P ∗,
the whole granular layer dilates. A rapid subsequent destabi-
lization of the “floating” granular-layer occurs; at the bottom
of the cell appears locally a region in which the density of

1 As we are only aiming at the qualitative description of the grains
motion associated with the destabilization process, quantitative mea-
surements have not been performed in the 2D setup.

the granular material is clearly less than the overall density.
This region grows quickly in the vertical direction (Fig. 4),
leading to the formation of a stable column of fluidized gran-
ular material which connects the bottom to the top of the
granular layer. Simultaneously, the grains outside the fluid-
ized region deposit back on the grid and stop moving. In the
steady regime, the bump observed at the surface is a fountain
of grains that ends the fluidized column.

In the following, we describe quantitatively the response
of the granular layer to the liquid flow in the steady regime.
Simple theoretical arguments account for the experimental
observations.

3.2 Pressure-drop in the pipe

The experimental setup imposes a priori the pressure-differ-
ence �P across the granular layer. However, we point out
that this is not true above the transition when �P departs
significantly from �P ∗. Indeed, assuming a Poiseuille flow
in the pipe (diameter D � 5 mm and length L � 50 cm
typically) that connects the two containers of parts A and B,
we estimate the slope S = D4/(32ηLd2) ∼ 3.8 10−5 m2 s
kg−1 from the associated pressure drop. Experimentally, we
measure S = 4.7 10−5 m2 s kg−1 (Section 3.1). Our esti-
mate is of the same order of magnitude. Thus, at least for
�P > �P ∗, the flow-rate is mainly limited by the pressure-
drop in the experimental setup, which thus rather imposes the
flow-rate than a constant pressure-difference to the granular
layer. In the following, we denote �Pg , the pressure differ-
ence between the lower and the upper free surfaces of the
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Fig. 2 Flow rate v vs. pressure difference �P . Symbols: experimental
data. The response of the system to the imposed pressure difference �P
exhibits two different linear regimes on both sides of a sharp transition
[Cross: �P ∗ = 485 Pa, corresponding flow-rate v∗ = 0.57 mm s−1].
Solid line: �P < �P ∗, the flow-rate v is proportional to the pressure-
difference �P ; the system obeys Darcy law and we measure the intrinsic
permeability k = 26 µm2 (inset). Dashed line: �P > �P ∗, v increases
linearly with �P with the slope S = 4.7 10−5 m2 s kg−1 (φ = 280 µm,
h = 22 mm, d = 3.4 cm)

granular material. In order to take into account the pressure
drop in the setup, which cannot strictly be neglected even at
small �P , we write �Pg = �P − v/S. However, we note
that the correction is small when �P < �P ∗ [We measure
(�P ∗ − �P ∗

g )/�P ∗ < 3% (Fig. 2)].

3.3 Critical pressure difference �P ∗
g

Destabilization of the granular layer occurs at the critical
pressure difference �P ∗, associated with the critical flow-rate
v∗. The critical values are accurately defined by the intersec-
tion of the two linear interpolations of v(�P ) on both sides
of the transition [Cross in Fig. 2]. Experimentally, the criti-
cal pressure difference �P ∗

g does not depend on the diameter
of the cylinder d whereas it is found to be proportional to
the thickness h according to �P ∗

g = ρ∗
expgh with ρ∗

exp =
(0.80 ± 0.01) 103 kg m−3 (Fig. 5).

In order to understand this experimental result, we esti-
mate the pressure difference �P

f l
g associated with the flu-

idized granular column. We assume that, for �Pg = �P ∗
g ,

the grains are only suspended by the liquid flow and do not
move. From hydrostatics, �P

f l
g = c(ρg − ρ)gh where ρg =

2.19 103 kg m−3 is the density of glass and c the volume
fraction of the grains. We measured, in addition, the density
cρg = (1.53 ± 0.05) 103 kg m−3 of the granular material at

Fig. 3 Picture of the free-surface above the threshold.At the onset of the
instability, one observes a small bump that moves freely and explores
randomly the whole cross-section of the cylinder. The motion of the
bump is marked by the unevenness of the free-surface (v = 1.2 mm s−1,
φ = 142 µm, h = 16 mm, d = 9.1 cm)

Fig. 4 Side-view of the fluidized granular column. At the onset of the
instability, the whole granular layer slightly dilates and then destabi-
lizes; from the side, one observes, at the bottom of the container, the
nucleation of a localized region of smaller compacity (surrounded by
the white dots) that quickly develops and reaches the upper free-surface
(φ = 360 µm, h � 55 mm)

rest, and deduced c = (0.70±0.03). From these experimental
values, we obtain ρ∗

hyd ≡ c(ρg − ρ) = (0.83 ± 0.03) 103 kg
m−3, which is only slightly larger than ρ∗

exp [We note that,
as c is expected to be smaller when approaching the transi-
tion because of the slight dilation of the granular layer, the
corresponding value of �P

f l
g is expected to slightly overes-

timate the real pressure difference]. The quantitative agree-



Localized instability of a granular layer submitted to an ascending liquid flow

800

600

400

200

0

∆P
g*

 (
P

a)

100806040200

h (mm) 

slope (8.0±0.1) Pa.mm-1

Fig. 5 Pressure-difference �P∗
g vs. thickness h. Full symbols: φ =

360 µm; open symbols: φ = 280 µm. The pressure difference mea-
sured at the transition is proportional to the thickness of the granular
layer and does not depend on the bead diameter φ

ment between the estimated, ρ∗
hyd , and measured, ρ∗

exp, values
of ρ∗ shows that the instability occurs when the pressure force
counterbalances the weight of the immersed granular layer,
in agreement with former studies of fluidized beds [11–13].
The result also agrees with the observation that the granular
layer is slightly lifted for �P = �P ∗.

3.4 The granular layer at rest (�Pg < �P ∗
g )

When �Pg < �P ∗
g , we do not observe any motion of the

grains. By changing the diameter d of the tube and the thick-
ness h of the granular layer, we show that the flow-rate v
obeys Darcy law:

v = k

η

�Pg

h
(1)

where η = 10−3 kg m−1 s−1 denotes the dynamic viscosity
of water2. We determine the intrinsic permeability, k from the
slope v/�Pg . For instance (Fig. 2), we obtain k = (26.6 ±
0.2) µm2 for φ = (280±30) µm. This value is in fairly good
agreement with the empirical Kozeny-Carman relation [15]

k = (1 − c)3

c2

φ2

180
(2)

which leads to k = (27 ± 16) µm2 for c = (0.70 ± 0.03).
We report, in addition, measurements of the flow rate

v∗ at �P ∗
g . We know from section 3.3 that �P ∗

g does not
depend on the grain diameter φ and, from equation (2), we
expect k ∝ φ2 in the theory. In good agreement with this
theoretical prediction, v∗ is observed to increase almost like
φ2 (Fig. 6). Nevertheless, interpolation of the experimental
results into a power law gives v∗ ∝ φα with α = 2.25 ± 0.3.
The exponent α is found slightly larger than 2. We measured,
in addition, a slight increase of the volume fraction c when
the bead diameter φ is increased (c ranges from 0.67 to 0.72

2 Note that we did not check the dependance on the fluid viscosity
η. By construction, the experimental setup does not make it possible to
easily use another fluid than water from tap.
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Fig. 6 Critical flow-rate v∗ vs. bead diameter φ. Inset: log-log plot.
Symbols: experimental data. Solid line: v∗ ∝ φα withα = 2.25. Dashed
line: v∗ ∝ φ2

for φ = 90 to 715 µm), which is likely to explain that the
experimental value of α is larger than 2. The polydispersity of
the samples may be responsible for the measured changes in
both the compacity c and the intrinsic permeability k. Note
that there exists, in the literature [11–13], several relations
which can account for the variations of k for polydisperse
samples and irregular grains. The lack of precise character-
ization of our samples does not allow us to discuss further
this point. However, our experimental results prove that, in
this regime, the response of the granular layer is that of a
usual porous material.

3.5 The granular layer above the transition (�Pg > �P ∗
g )

For �Pg > �P ∗
g , the grains move and one observes from the

side a column of fluidized granular material, which ends at
the free surface by a localized fountain. Seen from above, the
fountain exhibits a well-defined typical diameter, which we
discuss in the next section 3.5.1.

3.5.1 Typical size of the localized instability

Whereas the height of the fountain above the free surface of
the granular layer largely fluctuates in time, its diameter � in
the horizontal plane is almost constant, independent of both
the pressure difference �P and the height h. We point out
that the random motion of the fountain at the free surface
of the layer attests that its geometry is also not governed by
the inner diameter d of the container. We measure � � 32φ,
where φ is the typical diameter of the grains. The result holds
true even when the thickness h is less than � (we performed
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experiments with grains having diameters between 315 and
400 µm and heights h = 3 mm and 6 mm, corresponding
respectively to 8 and 16 layers of grains).

We can recover the scaling law � ∝ φ by writing the
total volume flow-rate through the granular layer QT in the
form QT = QC + QL where QC denotes the flow-rate in
the fluidized column and QL the flow-rate in the remaining
part of the granular layer which is at rest. Assuming that the
pressure difference across the granular layer �Pg is homoge-
neous in the whole system and that the stream lines remain
vertical, we can write QC = π

4 �2JC and QL = π
4 (d2 −

�2)JL where JC and JL denote the currents in the column
and in the layer at rest respectively (Fig. 7). From equation
(1), we get JL = (k/η)(�Pg/h). Assuming a Poiseuille flow
in the fluidized column, we write JC = (�2/32ηf )(�sPg/h)
where ηf stands for the viscosity of the fluidized material.
With these assumptions,

QT =
[π

4
(d2 − �2)

k

η
+ π

128ηf

�4
]�Pg

h
(3)

and reaches a maximum value for �2 = 16k(ηf /η). From
equation (2), which shows that k ∝ φ2, we recover � ∝ φ,
independent of h and �Pg .

We do not expect any quantitative agreement between our
oversimplified model and the experiment. Indeed, in order to
obtain � = 32φ, one must take ηf /η ∼ 2 × 105. From
equation (3), we then expect the variation of the flow-rate
associated with the instability to be δQT /QT ∼ 4%. Thus,
our simple argument fails to account for the large variation
of the slope dv/d(�P ) at the transition. The phenomenon is
likely to be explained by a drastic change in the compacity
c of the whole granular layer for �Pg > �P ∗

g in agreement
with the observation that, at the transition, the whole gran-
ular layer is slightly lifted by the flow before the localized
instability appears. Nevertheless, we note that there exist sev-
eral theoretical or empirical models that relate the viscosity
ηf to the corresponding compacity cf of the fluidized mate-
rial [16]. Whatever the model, such large value of ηf /η is
explained by cf only slightly smaller than c. For instance, by
using Mooney’s relation [17], which states that:

ηf

η
= exp

( 2.5cf

1 − cf /c

)
, (4)

Fig. 7 Sketch of the theoretical situation. We assume that the grains
only move in a cylinder of diameter �, whereas they remain at rest
elsewhere in the granular layer

we get cf ∼ 0.61, roughly 10% smaller than c. The compac-
ity of the fluidized material that flows would be only 10%
less than that of the material at rest.

Thus, in spite of numerous assumptions, our simple model
makes possible to recover that the typical diameter � of the
localized instability scales like the typical grain size φ and is
independent of both the thickness h of the granular layer and
the pressure difference �Pg .

3.5.2 Flow rate v (�Pg > �P ∗
g ).

Above the transition, neglecting the pressure drop due to the
granular layer, we can write �P = �P ∗

g + v/S where �P ∗
g

stands for the contribution of hydrostatics in the fluidized
granular column and v/S to the pressure drop in the experi-
mental setup.As a consequence, v can be rewritten in the form
v = S(�P −�P ∗)+ v∗ provided that v∗ = S(�P ∗ −�P ∗

g ).
Thus, v∗ corresponds to the water flow-rate associated with
the pressure-difference necessary for counterbalancing the
weight of the granular layer. This explains the offset in the
v(�P ) characteristics [v(�P ) reaches the �P -axis at a finite
pressure difference].

4 Conclusion

An thin immersed granular layer, subjected to an ascend-
ing liquid-flow, destabilizes when the pressure force coun-
terbalances the weight of the granular material. Instead of
being homogeneously lifted by the liquid flow, the granular
material locally destabilizes: a channel of less dense material
nucleates at the bottom and quickly reaches the upper free
surface. The resulting steady situation consists of a column

Fig. 8 Second instability at the free surface. Whereas the diameter �
does not depend on the flow-rate, further increase of �P can lead to
the nucleation of a second fountain which also moves freely at the free
surface (φ = 142 µm, h = 16 mm, d = 9.1 cm)



Localized instability of a granular layer submitted to an ascending liquid flow

of fluidized material that connects the bottom to the top of
the granular layer. Observation of the free surface exhibits a
small fountain of grains, which typical diameter is of about
32 times the grains diameter: the result can be, at least quali-
tatively accounted, by a simple theoretical argument based on
the optimization of the flow-rate at a given imposed pressure
difference.

Nevertheless, even if we obtained reliable informations
from these preliminary experiments, the setup presents sev-
eral flaws which avoid exploring further the phenomenon. For
instance, the results demonstrate that the experimental setup
fails in imposing the pressure difference across the granular
layer. Increasing further �P above �P ∗, we observed the
appearance of a second fountain at the free surface of the
granular layer (Fig. 8). The fact that this second instability
occurs at larger �P may be explained by a pressure drop in
the tubes resulting from the first instability at �P ∗, which
is associated with a noticeable increase in the flow-rate. In
order to better understand the phenomenon, we are planning
to impose the flow-rate and measure the resulting pressure
at the bottom of the layer. In addition, increasing the diame-
ter of the container will make it possible to analyze the free
motion of the fountains at the free surface and the interac-
tion between them. This work will be extended to the case
of binary mixtures of granular materials in order to under-
stand the role of the polydispersity. These experiments are in
preparation.

The authors thank H. Gayvallet and F. Melo for fruitful
discussions.
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