On the Complexity of Spill Everywhere under SSA Form
Florent Bouchez, Alain Darte, Fabrice Rastello

To cite this version:

HAL Id: ensl-00180322
https://ens-lyon.hal.science/ensl-00180322
Submitted on 18 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Complexity of Spill Everywhere under SSA Form
Research Report nº RR2007-42

Florent Bouchez Alain Darte Fabrice Rastello
ENS-Lyon CNRS INRIA

Université de Lyon, LIP, ENS Lyon, UCBL, CNRS, INRIA, France
firstname.lastname@ens-lyon.fr

Abstract
Compilation for embedded processors can be either aggressive (time consuming cross-compilation) or just in time (embedded and usually dynamic). The heuristics used in dynamic compilation are highly constrained by limited resources, time and memory in particular. Recent results on the SSA form open promising directions for the design of new register allocation heuristics for embedded systems and especially for embedded compilation. In particular, heuristics based on tree scan with two separated phases — one for spilling, then one for coloring/coalescing — seem good candidates for designing memory-friendly, fast, and competitive register allocators. Still, also because of the side effect on power consumption, the minimization of loads and stores overhead (spilling problem) is an important issue. This paper provides an exhaustive study of the complexity of the “spill everywhere” problem in the context of the SSA form. Unfortunately, conversely to our initial hopes, many of the questions we raised lead to NP-completeness results. We identify some polynomial cases but that are impractical in JIT context. Nevertheless, they can give hints to simplify formulations for the design of aggressive allocators.

* Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation, Optimization; F.2.0 [Analysis of Algorithms and Problem Complexity]
* Keywords: Register allocation, SSA form, Spill, Complexity.

1. Introduction
Register allocation is one of the most studied problems in compilation. Its goal is to map the temporary variables used in a program to either machine registers or main memory locations. The complexity of register allocation for a fixed schedule comes from two main optimizations, spilling and coalescing. Spilling decides which variables should be stored in memory to make possible register assignment (the mapping of other variables to registers) while minimizing the overhead of stores and loads. Register coalescing aims at minimizing the overhead of moves between registers.

Compilation for embedded processors is either aggressive or just in time (JIT). Aggressive compilation is allowed to use a long compile time to find better solutions. Indeed, the program is usually cross-compiled, then loaded in permanent memory (rom, flash, etc.), and shipped with the product. Hence the compilation time is not the main issue as compilation happens only once. Furthermore, especially for embedded systems, code size and energy consumption usually have a critical impact on the cost and the quality of the final product. Just-in-time compilation is the compilation of code on the fly on the target processor. Currently the most prominent languages are CLI and Java. The code can be uploaded or sold separately on a flash memory, then compilation can be performed at load time or even dynamically during execution. The heuristics used, constrained by time and limited memory, are far from being aggressive. In this context there is trade-off between resource usage for compilation and quality of the resulting code.

1.1 SSA Properties
The static single assignment (SSA) form is an intermediate representation with very interesting properties. A code is in SSA form when every scalar variable has only one textual definition in the program code. Most compilers use a particular SSA form, the strict SSA form, with the additional so-called dominance property: given a use of a variable, the definition occurs before any uses on any path going from the beginning of the program (the root) to a use. One of the useful properties of such a form is that the dominance graph is a tree and the live ranges of the variables (delimited by the definition and the uses of a variable) can be viewed as subtrees of this dominance tree. A well-known result of graph theory states that the intersection graph of subtrees of a tree is chordal (see details in [13, p. 92]). Since coloring a chordal graph is easy using a greedy algorithm, it has the consequence for register allocation that the “assignment problem” ([13, p. 622] (mapping of variables to registers with no additional spill) is also easy.

The fact that the interference graph of a strict SSA code is chordal, and therefore easy to color, leads to promising directions for the design of new register allocation heuristics.

1.2 Recent Developments in Register Allocation
Spilling and coalescing are correlated problems that are, in classical approaches, done in the same framework. Even if “splitting”, i.e., adding register-to-register moves, is sometimes considered in such a framework, it is very hard to control the interplay between spilling and splitting/coalescing. The properties of SSA form has led to new...
approaches where spilling and coalescing are treated separately: the first phase of spilling decides which values are spilled and where, so as to get a code with Maxlive ≤ k where Maxlive is the maximal number of variables simultaneously live and k is the number of available registers. The second phase of coloring (assignment), maps variables to registers with no additional spill. When possible, it also removes move instructions, also called shuffle code in [19], due to coalescing. This is the approach advocated by Appel and George [4] and, more recently, in [1, 2, 13, 8]. The interest of this approach for embedded systems is twofold:

1. Because power consumption has to be minimized, it is very important to optimize memory transfers and thus design heuristics that spill less. This new approach allows to design much more aggressive spilling algorithms for aggressive compilers.

2. For JIT compilation, this approach allows to design very fast spilling heuristics. In a graph coloring approach [4], the spilling decision is subordinate to coloring. On the other hand, when the spilling phase is decoupled from the coloring/coalescing phase, i.e., when one considers better to avoid spilling at the price of register-to-register moves, then testing if spilling is required simply relies on checking that the number of simultaneous live variables (register pressure) is lower than k. This simple test can be performed directly on the control flow graph and the construction of an interference graph can thus be avoided. This point is especially interesting for JIT compilation since building an interference graph is not only time consuming [8], but also memory consuming [1].

The second advantage of the dominance property under SSA form is that the coloring can be performed greedily on the control flow graph. The principle for coloring a program under SSA form can be seen as a generalization of linear scan.

Linear scan: In a linear scan algorithm, the program is mapped to a linear sequence. On this sequence, the live range of a variable is an union of intervals with gaps in between. The sequence is scanned from top to bottom and, when an interval is reached, it is given an available color, i.e., not already used at this point. In Poletto and Sarkar’s approach [13], each variable is pessimistically represented by a unique interval that contains all the effective intervals (the gaps are “filled”). It has the negative effect of overestimating the register pressure between real intervals but it ensures that all intervals of the same variable are assigned the same register. In some way, Poletto and Sarkar’s algorithm provides a “color everywhere” allocation, i.e., it does not perform any live-range splitting. Allowing the assignment of different colors for a given variable requires shuffle code [4, 13, 8] to be inserted afterwards to repair inconsistencies. Such a repairing phase requires additional data-flow analysis that might be too costly in JIT context.

Tree scan: Coloring a program under SSA can be seen as a tree scan: the program is mapped on the dominance tree, live ranges are subtrees. The dominance tree is scanned from root to leaves and when an interval is reached it is given an available color. Here the liveness is accurate and there is no need for gap filling or additional live range splitting. Replacing \(\delta \)-functions by shuffle code does not require any global analysis. In other words, tree scan is a generalization of linear scan.

1.3 Spill Everywhere

As already mentioned, the dominance property of SSA form suggests promising directions for the design of new register allocation heuristics especially for JIT compilation on embedded systems. The motivation of our study was driven by the hope of designing both fast and efficient register allocation based on SSA form. Notice that answering whether spilling is necessary or not is easy — even if there can be some subtleties [5] — while minimizing the amount of load and store instructions is the real issue. In other words, if the search space is now cleanly delimited, the objective function that corresponds to minimizing the spill cost has still some open issues. So the question is: Is it easier to solve the spilling problem under SSA? In particular is the spill everywhere problem simple under SSA form?

The spilling problem can be considered at different granularity levels: the highest, so called spill everywhere, corresponds to considering the live range of each variable entirely. A spilled variable will then lead to a store after the definition and a load before each use. The finer granularity, so called start-store optimization, corresponds to optimize each load and store separately. The latter problem, also known as paging with write back, is NP-complete [13] on a basic block even under SSA form. The former problem is much simpler, and a well-known polynomial instance exists under SSA form on a basic block. To develop new spilling heuristics, studying the complexity of spilling everywhere is very important for the design of both aggressive and JIT register allocators.

1. First, the complexity of the load-store optimization problem comes from the asymmetry between loads and stores [11]. The main difference between the load-store optimization problem and the spill everywhere problem comes from this asymmetry. We have measured that, in practice, most SSA variables have only one or two uses. So, it is natural to wonder whether this singularity makes the load-store optimization problem simpler or not. The extreme case with only one use per variable is equivalent to the spill everywhere problem. More generally, even in the context of a traditional compiler, the spill everywhere problem can be seen as an oracle for the load-store optimization problem to answer whether a variable should be stored or not. In the context of aggressive compilation [13, 8], a way to decrease the complexity is to restore the symmetry between loads and stores as done in [1].

2. Second, spill everywhere is a good candidate for designing simple and fast heuristics for JIT compilation on embedded systems. Again, in this context, the complexity and the footprint of the compiler is an issue. Spilling only parts of the live ranges, as opposed to spilling everywhere, leads to irregular live range splitting and the insertion of shuffle code to repair inconsistencies, in addition to maintaining liveness information for coalescing purpose. All of this is probably too costly for some embedded compilers.

Studying the complexity of the spill everywhere problem in the context of SSA form is thus important to guide the design of both aggressive and JIT register allocation algorithms. This the goal of this paper. To our knowledge this is the first exhaustive study of this problem in the literature.

1.4 Overview of the paper

The rest of paper is organized as follows. For our study, we considered different variants of the spilling problem. Section 2 provides the terminology and notation that describe the different cases we considered. Section 3 considers the simplified spill model where a spilled variable frees a register for its whole live range; we provide an exhaustive study of its complexity under SSA form. Section 4 deals with the problem where a spilled variable might still need to reside in a register at its points of definition and uses. Here, the study is restricted to basic blocks as it is already NP-complete for this simple case. Section 5 summaries our results and concludes.

\[\text{1 In this formulation, a variable might be either in memory location or in a register, but cannot reside in both.}\]
2. Terminology and Notation

Context: For the purpose of our study, we consider different configurations depending whether live ranges are restricted to a basic block or not. Indeed, on a basic block, the interference graph is an interval graph, while for a general control flow graph, under strict SSA form, it is chordal. We also consider whether the use of an evicted variable in an instruction requires a register or not. If not, spilling a variable corresponds to decreasing by one the register pressure on every points of the corresponding live range. Otherwise, spilling a variable does not decrease the register pressure on program points that use it: in that case, instead of having the effect of removing the entire live range, spilling a variable corresponds to removing a version of the live range with “holes” at the use and definition points. We denote those two problems respectively as without holes or with holes. Finally, we distinguish the cases where the cost of spilling is the same for all variables or not. We denote those two problems respectively as unweighted (denoted by $w(v) = 1$ for all v) or weighted (denoted by $w(v) ≠ 1$).

Decreasing Maxlive: As mentioned earlier the goal of the spilling problem is simply to lower the register pressure at every program point, while the corresponding optimization problem is to minimize the spilling cost. At a given program point, the register pressure is the number of variables alive there. The maximum over all program points, usually named Maxlive, will be denoted by $Ω$ here. Let us denote by r the number of available registers. Hence formally, the goal is to decrease $Ω$ by spilling some variables. If we denote by $Ω’$ the register pressure after this spilling phase, we distinguished the following four problems: $Ω’ ≤ Ω − 1$, $Ω’ ≤ Ω − k$ where k is a constant, $Ω’ ≤ k$ where k is a constant, and the general problem $Ω’ ≤ r$ where there is no constraint on the number of registers r.

A graph problem: The spill everywhere problem without holes can be expressed as a node deletion problem. The general node deletion problem can be stated as follows. Given a graph or digraph G find a set of nodes of minimum cardinal, whose deletion results in a subgraph or subdigraph satisfying the property \mathcal{P}. Hence, the results of the first section have a domain of application not only on register allocation but also on graph theory. For this reason, we formalize them using graphs (properties of the interference graphs) instead of programs (register pressure on the control flow graph) while the algorithmic behind is actually based on the control flow graph representation.

Perfect graphs: Perfect graphs have some interesting properties for register allocation. In particular, they can be colored in polynomial time, which suggests that we can design heuristics for spilling or coalescing in order to change the interference graph into a perfect graph. For a graph G, the maximal size of a complete subgraph, i.e., a clique, is the clique number $ω(G)$. The minimum number of colors needed to color G is the chromatic number $\chi(G)$. Of course, $ω(G) ≤ \chi(G)$ because vertices of a clique must have different colors. A graph G is perfect if each induced subgraph $G’$ of G (including G itself) is such that $\chi(G’) = ω(G’).$ A chordal graph is a perfect graph; it is the intersection graph of subintervals of a tree: to each subtree corresponds a vertex, and there is an edge between two vertices if the corresponding subtrees intersect. A well-known subclass of chordal graphs is the class of interval graphs, which are intersection graphs of subsequences of a sequence.

3. Spill Everywhere without Holes

It is well known that, on a basic block, the unweighted spill everywhere problem without holes is polynomial: this is the greedy furthest first use algorithm described by Belady. It is less known that the weighted version of this problem, which cannot be solved using this last technique, is also polynomial: the interference graph is an intersection graph for which the incidence matrix is totally unimodular and the integer linear programming (ILP) formulation can be solved in polynomial time. This property holds also for a path graph, which is a class of intersection graphs between interval graphs and chordal graphs. We recall these results here for completeness. We also recalled earlier that, under SSA form, once the register pressure has been lowered to r at every program point, the coloring “everywhere” problem (each variable is assigned to a unique register) is polynomial.

The natural question raised by these remarks is whether the spill everywhere problem without holes is polynomial or not. In other words, does the SSA form make this problem simpler? The answer is no. A graph theory result of Gavril and Yannakakis shows it is NP-complete, even in its unweighted version: for an arbitrarily large number of registers r, a program with $Ω$ arbitrarily larger than r, spilling everywhere a minimum number of variables such that $Ω’$ is at most r is NP-complete. The main result of this section shows more: this problem remains NP-complete even if one requires only $Ω’ ≤ Ω − 1$. The practical implication of this result is that for a heuristic that would lower $Ω$ one by one iteratively, even the optimization of each separate step is an NP-complete problem.

Table summarizes the complexity results of spilling everywhere (without holes). We now recall classical results and prove new more accurate results. Let us start with the decision problem related to the most general case of spill everywhere without holes.

\[\text{Problem: Spill everywhere}\]

\[\begin{align*}
\text{Instance} & \quad \text{A perfect graph } G = (V, E) \text{ with clique number } Ω = ω(G), \text{ a weight } w(v) > 0 \text{ for each vertex, an integer } r, \text{ an integer } k. \\
\text{Question} & \quad \text{Can we remove the vertices in } V_1 \subseteq V \text{ from } G \text{ with overall weight } \sum_{v \in V_1} w(v) ≤ K \text{ such that the clique number } Ω’ \text{ of the induced subgraph } G’ \text{ is at most } r? \\
\end{align*}\]

Theorem 1 (Furthest First). The spill everywhere problem for an interval graph is polynomially solvable, with a greedy algorithm, if $w(v) = 1$ for all v even if r is not fixed.

The algorithm behind this theorem is the well-known furthest use strategy described by Belady in [2]. This strategy is very interesting for designing spilling heuristics on the dominance tree (see for example [4]). We give here a constructive proof for completeness.

Proof: An interval graph is the intersection graph of a family of sub-sequences of a (graph) chain. For convenience, we denote the chain as B, vertices of B are called points, and sub-sequences of B are called variables. Consecutive points are denoted by p_1, \ldots, p_m, and the set of variables is denoted by V. Once variables are removed (spilled), the remaining set of variables $V’$ is called an allocation. An allocation is said to fit B if, for each point p of B, the number of remaining variables intersecting p is at most r. The goal is to remove a minimum number of variables such that the remaining allocation fits B. The greedy algorithm can be described as follows:

Step 0 (init) Let $V_0 = V$ and $i = 1$;

Step 1 (find first) Let $p(i)$ be the first point from the beginning of the chain such that more than r remaining variables, i.e., in $V’_{i−1}$, intersect $p(i)$;

Step 2 (remove furthest) Select a variable v_i that intersects p and ends the furthest and remove it, i.e., let $V’_i = V’_{i−1}\backslash\{v_i\}$;

Step 3 (iterate) If $V’_i$ fits B, stop, otherwise increment i by 1 and go to Step 1.

Note that providing an optimal solution for each intermediate step (going from $Ω$ to $Ω’ − 1$, then from $Ω’ − 1$ to $Ω’ − 2$, and so on, until $Ω’ = r$) does not always give an optimal solution for the problem of going from $Ω$ to r.

Let us prove that the solution obtained by the greedy algorithm is optimal. Consider an optimal solution S (described by a set V_S of spilled variables) such that V_S contains the maximum number of variables v_i selected by the greedy algorithm. Suppose that S does not spill all of them and denote by v_0 the variable with smallest index such that $v_0 \notin V_S$. By definition of p_{v_0} in the greedy algorithm, there are at least $r + 1$ variables not in $\{v_0, \ldots, v_{n-1}\}$ intersecting $p(v_0)$. As S is a solution, there is a variable v in V_S (thus $v \neq v_0$) that intersects $p(v_0)$. We claim that spilling $W = V_S \setminus \{v_0\}$ instead of v_0 is a solution too. Indeed, for all points before $p(v_0)$ (excluded), the number of variables in $V'_{v_0} = V \setminus \{v_1, \ldots, v_{n-1}\}$ is at most r. Since $\{v_1, \ldots, v_{n-1}\} \subseteq W$, this is true for $V \setminus W$ too. Furthermore, each point p after $p(v_0)$ (included), intersected by v, is also intersected by v_0 by definition of v_0. Thus, as p is intersected by at most r variables in $V \setminus V_0$, the same is true for $V \setminus W$. Finally, this solution spills more variables than S, which is not possible by definition of S. Thus V_S contains all variables v_i and, by optimality, only those. This proves that the greedy algorithm gives an optimal solution. \(\square\)

Theorem 2 (poly. ILP). The spill everywhere problem for an interval graph is polynomially solvable even if $w \neq 1$ and r is not fixed.

This result was pointed out by Gavril and Yannakakis in [2] and used in a slightly different context by Farach-Colton and Liberatore [4]. The idea is to formulate the problem using ILP and to remark that the matrix defining the constraints is totally unimodular. For the sake of completeness, we provide the formulation here.

Proof: We use the same notations as for Theorem 1 except that, now, v_1, \ldots, v_n denote all variables and not only those selected by the greedy algorithm. Let w_i be the cost of removing (spilling) variable v_i. We define the clique matrix as the matrix $C = (c_{v_i})_v$ where $c_{v_i} = 1$ if v intersects the point p and $c_{v_i} = 0$ otherwise. Such a matrix is called the incidence matrix of the interval hypergraph and is totally unimodular [4]. The optimization problem can be solved using the following integer linear program, where x_i is a vector with components $(x_{i})_{i \in \{0, \ldots, n\}}$, \vec{x} is a vector with components $(w_i)_{i \in \mathbb{N}}$. F is a vector whose components are all equal to r, and vector inequalities are to be understood component-wise:

$$\max \{x_i, \vec{x} | Cx \leq \vec{r}, \vec{0} \leq \vec{x} \leq \vec{r}\}$$

Of course, $x_i = 0$ means that v_i should be removed while $x_i = 1$ means it should be kept. The matrix of the system is C with some additional identity matrices, which keeps the total unimodularity. \(\square\)

The next two theorems are from Yannakakis and Gavril [2].

Theorem 3 (Yannakakis). The spill everywhere problem is NP-complete for a chordal graph even if $w(v) = 1$ for each $v \in V$.

Another important result of [2] is that the spill everywhere problem is polynomially solvable when r is fixed. Of course, there is a power of r in the complexity of their algorithm, but it means that if r is small, the program is simpler. Because of this, we call the problem when r is fixed "spill everywhere with few registers".

Table 1. Spill everywhere without holes.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Spill everywhere with few registers (k)</th>
<th>Instance</th>
<th>A perfect graph $G = (V, E)$ with clique number Ω, a weight $w(v) > 0$ for each vertex, an integer K, $r = k$ is fixed.</th>
</tr>
</thead>
</table>
| Question | Can we remove vertices $V \subseteq V$ from G with overall weight $\sum_{v \in V} w(v) \leq K$ such that the induced subgraph G' has clique number $\Omega' \leq r$? | Solution | A chordal graph is the intersection graph of a family V of subtrees of a tree T (Thm 4.8 [13]). We call points the vertices of the tree T and, to distinguish the maximal subtrees T_p rooted at each given point p from the subtrees of the family V, we call the latter variables. Given a point p and a set $W \subseteq V$ of variables, let $W(p)$ be the set of variables $v \in V$ intersecting p, i.e., such that p belongs to the subtree v. If $|W(p)| \leq r$, we say that W fits p and that $W(p)$ is a fitting set for p. We say that W fits a set of points if it fits each of these points. A solution to the spill everywhere problem with r registers is thus a subset W of V such that W fits T. It is an optimal solution if $\sum_{v \in W} w(v)$ is maximal. With these notations, W corresponds to $V - V_0$ in the spill everywhere problem formulation, and maximizing the cost of W is equivalent to minimizing the weight of V_0.

Given a subset of variables W, we consider its restriction, denoted by W_p to a subtree T_p; it is defined as the set of variables $v \in V$ that have a non-empty intersection with T_p. Note that if W fits T, then its restriction W_p to a subtree T_p fits T_p. Furthermore, if p_1 and p_2 are children of p in T then, because of the tree structure, all variables that belong to both W_{p_1} and W_{p_2} intersect p, and all variables in W_p intersect p also intersect p_1, i.e., $W_p(p) = W_{p_1}(p_1) \cap W_{p_2}(p_2)\cap W_{p_1}(p_1)$. These remarks ensure the following. Let W be a fitting set for T_p and let W' be a fitting set for T_{p_1} such that $W'_p(p) = W_{p_1}(p)$ (i.e., they coincide between p and p_1). Then, replacing W_p by W'_p, W leads to another fitting set of T_p. This is the key to get an optimal solution thanks to dynamic programming.

The final proof is an induction on the points p of T — from the leaves to the root — and on the fitting sets of those points $F_p \in T_p = \{W \subseteq V(p); |W| \leq r\}$. Let us denote by $\mathcal{W}_{max}(p, F_p)$ a subset W of V that contains only variables intersecting T_p, such that $W(p) = F_p$, and with maximal cost. It can be built recursively as follows. For each child p_1 of p, consider all possible fitting sets F_{p_1} that match F_p, i.e., such that $F_{p_1} \cap V(p) = F_p \cap V(p_1)$ and pick the solution such that $\mathcal{W}_{max}(p, F_{p_1})$ is maximal. From these selected subsets, one for each p_1, $\mathcal{W}_{max}(p, F_p)$ can be defined. This construction is done for each $F_p \in T_p$. As there are at most

\[\text{Note: weaker results have arrows pointed to the proof subsuming them.}\]

<table>
<thead>
<tr>
<th>Chordal graph</th>
<th>Interval graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>weighted</td>
<td>weighted</td>
</tr>
<tr>
<td>$\Omega' \leq K$</td>
<td>$\Omega' \leq r$</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>\mathcal{NP} ↓</td>
<td>\mathcal{NP} ↑</td>
</tr>
</tbody>
</table>

\[\text{Table 1. Spill everywhere without holes.}\]
$V(p)^k \leq \Omega^k$ such fitting sets for p, these successive locally optimal solutions can be built in polynomial time.

We now address the following problem, which is a particular case of the more general spill everywhere problem.

Problem: Incremental spill everywhere

Instance A perfect graph $G = (V,E)$ with clique number $\Omega = \omega(G)$, a weight $w(v) > 0$ for each vertex, an integer K.

Question Can we remove vertices $V_2 \subseteq V$ from G with overall weight $\sum_{v \in V_2} w(v) \leq K$ such that the induced subgraph G' has clique number $\Omega' \leq \Omega - 1$?

The following theorem can be seen as a particular case of Theorem 5. The proof is interesting since it provides an alternative solution to the ILP formulation for this simpler case.

Theorem 5 (Dynamic programming on spilled variables). If G is an interval graph, the incremental spill everywhere problem is polynomially solvable, even if $w \neq 1$.

Proof: Let $B = \{p_1, \ldots, p_n\}$ be a linear sequence of points, $p_i < p_j$ if $i < j$, and $V = \{v_1, \ldots, v_n\}$ be a set of weighted variables, where each variable v_i corresponds to an interval $[s(v_i), e(v_i)]$. We assume that the variables are sorted by increasing starts, i.e., $s(v_i) \leq s(v_j)$ if $i < j$. Without loss of generality, the problem can be restricted to the case where any point p belongs to exactly Ω variables (any other point can be deleted from the instance). For each point, one needs to spill at least one of the intersecting variables. What we seek is thus a minimum weighted cover of B by the variables of V, which can be done thanks to dynamic programming as follows.

Let $W(p_i)$ be the minimum cost of a cover of p_1, \ldots, p_i. Knowing all $W(p_i)$, it is possible to compute $W(p_n)$. Indeed, at p_i, one must choose a variable $v \in V(p_i)$, i.e., intersecting the point p_i. As v already covers the interval between its start $s(v)$ and p_i, we get:

$$W(p_i) = \min_{v \in V(p_i)} (w(v) + W(p_{pred}[s(v)]))$$

where $p_{pred}[s(v)]$ is the index of the previous point in B that belongs to v. The complexity of the dynamic programming is $O(n \Omega)$.

Theorem 6 (From 3-exact cover). The incremental spill everywhere problem is NP-complete for a chordal graph even if $w(v) = 1$ for each $v \in V$.

Proof: As for Theorem 5, we use the characterization of a chordal graph as an intersection graph of a family of subtrees of a tree. We use the same notations. The proof is a reduction from Exact Cover by 3-Sets (X3C) Problem SP2: let P be a set of $3n$ elements $\{p_1, p_2, \ldots, p_{3n}\}$, and $V = \{v_1, v_2, \ldots, v_n\}$ a set of subsets of P where each subset contains exactly three elements of P. Does V contain an exact cover of P, i.e., a sub-collection $S \subseteq V$ such that every element of P occurs in exactly one member of S?

Let us consider an instance of X3C and define the following family of subtrees of a tree: the main tree T is of height 2 with one root point labeled p_0 and $3n$ leaves labeled p_1, p_2, \ldots, p_{3n}. For each $v_i = \{p_0, p_{i}, p_{i+1}\}$ there is a subtree (variable) made of the root p_0 and the tree points p_{i}, p_{i+1}, p_{i+2}. The number of variables intersecting p_0 is m, so $\Omega = m$. Let us create as many additional variables as necessary (we call them non-labeled variables) so that the number of intersecting variables is exactly Ω for each point of T. In other words, for a leaf p_1 that belongs to k subtrees v_i, we create $m - k$ subtrees, each containing only p_1. Given this family of subtrees of a tree, consider the corresponding intersection graph (which is chordal). We now show that this instance of X3C has a solution if and only if it is possible to remove (spill) at most $n = K$ variables such that, for each point p, the number of remaining intersecting variables is at most $\Omega - 1$. Notice that the reduction is polynomial: the whole number of variables is not larger than $3n \times m$.

Suppose that there is a solution to the incremental spill everywhere problem and let V_2 be the set of removed variables with $|V_2| \leq n$. There is no non-labeled variable in V_2 because Ω must be decreased in the $3n$ leaves and only a labeled variable goes over three leaves. Hence V_2 contains only labeled variables, $|V_2| = n$, and the corresponding set of subsets S is a covering of P. Conversely, suppose that the X3C instance has a solution S and let V_2 be the set of corresponding subtrees. Since S is a covering of P, $|S| = n$ and there is exactly one intersecting set in V_2 for each leaf. So the number of remaining intersecting variables is $\Omega - 1$ for each leaf. As for the root p_0, all variables intersect it, so there is at least one (labeled) variable removed and the number of remaining intersecting variables is at most $\Omega - 1$. In other words, V_2 is a solution, with $|V_2| \leq n$, to the incremental spill everywhere problem.

This proves that the incremental spill everywhere problem is NP-complete (the fact it belongs to NP is straightforward).

The comparison between this last theorem and Theorem 5 is very interesting. Indeed, our first (false) intuition was that choosing which variables to remove so as to go from Ω to $\Omega - k$ was exactly the symmetric of choosing which variables to keep so as to get down to k. At first sight, it seemed that dynamic programming could be used, as for Theorem 5, to solve the incremental spill everywhere problem. For interval graphs, both problems can indeed be solved with dynamic programming as we previously showed. The incremental approach would have then provided a heuristic for the main spill everywhere problem, as an alternative to an exact solution as in 3-Sets, which is too expensive when r is large. Unfortunately, Theorem 6 contradicts this intuition. In fact, the two problems are not perfectly symmetric: to make the graph k-colorable, the number of kept variables live at any point should be at most k while to make a graph $\Omega - k$ colorable, the number of removed variables live at any point must be at least k, as for the point p_1 in the proof of Theorem 5. This is where the combinatorial complexity comes from.

4. Spill Everywhere with Holes on a Basic Block

The previous section dealt with the spill everywhere problem without holes. To summarize, this problem is polynomial for a basic block even in its weighted version whereas, most of the time, it is NP-complete for a general control flow graph under SSA form. As mentioned earlier, the model without holes does not reflect the reality of most architectures. The goal of this section is to tackle the problem of spill everywhere with holes on a basic block.

Where do the holes come from? For an architecture where operations are allowed only between registers, whenever a variable is spilled, one needs to insert load instructions before the uses of this variable and a store instruction after its definition. This means that new variables appear, with very short live ranges but which nonetheless need to be assigned to registers. In other words, when a variable is spilled, the number of simultaneously alive variables decreases by one at every point of the live range, except where the variable is defined or used. Thus spilling everywhere a variable does not remove the complete interval, but only parts of it, since there is still some tiny sub-intervals left. This is why, for instance, in Chaitin et al. algorithm 5, the register allocation must re-build the interference graph and iterate if some variables are spilled.

Holes and chads: The notion of holes can be formalized as follows. An SSA code on a basic block, or linear SSA code, is a pair $C = (B, V)$ where $B = \{p_1, \ldots, p_n\}$ is a sequence of m instructions;
and V the set of variables which appear in those instructions. An instruction first uses simultaneously some variables and then possibly defines some other new variables. Each variable of V is defined at most once and, if it is not defined, it is live-in for the sequence B. Also, each variable either has a “last use” (last instruction which uses it) or is live-out for the sequence. A variable is represented by a simple interval of the sequence B, starting at the middle of the instruction that defines it (or at the beginning of B for a live-in), and ending at the middle of its last use (or at the beginning of B for a live-out). Spilling a variable $v \in V$ decreases by one the register pressure at each of its points but not at its definition and uses points: the set of points that is actually “removed” is the interval v with holes on it, so we call it a punched interval. The remaining points $c \in v$ which are not removed are called chads, as if, when spilling the variable v, one first had punched the corresponding interval, leaving small intervals in place. See Figure 1 for a graphical explanation.

Simultaneous holes: Also, we distinguish different cases depending on h, the number of simultaneous holes. This number corresponds to the maximum number of registers which can be used (arguments) by the same instruction or defined by the same instruction. For instance, $h = 2$ in the following three operand addition add $x_{reg1}, x_{reg2} \Rightarrow x_{reg3}$. Finally, for a given point p of B, the set of variables live at p is denoted by $L(p)$. Its cardinal, the register pressure, is denoted by $l(p) = |L(p)|$ and Maxlive, the maximum of $l(p)$ over all points $p \in B$, is denoted by $\omega(C)$. Once some variables V_{S} have been spilt, the induced code can be characterized as follows. The set of spilled variables live at p is $L_{s}(p) = V_{S} \cap L(p)$; the set of non-spilled live variables is $L'(p) = L(p) - L_{s}(p)$. The new register pressure is denoted by $l'(p)$. Notice that $L'(p)$ does not contain any chad, whereas of course $l'(p)$ needs to take remaining chads into account. Hence $l'(p)$ is not necessarily equal to $|L'(p)|$ but, more generally, $|L'(p)| \leq l'(p) \leq |L'(p)| + h$.

All previous notions can be generalized to a general SSA program. The sequence B (linear code) becomes a tree T (dominance tree) and punched intervals become punched subtrees. Now, the (general) problem can be stated as follows.

Problem: Spill everywhere with holes

Instance A code $C = (T, V)$ with Maxlive $\Omega = \omega(C)$, a weight $w(v) > 0$ for each variable, integers r and K.

Question Can we spill variables $V_{S} \subseteq V$ from V with overall weight $\sum_{v \in V_{S}} w(v) \leq K$ such that the induced code C' has Maxlive $\Omega' \leq r$?

Other instances The spill everywhere on a basic block denotes the case where T is a sequence B (linear code). The spill everywhere with few registers (k) denotes the case where r is fixed equal to k. The spill everywhere with many registers (k) denotes the case where r is equal to $\Omega - k$. The incremental spill everywhere denotes the case where r is equal to $\Omega - 1$.

As explained in [11], the hardness of load-store optimization comes from the fixed cost of the store (once a variable is chosen to be evicted) while the number of loads (number of times it is evicted) is not fixed. Neglecting the cost of the store would lead to a polynomial problem where each sub-intervals of the punched interval could be considered independently for spilling. But we feel that this approximation is not satisfactory in practice because the mean number of uses for each variable can be small. Indeed, we measured on our compiler tool-chain, using small kernels representative of embedded applications, that most spilled variables have at most two uses. Hence, minimizing the number of spilled variables is nearly as important as minimizing the number of unsatisfied uses. Consider for example a furthest-first-like strategy on sub-intervals (see Figure 2 for an illustration of sub-intervals). To design such a heuristic, a spill everywhere solution might be considered to drive decisions: between several candidates that end the furthest, which one is the most suitable to be evicted in the future? Unfortunately, as summarized by Table 2, most instances of spill everywhere with holes are NP-complete for a basic block.

We start with a result similar to Theorem 4 even with holes, the spill everywhere problem with few registers is polynomial.

Theorem 7 (Dynamic programming on non-spilled variables). The spill everywhere problem with holes and few registers is polynomialally solvable even if $w \neq 1$.

Proof: The proof is similar to the proof of Theorem 4. The only point is to adapt the notations to take chads into account. The word “removed” has to be replaced by “spill” since variables are not removed entirely. Furthermore, the definition of “fitting set” needs to be modified. A set F_{p} of variables is a fitting set for p if, when all variables not in F_{p} are spilled, the new register pressure $l'(p)$ is at most r. In other words, the set of fitting sets becomes $F_{p} = \{ L'(p); l'(p) \leq r \}$. Hence, it is “harder” for a set to be a fitting
set than for the problem without holes. Therefore, the number of fitting sets is smaller and is still at most $L(p)^d \leq \Omega^d$.

As in Theorem 7, the proof is an induction on points p of T (from the leaves to the root) and on fitting live sets $F_p \in F_p$, $W_{\text{max}}(p,F_p)$ is built, for each $F_p \in F_p$, thanks to dynamic programming, by “concatenating” some well chosen $W_{\text{max}}(f,F_f)$. Given a child f of p, we select a fitting set $F_f \in F_f$ that matches F_p, i.e., such that $F_f \cap L(f) = F_p \cap L(f)$, and that maximizes the cost of $W_{\text{max}}(p,F_p)$. We do this for each child of p, and because by construction they match on p, they can be expanded to a solution $W_{\text{max}}(p,F_p)$ that fits T_p. The arguments are the same as for Theorem 4 and are not repeated here.

We have seen that, without holes, the spill everywhere problem on an SSA program, with few registers, is polynomial whereas the spilled variables live at a given point can be arbitrarily large (up to Ω). For a basic block, if h is fixed, this is not the case anymore. As we will see, this number is bounded by $2(h+k)$, leading to a dynamic programming algorithm with $O(|B||\Omega|^{2(h+k)})$ steps.

Theorem 8 (Dynamic programming on spilled variables). The spill everywhere problem with holes and many registers can be solved in polynomial time, for a basic block, if h is fixed even if $w \neq 1$.

Proof: The key point is to first prove that, for an optimal solution, for each point p, $|L_p(p)| \leq 2h+k$. Consider a point p such that $|L_p(p)| \geq h+k+1$. We extend this point to a maximal interval I such that on any point p of this interval, $|L_p(p)| \geq h+k+1$. We claim that there is no spilled variable $v \in V_p$ completely included in I. Indeed, otherwise, if v were restored (unspilled), then, at each point p of v, at least $(h+k+1)−1 = h+k$ variables would have been spilled, so the register pressure $\Gamma(p) = \sum|L_p(p)| + h \leq (\Omega - (h+k)) + h = \Omega - k$ would still be large enough. This would contradict the optimality of the initial solution. Hence, no variable of V_p is completely included in I: either it starts before the beginning of I, or it ends after the end of I. But I is of maximal size, hence on both extremities, there are at most $h+k$ live spilled variables. This means that there is at most $2(h+k)$ spilled variables live in any point of I.

The rest of the proof is similar to the proofs of Theorems 4 and 8. The only difference is that spilled variables are considered instead of kept variables. For a point p, an extra live set E_p is a set of variables of cardinal at most $2h+k$ and such that, if E_p is spilled, the new register pressure $\Gamma'(p)$ becomes lower than r. Let E_p be the set of extra sets for p. It has at most $L(p)^{2h+k} \leq \Omega^{2h+k}$ elements.

The proof is an induction on points p of $B = \{p_1, \ldots, p_n\}$ and on extra live sets $E_p \in E_p$. Let $B_p = \{p_1, \ldots, p_k\}$. A set of variables is said to fit B_p if, for all points in B_p, the register pressure obtained if all other variables are spilled is at most r. The induction hypothesis is that a solution $W_{\text{max}}(p,E_p)$ of maximum cost, that fits B_p, and with $L_p(p) = E_p$, can be built in polynomial time. Let p be a point of B and f its predecessor. Let $E_p \in E_p$, and an extra live set E_f that matches E_p, i.e., such that $E_f \cap L(f) = E_p \cap L(f)$,
Theorem 10 (At most 2 simultaneous chads). The spill everywhere problem with holes is \(NP\)-complete even if \(w(v) = 1\) for all \(v \in V\), even with at most 2 simultaneous chads, and even on a basic block.

Proof: The proof is a straightforward reduction from Independent Set. Consider an instance of Independent Set. To each vertex \(v \in V\) corresponds a variable \(\alpha(v)\) which is live from the entry of \(B\) to its exit. To each edge \((\mu, \nu) \in E\) of \(G\) corresponds a point \(p(\mu, \nu)\) of \(B\) that contains a use of the corresponding variables \(\mu\) and \(\nu\). In other words, there are two chads for each point of \(B\). The key point is to notice that spilling variables in \(V_3\) lowers the register pressure to \(|V| - K + 1\) if and only if the corresponding set of vertices \(V_3\) is an independent set. Indeed, if \(V_3\) contains two adjacent vertices \(\mu\) and \(\nu\), then at point \(p(\mu, \nu)\), the register pressure would be \(|V| - K + 2\). Hence, by letting \(K = |V| - K + 1\), we get the desired reduction. Indeed, if there exist \(K\) variables that, when spilled, lead to a register pressure at most \(|V| - K + 1\) then, first, \(K\) must be equal to \(K\) and, second, the corresponding vertices form an independent set of size \(K\). Conversely, if there is an independent set of size at least \(K\), then spilling the corresponding variables leads to a register pressure at most \(|V| - K + 1\).

Theorem 11 (No simultaneous chads). The spill everywhere problem with holes is \(NP\)-complete even if \(h = 1\) and for a basic block.

Proof: As for Theorem 10, the proof is a reduction from Independent Set. Consider an instance of Independent Set. To each vertex \(v \in V\) of \(G\) corresponds a variable \(\alpha(v)\) which is live from the entry of \(B\) to its exit. To each edge \((\mu, \nu) \in E\) of \(G\) corresponds a region in \(B\) where \(u\) and \(v\) are consecutively used. As depicted in Figure 1, such a region contains two additional overlapping local variables \(\delta_u\) and \(\delta_v\) (called \(\delta\) variables). For real codes, every live range must contain a chad at the beginning and a chad at the end. For our proof, we need to be able to remove the complete live range of a \(\delta\) variable, which is not possible because of the presence of chads for such variables. To avoid this problem, we increase the register pressure by 1 everywhere, except where \(\delta\) variables have chads. See Figure 1 again: we add new variables \(f_i\) such that the union of their live ranges covers exactly all points of \(B\), except the points that correspond to the chad of a \(\delta\) variable. The cost \(\beta\) of spilling a variable \(f_i\) will be chosen large enough so that \(f_i\) variables are never spilled in an optimal solution. So, from now on, without loss of generality, we consider the simplified version of the region (right hand side of Figure 1) where \(\delta\) live ranges contain no chads. We let \(K = |V| - K + 1\). The cost for spilling a variable \(f_i\) is \(\beta\) while the cost for spilling a \(\delta\) variable is 1. The suitable value for \(\beta\) will be determined later.

The trick is to make sure that an optimal solution of our spilling problem exactly \(K\) vertex variables and at least \(|E|\) of the \(\delta\) variables (one per region). We do so by letting \(\alpha = 2|E| + 1\) (in fact \(\alpha = |E| + 1\) would be enough but we do so to simplify the proof). First, spilling \(K - 1\) vertex variables in addition to all \(\delta\) variables is not enough: on the chad of one of the spilled variables, the register pressure will be lowered to \(|V| - (K - 1) + 1 = |V| - K + 2 > r\). Second, spilling \(K\) vertex variables requires to spill at least one \(\delta\) variable per region and spilling all \(\delta\) variables is enough. Hence, the minimum cost of a spilling with exactly \(K\) vertex variables is between \(Ka + E\) and \(Ka + 2E\). Finally, spilling \(K + 1\) vertex variables has a cost equal to \((K + 1)\alpha = Ka + 2|E| + 1\).

Now, it remains to show that the cost of an optimal spilling is \(Ka + E\) if and only if the spilled variables define an independent set for \(G\). Consider an edge \((u, v)\). All situations are depicted in Figure 1 if both \(u\) and \(v\) are spilled (in this case, \(V\) is not a stable set), then both \(\delta_u\) and \(\delta_v\) must be spilled and the cost cannot be \(Ka + E\). Otherwise, spilling either \(\delta_u\) or \(\delta_v\) is enough.

5. Conclusion

Recent results on the SSA form have opened promising directions for the design of register allocation heuristics, especially for dynamic embedded compilation. Studying the complexity of the spill everywhere problem was important in this context. Unfortunately, our work shows that SSA does not simplify the spill problem like it does for the assignment (coloring) problem. Still, our results can provide insights for the design of aggressive register allocators that trade compile time for provably “optimal” results. Our study considers different singular variants of the spill everywhere problem.

1. We distinguish the problem without or with holes depending on whether use operands of instructions can reside in memory slots or not. Live ranges are then contiguous or with chads.
2. For the variant with chads, we study the influence of the number of simultaneous chads (maximum number of use operands of an instruction and maximum number of definition operands of an instruction).
3. We distinguish the case of a basic block (linear sequence) and of a general SSA program (tree).
unfortunately, only for a basic block, not a general SSA program. Formulations can solve, in polynomial-time, the weighted version, but unweighted version without holes on a basic block. An ILP for-

The classical furthest-first greedy algorithm is optimal only for the

formulations of the same problem. For architectures with a large number of registers, it shows that algorithms based on dynamic programming can be considered in an aggressive compilation context. In particular, it is a possible alternative to commercial solvers required by ILP formulations of the same problem. For architectures with a large number of registers, we have studied the a priori symmetric problem where one needs to decrease the register pressure by a constant number. Our hope was to design a heuristic that would incrementally lower one by one the register pressure to meet the number of registers. Unfortunately, this problem is NP-complete too.

To conclude, our study shows that complexity also comes from the presence of chads. The problem of spill everywhere with chads is NP-complete even on a basic block. On the other hand, the incremental spilling problem is still polynomial on a basic block provided that the number of simultaneous chads is bounded. Fortunately, this number is very low on most architectures.

Acknowledgments

We would like to thank Christophe Guillon and Sebastian Hack for fruitful discussions.

References

