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Abstract. We study experimentally the main features of wrinkles that form in an initially stretched and
flat elastic membrane when subjected to an axi-symmetric traction force at the center. The wavelength and
amplitude of the wrinkle pattern are accurately characterized as the membrane tension and the traction
forced are varied. We show that wrinkles are the result of a supercritical instability and appear for a well-
defined critical traction force that is a function of the membrane tension. Wrinkle length and amplitude
increase as the traction force is increased further. By contrast, both quantities decrease as the membrane
tension is increased. Calculations based on symmetry arguments and elastic-energy minimization are in
good agreement with experiments and provide a simple way to investigate configurations that are difficult
to access experimentally. Such problems include wrinkles in elastic nano-films on finite-thickness viscous
substrates used in semiconductor technology or in cellular forces detection.

PACS. 46.32.+x Static buckling and instability – 87.19.St Movement and locomotion – 85.40.Ls Metal-
lization, contacts, interconnects; device isolation

1 Introduction

Standing films, plates or membranes under longitudinal
compressive stress spontaneously buckle to allow for the
expansion of the film by bending out of the nominal film
plane. In such configurations, buckling produces wrinkles
that are perpendicular to the direction of applied compres-
sion [1,2]. However, less intuitive buckling occurs when an
elastic band stripe is subjected to large enough longitudi-
nal stretching in its plane [3,4]; the film buckles to relax
the in-plane strain incompatibility generated by the Pois-
son effect. Hence, wrinkles accommodate themselves par-
allel to the direction of the applied tension. In general, the
buckling wavelength is a compromise between the relax-
ation of in-plane strain and the elastic stresses associated
with bending. In practice, the constraint provided by an
elastic substrate, to which most films are bounded, can
prevent buckling whereas a viscous substrate allows it,
but on a time scale set by the viscous flow [5,6].

Wrinkling in elastic films under stress is ubiquitous
in nature. Among common systems exhibiting this phe-
nomenon are our skin, textiles and more specifically thin
coatings subjected to stresses mismatch [7,8]. Apart from
a basic interest, wrinkled membranes have found un-
expected applications recently. For instance, in modern
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technology, pre-wrinkled conductive films are proposed as
stretchable electrical contacts required in large-area elec-
tronics [9]. In medicine, surgery has always involved cut-
ting, thickening contraction and in many cases wrinkling
of the skin. Potential applications of wrinkle mechanics to
improve wound healing have been recently summarized by
E. Cerda [10]. In turn, in cell biomechanics, wrinkled pat-
terns produced by cells crawling onto elastic membranes
(several nanometers thick), provided a useful tool to test
living-cells locomotion. With this method, the length of
the wrinkles has been correlated to the force applied by
the cell cytoskeleton [11,12]. In this article, we present
experimental as well as theoretical studies of the wrin-
kles that form on an initially flat elastic membrane when
subjected to an axi-symmetric traction force. In our sys-
tem such a force is applied over a central region having
a given radius by pulling symmetrically the membrane.
With this configuration we intend to mimic, for instance,
the pattern resulting from the homogeneous contraction
of a nearly circular living cell when attached to an elas-
tic film [13] or a circular wound as described recently by
E. Cerda [10]. In addition to the central force, the mem-
brane can be stretched radially to vary its tension. Our
results show that the length of the wrinkles as well as
their amplitude increase as the traction force is increased
beyond a well-defined critical value which is a function of
the membrane tension. By contrast, both quantities de-
crease as the initial membrane tension is increased. We
show thus that wrinkles appear as a consequence of a
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supercritical instability. Beyond the instability threshold,
the number of nucleated wrinkles is nearly independent of
the central force, varies very slowly with membrane ten-
sion, and is a linear function of the size of the central
object. In addition, if the tension vanishes, our results pre-
dict that wrinkles develop in the whole membrane. These
observations challenge the validity of previous membrane
force measurements [12], due to living-cell traction, based
on the wrinkle length. We discuss under what conditions
these measurements are reliable and we propose alterna-
tive approaches. To account for our experimental results,
we develop a theoretical approach, based on bending- and
stretching-energy minimization, that capture well the fea-
tures described above. Symmetry arguments allow us to
solve the complex membrane equations with simple nu-
merical calculation.

Our article is organized as follows. Section 2 is de-
voted to the description of the procedure used to deform
the membrane and to introduce the minimal ingredients
necessary to explain why the membrane buckles. In ad-
dition, by developing simple equilibrium forces considera-
tions and by neglecting the bucking threshold, we recover
recent experimental and theoretical results [10] obtained
in the limit of an infinitely thin and infinitely large mem-
brane under stress. In our experiment, the displacement
field is characterized by tracking the position of small par-
ticles randomly distributed on the surface membrane. Be-
sides, the amplitude and the length of wrinkles are mea-
sured with a simple procedure based on the deflection of
a lattice of equidistant parallel lines projected onto the
membrane. Both methods are described in detail in the
experimental section. In Section 3, in addition to measure-
ments of the length and the amplitude of wrinkles, we test
the number of wrinkles by varying the size of the pulling
circle, the pulling central force and the membrane ten-
sion. In Section 4 we introduce the basis of our theoretical
model and we contrast it with our experimental results.
For the sake of continuity the complete description of our
semi-analytical calculations is developed in the appendix.
Finally, our main conclusions are presented in Section 5.

2 Problem geometry

2.1 Definitions

Aiming to mimic the contraction of a cell attached to a
stretched membrane, we consider the geometry sketched in
Figure 1. The circular membrane is pulled toward the cen-
ter along a circle (radius r0). We denote ur(r0) = −δ the
imposed radial displacement. In order to account for the
initial stretching of the membrane, we impose the displace-
ment ur(R) = β along the large outer radius, R. In the
following, we denote u(r, θ) the horizontal-displacement
field and ζ(r, θ) the out-of-plane displacement of the mem-
brane. The general set of equations governing the equilib-
rium shape of the membrane is given in the appendix.

R

r0

βδ

R*

σθθ

σθθ

Elastic membrane

Fig. 1. Sketch of the experimental configuration. The main
quantities defined in the text are indicated in the figure. The
darker section, limited by R∗, indicates the membrane region,
under azimuthal compression, where wrinkling might occur.

2.2 Axi-symmetrically stretched membrane

If the mechanical situation is stable with respect to the
buckling of the membrane (ζ = 0), taking into ac-
count the imposed deformation, one shows easily that the
horizontal-displacement field reduces to ur, which obeys
∆ur = 0. Taking into account the boundary conditions,
one obtains

ur(r) =
δr0 + βR

R2 − r2
0

r − δR+ βr0

R2 − r2
0

Rr0

r
(1)

and the corresponding components of the stress tensor

σrr =
E

1− σ2

×
[

(1 + σ)
δr0 + βR

R2 − r2
0

+ (1− σ)
δR+ βr0

R2 − r2
0

Rr0

r2

]

, (2)

σθθ =
E

1− σ2

×
[

(1 + σ)
δr0 + βR

R2 − r2
0

− (1− σ)
δR+ βr0

R2 − r2
0

Rr0

r2

]

, (3)

σrθ = 0 . (4)

At this point, it is worth considering the case of a
membrane stretched at the outer radius with the constant
tension γ without any constraint along the inner circle.
One can easily obtain from equation (2) that the resulting
displacement β at the outer radius R satisfies

γ =
E

1− σ

β

R
. (5)

Note that the tension γ is then associated to the initial
displacements β at the outer radius and −δ0 ≡ ur(r0) =
βr0/R at the inner circle. Let us now impose an additional
displacement −δi along the inner circle so that δ = δi +
δ0. Using equation (2), one can show that, in order to
maintain the equilibrium, one must pull the membrane
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along the inner radius with the tension τ ≡ σrr(r0) which
implies

τ = E
(1− σ)R2 + (1 + σ)r2

0

(1− σ2)(R2 − r2
0)

δi
r0

+
γ

1 + σ
. (6)

Thus, there exists a linear relation between the imposed
displacement δi and τ , and the initial tension γ is propor-
tional to β. In the following, we will improperly use the
“tensions” β and δi (or δ) instead of γ and τ .

Let us now analyze the behavior of the orthoradial
stress σθθ. Provided that δ > 0 and β > 0, the radial
component σrr > 0 (∀r), whereas σθθ changes in sign for
the radius

R∗ =

√

1− σ

1 + σ

δR+ βr0

δr0 + βR
Rr0 . (7)

The orthoradial stress σθθ > 0 for r > R∗. In this region
the membrane is stretched in both the directions of the
r- and θ-axis. By contrast, σθθ < 0 for r < R∗. In this
region, the membrane is subjected to a compression along
the θ-axis so that it is likely to buckle and to form wrinkles
elongated along the r-axis. Let us now assume, in a crude
approximation, that the buckling instability leads to the
formation of n radial wrinkles. The threshold of the insta-
bility at a distance r from the center can be approximated
by σtθθ ∝ En2h2/r2, where h denotes the thickness of the
membrane. In the limit R → ∞ and r0δ À h2, one can
guess that the membrane buckles as soon as σθθ < 0 so
that the length of the wrinkles is of the order of R∗. In
that limit

R∗ = r0

√

τ − γ
1+σ

γ
. (8)

We recover here the result recently obtained by E.
Cerda [10]. A good agreement was found between theory
and experiment. The main conclusion is that the length
of the wrinkles increases with the imposed tension τ and
decreases when the initial tension of the membrane γ is
increased.

In addition, one can notice that, in the case of a mem-
brane without any initial tension (β = 0), the radius

R∗ = R
√

(1− σ)/(1 + σ) is smaller than the outer ra-
dius R of the membrane (σ > 0, in usual practical cases)
and does not depend on the displacement δi, imposed at
the center. In this case, one can expect the characteristics
of the wrinkles to be imposed mainly by the outer bound-
ary, and, for instance, their length to be about the outer
radius R.

Thus, when pulled at the center, the membrane is gen-
erally submitted to an orthoradial compression in a region,
r0 < r < R∗, in which wrinkles elongated along the r-axis
are likely to form. The result obtained above (Eq. (8)), is
limited to the case of very thin membranes (or to large
imposed displacements) and does not provide any infor-
mation on the number of wrinkles n nor on the wrinkle
profile. In the following section, we describe the experi-
mental realization of the proposed geometry and analyze
the characteristics of the membrane instability close to the
threshold of the instability.

Parallel-lig
ht

P
Mirror

Small-angle lighting

MaskFrame

Tension

adjustment

Pump

Central tube

Membrane

Fig. 2. Experimental setup.

Fig. 3. Top view of the buckled membrane. Above a threshold
displacement, radial wrinkles form around the central tube.
One can clearly see them from above using the circular small-
angle light source (12 wrinkles, r0 = 19 mm).

3 Experimental study

3.1 Experimental setup

The experimental setup consists of a horizontal circular
frame that holds firmly a thin elastic membrane (Latex,
thickness h = 0.2 mm) which is initially wedged between
two plexiglass rings without any significant tension. The
initial tension of the membrane, γ, can be adjusted later
by pushing it down along a circle (R = 18.5 cm) by means
of a third L-shaped ring (Fig. 2).

One imposes the axi-symmetric radial displacement δi
along a circle (radius r0) by sucking in the membrane in
a vertical tube (PVC); the inner pressure, P , is decreased
with the help of a manual pump. The top circular edge
of the tube is rounded and lubricated so as to allow the
membrane to slide without any significant friction. A sim-
ple radial in-plane displacement over the whole surface of
the stretched membrane results from the imposed defor-
mation.

The system is imaged from above, along the vertical,
with the help of a high-resolution digital camera (Nikon
D1x). We use two different light sources; the membrane
can be either lit from above by an annular array of LEDs,
or from below by a parallel-light source. The upper light
source (100 LEDs along a circle (radius 15 cm), 1 cm
above the upper surface of the membrane) provides a
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Shadow of the mask Brass particle
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Fig. 4. Close-up view of the observed pattern. (a) For a flat
membrane, the shadow of the mask corresponds to straight
parallel lines along the x-axis. The brass particles, that are
used to mark the in-plane displacement field, appear like black
dots. (b) When the membrane is sucked in the central tube,
the brass particles move toward the center, and the lines de-
form because of the vertical displacement of the membrane
(12 wrinkles, r0 = 19 mm).

homogeneous small-angle lighting which makes possible
the direct observation of the out-of-plane membrane de-
formations. One can thus easily count the number of radial
wrinkles that form around the central tube beyond the in-
stability threshold (Fig. 3). The second light source is used
for measuring the horizontal- and vertical-displacement
fields; it consists of a parallel-light source casting the
shadow of the mask (an array of lines parallel to the x-
axis (Fig. 4)) onto the lower surface of the membrane, with
the angle Φ. The same images are used to determine both
displacement fields as explained in the following.

In order to measure the in-plane displacement field,
u(r), a large number of angular-shaped brass particles are
randomly distributed onto the membrane (Fig. 4). Be-
cause of their angular shape, the brass particles cannot
significantly roll over the surface. Thus, they mark the in-
plane displacement of the membrane, which is obtained
by tracking all the particles positions between an image
of reference (δi = 0, (Fig. 4a)) and the image of interest
(Fig. 4b). The instability does not produce any significant
ortho-radial displacement uθ, and the in-plane displace-
ment field reduces to the radial component ur(r). The
particles displacement, relative to the already stretched
membrane (β 6= 0), is given by

δur(r) = −δi
r0

r

R2 − r2

R2 − r2
0

. (9)

Interpolation of the experimental data to equation (9) al-
lows us to determine accurately the imposed displacement
δi within 0.1 mm (Fig. 5).

One obtains the local vertical displacement ζ(r, θ)
by analyzing the deformation of the pattern that the
shadow of the mask forms on the membrane (Fig. 4).
Let the x-axis be the axis parallel to the initially straight
lines of the mask; the vertical-displacement field satisfies
ζ(x, y) = − tanΦ∆y, where ∆y denotes the local displace-
ment of the pattern along the y-axis. The detection of the

5

4

3

2

1

0

δu
r (

m
m

)

150100500

r (mm)

C
en

tra
l t

ub
e

δi = 4.9 ± 0.1 mm

Fig. 5. Radial displacement δur vs. radius r. Open circles:
experimental data. Line: interpolation to equation (9) (from
Fig. 4, 115 brass particles detected, r0 = 19 mm, R = 18.5 cm,
h = 0.2 mm, and β = 2.4 mm).
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Fig. 6. Profile A(r) vs. radius r. Open circles: experimental
data. Line: guide to the eyes (from Fig. 4, δi = 4.9 mm,
r0 = 19 mm, R = 18.5 cm, h = 0.2 mm, and β = 2.4 mm).

bright and dark lines (Fig. 4), which is achieved by means
of a data analysis software (Wavemetrics, Igor Pro 4),
makes it possible to reconstruct the vertical-displacement
field ζ(x, y) on one side of the central tube. The verti-
cal displacement can be small. Thus, in order to achieve
the required sensitivity, we assume that the vertical-
displacement field can be written ζ(r, θ) = A(r) sin(nθ)
and determine the profile A(r). This procedure is accu-
rate enough to detect the wrinkle amplitude A(r) within
50 µm in the range r0 < r < 140 mm (Fig. 6). Here, the
number n of wrinkles is obtained with the low-angle light
source (see Fig. 3).

3.2 Experimental results

We determine the characteristics of the wrinkles as func-
tions of the following experimental parameters; inner ra-
dius r0, initial tension β and imposed displacement δi.

3.2.1 Number of wrinkles n

For given geometry (given r0 and R) and initial tension of
the membrane (given β), the number n of wrinkles does
not depend on δi. On the other hand, n increases linearly
with the radius of the inner cylinder, r0, while it tends to a
finite value when r0 → 0 (Fig. 7). In addition, n increases
slightly with the initial tension of the membrane β.
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Fig. 7. Number n vs. radius r0. The number of wrinkles n in-
creases linearly with the radius of the inner cylinder r0, while
it tends to a finite value in the limit r0 → 0 (typically 5). In
addition, n increases with the initial tension of the membrane
β (R = 18.5 cm, h = 0.2 mm).
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Fig. 8. Amplitude Am and length L vs. δ. Experimental mea-
surements of the maximum amplitude Am and of the length
L as functions of the imposed displacement δ. Full symbols:
amplitude Am; open symbols: length L. Lines: interpolation
of Am to Am =

√

K(δi − δc

i
) and of L to L = Lc + ξδi. The

results correspond to two different radii r0 and two different
values of the initial tension β (R = 18.5 cm, h = 0.2 mm).

3.2.2 Amplitude Am and length L vs. displacement −δ

From the experimental profiles A(r) (Fig. 6), we deter-
mine the maximum amplitude Am and the typical length
L of the wrinkles, the latter defined to correspond to the
inflexion point of the profile, d2A/dr2(L + r0) = 0. The
wrinkles appear beyond a critical displacement δci (Fig. 8);

the maximum amplitude Am satisfies Am =
√

K(δi − δci )
whereas, starting from the finite value Lc, the length L
increases linearly with δi. However, L decreases when the
radius r0 and the tension β are increased. The character-
istics of the bifurcation will be discussed in details with
the help of the numerical results in Section 4.3.2.

3.3 Comments

Even providing accurate measurements of the wrinkles
characteristics, the experimental setup presents some limi-
tations that deserve to be discussed at this point and that,
in particular, justify the numerical analysis of the problem
presented in Section 4.

The main limitation of the experimental setup con-
sists of its inability to reach the limit β → 0. Indeed,

in this limit the weight of the membrane cannot be ne-
glected anymore; experimentally, for small values of β, the
membrane is not flat and the experimental setup fails to
provide reliable measurements. Another limitation comes
from the friction between the membrane and the central
cylinder. We avoided this effect as much as possible but,
at this point, we must prove that the characteristics of
the wrinkles do not depend on the friction at this bound-
ary. Finally, we cannot change easily the outer radius R
and the characteristics of the elastic membrane. We know,
from the mathematical analysis, that the thickness h of
the membrane is the length scale, and that the results can
be expressed in terms of h. In the same way, there is no
need to know the elastic constant of the material as the
characteristics of the wrinkles are only governed by geo-
metrical relations. By contrast, we do not know accurately
the value of the Poisson coefficient which is likely to play
an important role (see, for instance, Eq. (7)). Moreover,
this coefficient cannot be changed easily.

In the next section, we present numerical results that
validate and extend our experimental findings.

4 Numerical study

4.1 Set of equations

Assuming that the membrane vertical deformation can be
written in the form ζ(r, θ) = A(r) cos(nθ), we show (see
appendix) that the problem can be reduced to the follow-
ing set of differential equations:

r2u0
r

′′

+ ru0
r

′ − u0
r =

1

4r

[

n2(1 + σ)A2 − 2n2σrAA′

−(1− σ)r2A′2 − 2r3A′A′′

]

, (10)

(

r4A(4) + 2r3A(3)
)

h2 − r2A′′

[

(1 + 2n2)h2

+3
(

σn2A2 + r2A′2
)

+ 12r
(

σu0
r + ru0

r

′

)

]

+rA′

[

(1 + 2n2)h2 − 3n2A2 − 12r
(

u0
r + σru0

r

′

)

]

+n2A

[

(n2 − 4)h2 + 12r
(

u0
r + σru0

r

′

)

]

+3n4A3 + 3n2σr2AA′2 − 3σr3A′3 = 0 , (11)

where A(r) denotes the profile of the wrinkles along the r-
axis and u0

r(r) the axi-symmetric part of the radial-displa-
cement field. The solution to equations (10) and (11) can
be found, provided the boundary conditions u0

r(r0) = −δ
and u0

r(R) = β for the horizontal-displacement field u0
r(r),

and A(r0) = 0, A(R) = 0, A′(r0) = 0, and A′(R) = 0 for
the radial profile A(r) of the wrinkles.

4.2 Numerical method

The coupled differential equations (10) and (11), associ-
ated to the corresponding boundary conditions, are solved
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Fig. 9. Number n vs. radius r0. Full symbols: numerical data.
Open symbols: experimental results from Figure 7. The num-
ber n of wrinkles depends linearly on the radius r0 of the
central cylinder. The slope dn

dr0
increases with the initial ten-

sion of the membrane β. The number n is found to tend to 2
or 3 when r0 → 0 (δ/h = 50, R/h = 1000, and σ = 0.5).

numerically using a relaxation method. As the number of
wrinkles, n, is a parameter in these equations, we com-
pute initially the solutions for different values of n. Fur-
ther analysis of the energy as a function of n provides us
with the number n which minimizes the energy.

4.3 Numerical results

We compute the equilibrium shape of the membrane for
values of the parameters similar to that of the experimen-
tal situation. In a first step, we choose a value of the Pois-
son coefficient, σ = 0.5. The numerical displacement field
u0
r and profile A(r) are similar to the experimental ones

presented in Figures 5 and 6 and are thus not reproduced
in this section.

4.3.1 Number of wrinkles n

We compute the number of wrinkles, n, at equilibrium
and observe that it depends only slightly on the imposed
displacement δ. By contrast, n increases linearly with the
radius r0 of the central cylinder (Fig. 9). In agreement
with the experimental results, n is found not to vanish
when r0 → 0 and the slope dn

dr0
increases with the ini-

tial tension of the membrane β. However, we note that
the experimental value of n is always significantly smaller
than that predicted numerically. The discrepancy remains
unexplained but we note that, numerically, the energy dif-
ference between configurations corresponding to different
values of n is small. In our experimental configuration,
the membrane is likely to be frozen by the effect of dis-
sipation before reaching the optimal number of wrinkles.
We can guess that an increase in the number of wrinkles
would lead to enhanced dissipation as the deformation of
the membrane would involve creation of more curvature.
Thus, since we measured n for increasing values of the
tension, the observed number of wrinkles is smaller than
the predicted one. Nevertheless, we note in the numeri-
cal results that the wrinkle profile A(r) does not depend
significantly on n close to the energy minimum.
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Fig. 10. Dimensionless δc, K, Lc, and dL/dδ vs. β. The length
of the wrinkles remains small enough compared to the outer ra-
dius for the system to be considered as infinite. Open symbols:
numerical results (diamonds: r0/h = 50; circles: r0/h = 100;
squares: r0/h = 150; triangles: r0/h = 200). Full symbols in
(a): experimental data from Figure 8. (R/h = 1000, and σ =
0.5.)

4.3.2 Instability threshold and bifurcation characteristics

Again in agreement with the experimental results, the
wrinkles are found numerically to appear beyond a critical
value δc of the displacement δ which depends on the initial
membrane tension β (Fig. 10a). (In order to make compar-
ison with the experiment easier, we report, in Fig. 10a, ex-
perimental results from Fig. 8. The discrepancy is always
less than 20%, better than the accuracy in h.) The nu-
merical results show that δc increases linearly with β and
tends to a small but non-zero value (a few times the mem-
brane thickness h) when β vanishes. The length Lc of the
wrinkles at the threshold decreases with β but increases
with r0 (Fig. 10b). In turn, above δc, the maximum ampli-

tude Am of the wrinkles increases like Am =
√

K(δ − δc),
where the factor K decreases (Fig. 10c) when the radius
r0 and the tension of the membrane β are increased. The
length of the wrinkles increases with δ and the slope dL/dδ
decreases drastically when the tension of the membrane is
increased. By contrast, we do not observe any apprecia-
ble variation of dL/dδ when the radius r0 of the central
cylinder is changed (Fig. 10d).

In Figure 11, we illustrate the explicit dependence of
wrinkle amplitude and length on the main control param-
eter δ. As pointed out above, the wrinkle amplitude fol-
lows a robust square root law as a function of δ (see lower
panel of Fig. 11). The result holds true even in the limit
β = 0. However, the wrinkle length dependence on the
pulling force is complex, depending strongly of membrane
tension and the system size (see upper panel of Fig. 11).
For small enough β, wrinkle length quickly saturates to
the dimension of the system; L tends asymptotically to
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Fig. 11. Length L and amplitude Am vs. δ. The maximum
amplitude Am of the wrinkles scales like

√
δ − δc whatever the

initial membrane tension β (bottom). The length L increases
linearly with δ for large enough initial membrane tension β
(β/h = 12.5, 25 and 37.5 (full circles, squares, and diamonds,
top)). If β is small, departure from the linear law is observed
close to the threshold δc (β = 0, 0.01, and 0.05). When β = 0,
the length L of the wrinkles is rapidly limited by the dimension
of the system. (R/h = 1000, r0/h = 50, and σ = 0.5.)

roughly (R − r0)/2h. At still small values of β, for which
the system is large enough, we observe a nearly square
root dependence of L on δ, corresponding to the regime
reported recently in reference [10]. Notice that for small
β and h nearly zero, δc is small and the square root de-
pendence of L extends to smaller values of δ. However, as
membrane tension β is increased further, L starts increas-
ing linearly with δ.

4.3.3 Poisson ratio effects

In this subsection we investigate how the results above are
modified when the Poisson ratio is varied. In Figure 12a,
we show the wrinkle profile for several values of σ. One can
notice that for σ = 0 the wrinkles extend up to the outer
boundary. However, the wrinkle length decreases as σ in-
creases indicating that the Poisson effect opposes to buck-
ling in this case. Thus, the main responsible of wrinkle
formation is not the Poisson effect but instead a geometric
azimuthal-contraction of the membrane due to the cylin-
drical geometry. Indeed, an axi-symmetric circular section
of the membrane is naturally compressed when pulled to-
ward the center. In turn, the number of wrinkles n as a
function of σ is presented in Figure 12b. In Figure 12c, we
show the maximum amplitude Am and length L as func-
tions of σ. L decreases linearly when σ is increased. The
amplitude Am is nearly constant.
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Fig. 12. Profiles A(r), and n, Am and L vs. σ. (a): Profile A(r)
for σ = 0.00, 0.25 and 0.50. For σ = 0.00 the wrinkles extend
up to the outer boundary, but they contract as σ increases.
(b): Number of wrinkles n as a function of σ. (c): Maximum
amplitude Am and length L as functions of σ. (r0/h = 50,
R/h = 1000, δ/h = 50, and β/h = 12.5.)

5 Conclusions

In conclusion, to understand either the homogeneous con-
traction of a nearly circular living cell when attached to
an elastic film or a circular wound, we have study in de-
tail the geometry of a wrinkled membrane arising from
axi-symmetric traction forces. We have shown that the
wrinkle amplitude varies as the square root of the trac-
tion displacement, Am ∼

√
δ − δc, beyond a well-defined

critical value δc, as in a supercritical instability. In turn,
we show that wrinkle length increases linearly with trac-
tion displacement. However, in the limit of an infinitely
thin and infinitely large membrane, we predict that wrin-
kle length goes like square root of tension, in agreement
with recent independent results [10].

On the other hand, the number of wrinkles n, depends
only slightly on the imposed displacements δ and β but
increases linearly with the radius r0 of the central cylinder.
At this stage one last question comes to mind and relates
to what really selects the width of wrinkles, the distance
from the center to the border on which membrane pulling
occurs or simply its radius of curvature. To elucidate this
question, the inner cylinder is now replaced by a square
(edge 52 mm) with rounded corners (radius of curvature
12.7 mm). For a circle having the same radius of curvature,
r0 = 12.7 mm, one would expect n = 12 (r0/h ' 60,
Fig. 7). Note that the characteristics of the wrinkles are
similar to those observed in Figure 3. However, we do not
observe any wrinkles in the flat parts of the inner frame,
in agreement with the increase of δc with the radius of
curvature of the boundary.

We now discuss some aspects of the technique intro-
duced by Burton [12] to characterize membrane forces,
produced by living cells, by measuring the wrinkle length.
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Fig. 13. Top view of the buckled membrane. The inner cylin-
der is replaced by a square (edge 52 mm) with rounded cor-
ners (radius of curvature 12.7 mm). The characteristics of the
wrinkles on the round corners are similar to those observed in
Figure 3. No wrinkles appear in the flat parts. (R = 18.5 cm,
β/h = 28 and h = 0.2 mm.)

First remark is that this method requires the wrinkle
length to be defined and measured without any ambiguity.
However, in experiments wrinkle length measurements are
affected by large uncertainties. Here, we suggest to take
wrinkle length as the distance from the pulling object to
the inflexion point of the wrinkle profile. But, these mea-
surements require precise knowledge of the wrinkle pro-
file, information that is not currently available in such
small systems. The second remark is that if the tension
vanishes, our results predict that wrinkles develop in the
whole membrane. This observation challenges the validity
of force measurements since wrinkle length is no longer a
function of the traction force. It might be argued that due
to the preparation method of elastic membranes, see ref-
erence [12], there is always a membrane tension that lim-
its the wrinkle length. However, to our knowledge, no in-
dependent measurements of such membrane tension have
been carried out. Indeed, we believe that in case of van-
ishing membrane tension another mechanism controls the
wrinkle length, for instance, gravity effects. In spite of the
arguments above, if the wrinkle profile is available, then
we suggest to measure the wrinkle maximum amplitude
instead of the wrinkle length. This alternative method
has more advantages. First, since the wrinkle amplitude
is rather insensitive to Poisson effects, it does not require
a precise knowledge of σ, a quantity which is hardly ac-
cessible in very thin membranes. Second and more im-
portant, beyond the instability threshold, wrinkle ampli-
tude follows a robust square root law as a function of the
pulling force. In contrast, wrinkle length dependence on
the pulling force is complex, depending strongly on the
membrane tension (see Fig. 11). Thus, we conclude that
more reliable measurements to characterize forces acting
on membranes are obtained with the wrinkle maximum
amplitude.

Finally, let us mention that our calculations performed
by using a simple semi-analytical method are in good
agreement with experiments, providing a reliable tool to
investigate configurations that are difficult to access ex-
perimentally. For instance, wrinkles in nano elastic films
on finite-thickness viscous substrates used in semiconduc-
tor technology or cellular forces detection as described
above. For these cases, our method can be generalized to
include, for instance, gravity effect and viscous substrate.

We are very grateful to Fernando Lund and Enrique Cerda
for many enlightening discussions and critical reading of the
manuscript. This work was supported by Conicyt under Fon-
dap Program No. 11980002. J.-C.G. thanks the Centre Na-
tional de la Recherche Scientifique (France) for supporting the
research of its members in foreign laboratories.

Appendix A.

In the present appendix, we show how the initial complex
problem of minimizing the elastic energy with respect to
the displacement fields u(r, θ) and ζ(r, θ) can be reduced
to a set of two non-linear simple differential equations.

Set of general equations

Let us denote ζ(r, θ) the scalar vertical-displacement field,
and ur(r, θ) and uθ(r, θ) the radial and ortho-radial com-
ponents of the horizontal-displacement field u(r, θ).

The elastic energy per unit surface associated to the
bending deformation can be written [14] as

EB =
Eh3

24
(

1− σ2
)

×
[

(

∆ζ
)2

+ 2(1− σ)

×
{(

1

r2

∂ζ

∂θ
− 1

r

∂2ζ

∂r∂θ

)2

−
(

∂2ζ

∂r2

)(

1

r

∂ζ

∂r
+

1

r2

∂2ζ

∂θ2

)}]

(A.1)

with

∆ζ =
∂2ζ

∂r2
+

1

r

∂ζ

∂r
+

1

r2

∂2ζ

∂θ2
, (A.2)

while the elastic energy per unit surface associated to the
stretching deformation is given by

ES =
Eh

2
(

1− σ2
)

×
[

(

urr + uθθ)
2 + 2(1− σ)×

(

u2
rθ − uθθurr

)

]

, (A.3)
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where urr, urθ and uθθ are the deformations:

urr =
∂ur
∂r

+
1

2

(

∂ζ

∂r

)2

, (A.4)

uθθ =
ur
r

+
1

r

∂uθ
∂θ

+
1

2r2

(

∂ζ

∂θ

)2

, (A.5)

urθ =
1

2

(

1

r

∂ur
∂θ

+
∂uθ
∂r

)

− uθ
2r

+
1

2r

∂ζ

∂r

∂ζ

∂θ
. (A.6)

We remind that the stress tensor relates to the deforma-
tions according to

σrr =
E

1− σ2
(urr + σuθθ) , (A.7)

σθθ =
E

1− σ2
(σurr + uθθ) , (A.8)

σrθ =
E

1 + σ
σurθ . (A.9)

The equilibrium shape of the membrane minimizes the
total energy

∫ ∫

(ES+EB)rdrdθ with respect to the func-
tions ζ(r, θ), ur(r, θ) and uθ(r, θ).

Buckling instability

Introduction

Let us now assume that the stretched membrane is
subjected to an instability that leads to the forma-
tion of n identical wrinkles elongated along the r-axis.
Helped by the experimental results, we write the vertical-
displacement field in the following form:

ζ(r, θ) = A(r) cos(nθ) (A.10)

and solve the general set of equations in order to deter-
mine the number of wrinkles, n, and the profile, A(r),
that minimize the total elastic energy. The main problem
is to determine the relations between the vertical- and
horizontal-displacement fields ζ and u. We show, in the
following subsection, how the n-fold symmetry of the con-
sidered situation helps in overcoming this difficulty.

Symmetries

One can easily convince oneself that the displacement ur
must be equal on both sides of a crest line (for instance,
the radial line θ = 0) whereas the displacement uθ must
change in sign. Thus, ur and uθ can be written as

ur(r, θ) = u0
r(r) + ur(r) cos(2nθ) , (A.11)

uθ(r, θ) = uθ(r) sin(2nθ) . (A.12)

The possible axi-symmetric deformation u0
θ(r) is taken to

be zero as we do not impose any twist of the membrane
(or differential rotation of the boundaries).

In the same way, the component σrθ of the stress ten-
sor must be odd in θ, whereas σθr must be even in θ. The
stress tensor being symmetric, these two conditions im-
pose σrθ = σθr = 0, and, from equation (A.9), urθ = 0.
Then, replacing ζ, ur, and uθ by their expressions (A.10),
(A.11), and (A.12) in equation (A.6) leads to

ru′θ − uθ − 2nur =
1

2
nAA′ . (A.13)

Moreover, σrr must be even and σθθ odd in θ, so that
these functions can be written as

σrr(r, θ) = σ0
rr(r) + σrr(r) cos(2nθ) , (A.14)

σθθ(r, θ) = σ0
θθ(r) + σθθ(r) sin(2nθ) . (A.15)

Introducing the expressions (A.10), (A.11), and (A.12) in
the general relations (A.7) and (A.8), and using the rela-
tions (A.14) and (A.15), one obtains the following impor-
tant relations between the stress tensor and the displace-
ment fields:

(1− σ2)σ0
rr = u0

r

′

+ σ
u0
r

r
+

σn2

4r2
A2 +

1

4
A′2 , (A.16)

(1− σ2)σ0
θθ = σu0

r

′

+
u0
r

r
+

n2

4r2
A2 +

σ

4
A′2 , (A.17)

σrr = u′r+
1

4
A′2 = − 1

σ

(

2n
uθ
r

+
ur
r
− n2

4r2
A2

)

, (A.18)

σθθ = 0 . (A.19)

Note that equations (A.13) and (A.18) make it possible
to write the derivatives ur

′ and uθ
′ as functions of ur and

uθ and of the derivatives of the amplitude A.

Minimization of the elastic energy

The equilibrium shape of the membrane minimizes the
total elastic energy

∫ ∫

(ES +EB)rdrdθ. Thanks to equa-
tions (A.13) and (A.18), the energy per unit area (ES +
EB) can be rewritten as a function of ur(r) and uθ(r)
without any occurence of their derivatives. Thus, the min-
imization of the total energy with respect to these two

functions reduces to dr(ES+EB)
dur

= 0 and dr(ES+EB)
duθ

= 0
and leads to the unique relation:

rur +
n

2
ruθ =

n2

4
A2 . (A.20)

Introducing this last relation in ES (Eq. (A.3)) allows us
to rewrite the total energy as a function of u0

r(r) and A(r)
only.

The minimization of the total elastic energy with re-
spect to u0

r(r) consists in writing

dr(ES + EB)

du0
r

− d

dr

[

dr(ES + EB)

du0
r

]

= 0 , (A.21)

that leads to equation (10) of Section 4.2. In the same
way, the minimization with respect to A(r) leads to equa-
tion (11).
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