The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development

Vincent Coustham, Cécile Bedet, Monier Karine, Sonia Schott, Karali Marianthi, Francesca Palladino

To cite this version:

HAL Id: ensl-00182491
https://ens-lyon.hal.science/ensl-00182491
Submitted on 26 Oct 2007
The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development

Vincent Coustham, Cécile Bedet, Karine Monier, Sonia Schott, Marianthi Karali, Francesca Palladino*

Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France

Received for publication 21 December 2005; revised 10 April 2006; accepted 11 April 2006
Available online 23 May 2006

Abstract

HP1 proteins are essential components of heterochromatin and contribute to the transcriptional repression of euchromatic genes via the recruitment to specific promoters by corepressor proteins including TIF1 and Rb. The Caenorhabditis elegans HP1 homologue HPL-2 acts in the “synMuv” (synthetic multivulval) pathway, which defines redundant negative regulators of a Ras signaling cascade required for vulval induction. Several synMuv genes encode for chromatin-associated proteins involved in transcriptional regulation, including Rb and components of the Mi-2/ NuRD and TIP60/NuA4 chromatin remodeling complexes. Here, we show that HPL-2 physically interacts in vitro and in vivo with the multiple zinc finger protein LIN-13, another member of the synMuv pathway. A variant of the conserved PXVXL motif found in many HP1-interacting proteins mediates LIN-13 binding to the CSD of HPL-2. We further show by in vivo localization studies that LIN-13 is required for HPL-2 recruitment in nuclear foci. Our data suggest that the LIN-13/HPL-2 complex may physically link a subset of the Rb related synMuv proteins to chromatin.

© 2006 Elsevier Inc. All rights reserved.

Keywords: C. elegans; HP1; Chromatin; LIN-13; Vulva

Introduction

HP1 proteins are a highly conserved family of proteins which directly contribute to the higher order packaging of chromatin by binding to modified histones (Li et al., 2002). All HP1 proteins are structurally related and characterized by the presence of two conserved domains, an N-terminal chromo domain (CD) separated by a variable hinge region from a C-terminal-related domain termed the chromo shadow domain (CSD). The CD is responsible for binding to methylated histone H3-K9, while the CSD is required for dimerization and most protein–protein interactions within the nucleus (Eissenberg, 2001). Many of these interactions play an important role in directing heterochromatin formation and/or gene silencing. A large number of the CSD interaction partners contain a PXVXL pentapeptide motif, including the transcription intermediary factor TIF1, the TBP-associated factor TAFII130, and the large subunit of chromatin assembly factor 1 (CAF-1) (Le Douarin et al., 1996; Murzina et al., 1999; Vassallo and Tanese, 2002). These results suggest that HP1 proteins function as adapters, bringing together different proteins in multiprotein complexes via protein–protein interactions with the CD and CSD. The multiple interactions of the CSD underscore the complexity of HP1 dynamics. However, it remains to be established how many partners HP1 has under a given set of conditions and how important these interactions are in different cellular contexts. The Caenorhabditis elegans vulva is a simple, well-described system particularly suited to study how chromatin regulation can function in a specific developmental pathway. Previously, we showed by RNAi that the C. elegans HP1-like protein HPL-2 contributes to vulval development by acting in the Rb related synMuvB pathway antagonistic to the Ras-mediated signal transduction pathway responsible for vulval cell fate determination (Couteau et al., 2002). In addition to LIN-35Rb, synMuvB genes encode homologues of the class I
histone deacetylase HDA-1, EFL-1/E2F, DPL-1/DP (Ceol and Horvitz, 2001; Lu and Horvitz, 1998) and counterparts of the NuRD nucleosome remodeling and histone deacetylase complex (Solari and Ahringer, 2000; von Zehewsky et al., 2000). Based on the identity of the cloned class B synMuv genes, it has been proposed that they remodel chromatin and repress transcription of genes important for vulval cell fate specification. More recently, a TIP60/NuA4-like complex was also implicated in the negative regulation of Ras signaling during vulval cell fate specification (Ceol and Horvitz, 2004). These results strongly suggest that different chromatin remodeling and modification complexes may cooperate in the same developmental pathway. To gain insight into the specific role played by HPL-2 in vulval cell fate determination, we carried out a two-hybrid screen to identify potential partners. One of the proteins identified is the LIN-13 zinc finger protein, another member of the synMuvB pathway (Melendez and Greenwald, 2000; Ferguson and Horvitz, 1989; Thomas et al., 2003). The interaction between the two proteins was confirmed in vivo and depends on the CSD of HPL-2 and a conserved HP1 interaction between the two proteins was confirmed in vivo. The synMuvB pathway (Melendez and Greenwald, 2000; Elledge et al., 1991). Positive interactions were selected using the lacZ and HIS3 reporter genes on HIS selection plates supplemented with 10 mM 3-AT. Interacting partners were confirmed by re-transformation in PJ69-4a, mating with a PJ69-4a carrying either pAS2.1 or pCV1 vectors, and selection for expression of ADE2 and HIS3 reporters. For directed two-hybrid assays, baits were transformed in PJ69-4a strain and mated with strain PJ69-4a carrying prey cloned in the pGADT7 vector (Clontech).

Materials and methods

Yeast strains and media

Strains used are the following: CG1945 (MATa gal4::542 gal80::338 ade2-101 his3-200 leu2-3,112 ura3-52 [URA3::GAL17mers (X3)-CYC1-TATA-lacZ] LYS2::GAL1UAS-5GALIT-HIS3 CYHR) (gift from L. Segalat); Y187 (MATa gal4::548A ade2-101 his3-200 leu2-3,112 trp1-901 ura3-52 [URA3::UASGAL1-lacZ met-], and PJ69-4a/α (MATa/α trp-1-901 leu2-3,112 ura3-52 his3-200 gal4A gal80::ALYS2::GAL1-4HIS3 GAL2-ADE2 met2::GAL7-lacZ. Basic methodology for yeast was described by Fink (1991).

C. elegans strains and genetics

Strains were maintained according to the standard protocol (Brenner, 1974). The following mutant alleles were used: LGI lin-35(n745); LG11 hpl-2(ok916), hpl-2(ok917); hpl-2(tm1489), lin-13(n388), unc-32(e189), unc-49 (e407), dpy-17(e164); X lin-15(n767), ok916, ok917 and tm1489 alleles were backcrossed four times prior to analysis and the presence of the deletion allele confirmed by PCR analysis. The hpl-2 wild-type sequence fully rescued and synthetic and lethal phenotypes and partially rescued the sterility of all three alleles. For expression studies lin-39′::GFP (gift from A. Hajnal) and qsl600 [lag-2′::GFP] were used. To construct the lin-13(n388)dpv-17(e164)hpl-2(tm1489)unc-49(e407) strain, lin-13(n388)unc-32(e189) worms were crossed with dpy-17(e164)lin-15(n767) males. Recombinant lin-13(n388)dpv-17(e164); lin-15(n767) were selected based on the Muv phenotypes in their progeny at 20°C and then crossed with unc-49(e407)hpl-2(tm1489) males. lin-13(n388)dpv-17(e164)hpl-2(tm1489)unc-49(e407)+ recombinants were selected as Dpy Unc animals segregating in their progeny at 20°C. Loss of the lin-15(n767) allele was confirmed by duplex PCR (M. Koelle laboratory protocol) using the following primers: for 5′-GGGAAAGTTAGCTGCGAAC-3′; rev 5′-GATTGCGTCTGAGG-GC-3′; rev 5′-GGGAAAGTTAGCTGCGAAC-3′; rev 5′-GACAGTATAAGTTCGCCGAC-3′; rev 5′-GTTTAACAGCTTTGAGT-3′, followed by sequencing using both outside primers described below. The presence of the lin-13(n388) C to T substitution was confirmed by sequencing.

Two-hybrid screen

The full-length hpl-2a cDNA was subcloned into plasmid pAS2.1 (Clontech) to create pCV1. The two-hybrid screen was performed by mating, as described (Fromont-Racine et al., 1997) using yeast strains CG1945 and Y187 and the C. elegans cDNA library λACT-RB2 (Durfee et al., 1993; Elledge et al., 1991). Positive interactions were selected using the lacZ and HIS3 reporter genes on HIS selection plates supplemented with 10 mM 3-AT. Interacting partners were confirmed by re-transformation in PJ69-4a, matings with a PJ69-4a carrying either pAS2.1 or pCV1 vectors, and selection for expression of ADE2 and HIS3 reporters. For directed two-hybrid assays, baits were transformed in PJ69-4a strain and mated with strain PJ69-4a carrying prey cloned in the pGADT7 vector (Clontech).

PCR of hpl-2 fragments

For domain mapping experiments, specific fragments of hpl-2a cDNA sequence were amplified by PCR with oligonucleotides designed as follows: CD, for 5′-ATGTCGAGCAAATCAACAAA-3′, rev 5′-TCACAATTCCGACACATCTC-3′; CSD, for 5′-GAAACGAAT-CAAAATGACAAATTC-3′; rev 5′-TAAAGCTCTGCGGTGTT-3′; Hinge, for 5′-AGGAATTTCGCGAGAGAG-3′, rev 5′-CTCTCTCTCTCTCCT-3′; Hinge+CD, for 5′-AGGAATTTCGCGAGAGAG-3′, rev 5′-TAAAGCTCTGCGGTGTT-3′. For HPL-2ΔA, primers were used for 5′-ATGTCGAGCAAATCAACAAA-3′, rev 5′-ACGTCTACCTCTCCTGTTG-3′. For this last construct, a stop codon was added at nucleotide position 453, corresponding to the 5′ breakpoint of ok916 and ok917 deletion alleles. For LIN-13, point mutations were introduced resulting in a change at position 442 (V to D) and position 444 (V to E) using the Quickchange Site-directed Mutagenesis kit (Strategene) on the cDNA isolated from two-hybrid experiment. Primers used were 5′-GAACCATCTCTGTCAACCGTGGATCCCGAGGTGCTCTACTCCAAACCGGG-3′ and 5′-CGGTTTGGGAAATGGAACCACTCGACGTTTCTTGGT-3′. The presence of the point mutations was confirmed by sequencing.

Deletion mapping

Total genomic DNA was extracted from mixed-stage populations of ok916 and ok917 mutant worms. Oligonucleotides were designed as described by the C. elegans Knockout Consortium. Nested PCR was performed using BIO-X-ACT polymerase (Bioline). The tm1489 deletion predicted by the National BioResource Project was confirmed by sequencing using primers described below. Reverse transcriptase - polymerase chain reaction (RT-PCR) and sequencing

Total RNA was isolated from mixed-stage populations of homozygous ok916, ok917 and N2 worms using Trizol reagent (Sigma). First-strand synthesis and RT-PCR were performed in a single reaction using the Access RT-PCR Kit (Promega). Oligonucleotides were designed at the following positions: 4799–4819 (for exon 2, 5′-AGGACAAACGTTGGTCAGG-3′) and 7011–7030 (rev 5′-CTCAGGTGACAGTCC-3′), 7617–7638 (rev exon 6–2B, 5′-ATCACCGTGTTACAGTGTCG-3′).

RNAi

RNAi injection and feeding experiments were carried out as described (Fire et al., 1998; Kamath and Ahringer, 2003). When necessary, to produce a weaker RNAi effect, the concentration of IPTG in feeding plates was reduced to 0.1 mM IPTG. Induction was 12 h at room temperature. Most RNAi feeding clones were obtained from Geneservice. For the lin-13
feeding clone, the cDNA sequence of lin-13 obtained in the two-hybrid screen was subcloned into the L4440 feeding vector and transformed into HT115. RNAi of lin-13 by feeding resulted in the same range of highly penetrant temperature-sensitive phenotypes previously reported by injection (Melendez and Greenwald, 2000), including sterility, evl (everted vulva), and Muv in combination with class A synMuv mutations at 15–20°C, and larval arrest at 25°C (data not shown). lin-15A-specific RNA for injection was prepared as previously described (von Zelewsky et al., 2000). For hpl-2::GFP localization studies, embryos were dissected from gravid mothers derived either from L1 larvae grown on RNAi feeding plates, or from injected L4 larvae. For lin-9 and lin-35 feeding, the efficacy of RNAi was measured by placing lin-15A mutant animals on these plates and looking for 100% Muv animals. For lin-13, mys-1, trr-1, hda-1 and let-418, RNAi feeding yielded the phenotypes previously described (Kamath and Ahringer, 2003).

GST pulldown assay

GST-HPL-2 fusion protein expressed in *E. coli* using the full-length hpl-2a cDNA cloned in pGEX-KG (Pharmacia) was immobilized on glutathione-agarose beads (Sigma). Proteins subcloned in pGADT7 vector were produced and labeled with [35S]methionine using the TNT T7-coupled reticulocyte lysate system (Promega). Beads were incubated with in vitro produced proteins 2 h at 4°C in PBS with 0.05–0.2% Triton, washed and analyzed on SDS-PAGE.

Preparation of embryo extracts

Hermaphrodites carrying a rescuing LIN-13:‘::GFP transgene were grown in liquid as described (Mains and McGhee, 1999). Embryos recovered following alkaline hypochlorite treatment of gravid adults were recovered by centrifugation, resuspended in 5 volumes of cold TNT buffer (Tris–HCl 50 mM pH = 8; NaCl 150 mM; Triton X-100 1% + protease inhibitor cocktail (Complete EDTA, Roche Applied Science, plus 1 mM PMSF) and sonicated on ice. Lysates were spun at high speed for 10 min at 4°C, and supernatants were collected and assayed for protein concentration using Bradford reagent (Bio-Rad Laboratories). Protein concentration of the LIN-13∷GFP embryonic lysate was ≈5 mg/ml.

Immunoprecipitation and Western blot

3 μl of rabbit polyclonal affinity purified anti-HPL-2 antibody or preimmune serum, or 4 μg of anti-GFP (Clones 7:1 and 13:1, Roche Applied Science) or anti-FLAG (M2 monoclonal, Sigma) antibodies were added to 250 μl of LIN-13∷GFP embryonic lysate diluted twice in TNT buffer. Samples were incubated at 4°C for 1 h, 30 and 50 μl of a 1:1 slurry of protein A–sepharose (Amersham Bioscience) or protein G–sepharose (Sigma) beads were added. Beads were washed 3 times in 1 ml of buffer A (10 mM Tris–HCl pH = 8; 150 mM NaCl; 0.5% Triton X-100), two times in 1 ml of buffer B (10 mM Tris–HCl pH = 8; 500 mM NaCl; 0.5% Triton X-100), and once in 1 ml of buffer C (10 mM Tris–HCl pH = 8). Proteins were resolved by SDS-PAGE followed by Western blot analysis. Primary antibodies were rabbit affinity purified anti-HPL-2 developed in the lab and diluted at 1:2000 or anti-GFP (Roche) diluted at 1:1000. Secondary antibodies were ImmunoPure Recomb Protein A–Peroxidase Conjugated (1:15,000, Pierce) or an anti-mouse IgG (from sheep) conjugated to peroxidase (1:10,000; Amersham Bioscience). Proteins were visualized using a chemiluminescent reagent kit (Super Signal, Pierce).

Construction of hpl-2∷RFP

hpl-2∷RFP was constructed by replacing the GFP insertion in pFG2 (Couteau et al., 2002) with a monomeric RFP fragment from pRSET B (Invitrogen). Transgenic worms were generated as described previously (Mello et al., 1991). For colocalization experiments, hpl-2∷RFP and a rescuing lin-13∷GFP construct (gift of I. Greenwald) were co-injected with pRF4 to generate transgenic worms.

hpl-2∷GFP acquisition, restoration and analysis

Number of nuclear HPL-2-GFP foci were counted in nuclei of live embryos fed with RNAi against different synMuv genes. To compare number of foci in equivalent conditions, analyses were restricted to HPL-2∷GFP embryos containing between 60 and 80 cells (due to GFP intensity variation in embryos). Parameters of image acquisition, restoration, and analysis were kept constant for embryos issued of various genetic backgrounds. Image stacks of 50 sections of whole HPL-2-GFP embryos were acquired every 0.3 μm using the 63× objective lens (NA = 1.4) of a motorized Zeiss Axiosplan2 fluorescence microscope, equipped with a CoolSnap HQ camera, driven by Metamorph (v. 6.3). The 3D point spread function of our system was measured to restore image stacks using a 3D deconvolution procedure (set up with default parameters), available as a plugin in Metamorph. Maximum intensity projections of deconvolved sections were performed and observed with the same dynamic display to count nuclear foci. Superimposed nuclei as well as nuclei which could not be clearly visualized were not included in the analysis. In practice, approximately one-third of the nuclei revealed to be suitable for counting nuclear foci in the majority of embryos. The same individual counted the number of nuclear HPL-2-GFP foci in 160 to 641 nuclei for each genetic background issued from 7 to 27 representative embryos. Two other individuals independently confirmed the results. To take into account any variability of RNAi between embryos, the average number of foci per nucleus for each embryo was determined for each RNAi experiment. One-way analysis of variance, followed by Tukey Honest Significant Differences, was performed on the average number of foci per nucleus in each embryo. This design assigns any contribution of the variable RNAi effects between embryos to the residual error and therefore is unbiased with respect to the number of nuclei observed in each embryo. Differences between mutant genotypes and wild type were considered significant when zero was excluded from their 99.9% or 99.99% confidence interval. Computation was performed using R (http://www.r-project.org/).

Immunofluorescence experiments

Embryos were freeze cracked and fixed with MetOH followed by 3% paraformaldehyde at RT. Incubation was with anti-GFP mouse monoclonal antibody (Roche) and anti-HRP9Mel3 rabbit polyclonal antibody (Upstate), both diluted at 1/500. Images were acquired using a Zeiss LSM510 confocal microscope and LSM510 v3.2 software.

Real-time quantitative RT-PCR

Gene expression was evaluated by real-time quantitative RT-PCR (LightCycler, Roche) using the LightCycler FastStart DNA Master SYBR Green 1 RT-PCR kit (Roche) on total reverse transcribed cDNA oligo-dT primed (First strand cDNA Synthesis Kit, Fermentas) obtained from RNA extracted from mixed stage wild-type or hpl-2(tm1489) worm populations grown at 25°C on 14-cm plates supplemented to 2.5% agar and 1% propionate. The measures were normalized to actin (act-4) RNA levels. The sequence of the primers were as follows: 5′-AGG-TCATCAGGGTTGAAAAC-3′, rev 5′-TTCCCTGCCATGTTGTTGTTGTT-3′; log-2 for 5′-TGGAAAAACTTTTTGTTAGCTG-3′, rev 5′-TCTAGTGGTTATGGCC-TGA-3′; lin-39 for 5′-TTGGAGGTCTCTCAATATCCA-3′, rev 5′-CACCACCAT-GATGCCCTTCTTG-3′.

Results

HPL-2 interacts with the LIN-13 zinc finger protein in vitro and in vivo

The hpl-2 gene gives rise to two alternatively spliced transcripts, of which only one, hpl-2a, contains the
conserved full-length CD and CSD domains (Figs. 3A,B; Couteau et al., 2002). In all studies described here, hpl-2 refers to the hpl-2α transcript only. We have previously shown that hpl-2 encodes a ubiquitously expressed protein required for germline differentiation and vulval development (Couteau et al., 2002). Given that HP1 family proteins have been shown to interact with a number of nuclear factors (Eissenberg and Elgin, 2000; Li et al., 2002), the specificity of action of HPL-2 in germline and somatic development is likely to be due to interaction with specific proteins. To identify potential partners of HPL-2, a yeast two-hybrid screen was carried out. The bait used was composed of the full-length HPL-2 protein fused to the GAL-4 DNA binding domain (DB-HPL-2). Dimerization via the CSD has been shown to be required for HP1 to interact with at least a subset of proteins (Brasher et al., 2000; Thiru et al., 2004). To ask whether HPL-2 can dimerize, DB-HPL-2 and AD-HPL-2 fusion proteins were expressed in PJ69-4a and PJ69-4α yeast strains respectively, and interaction was tested by mating. In the presence of both fusion proteins, HIS3 and ADE2 reporter genes were activated (Fig. 1A). This result was confirmed in an in vitro GST pulldown assay, using a purified recombinant N-terminally epitope tagged GST-HPL-2 and an in vitro translated 35S-HPL-2 (Fig. 1B). We conclude that the self-dimerization property of HP1 family proteins is conserved in C. elegans. The DB-HPL-2 fusion protein was then used as a bait to screen a random primed C. elegans cDNA bank (kind gift from R. Barstead). Out of 4.8 × 107 transformants screened, we isolated one clone encoding a fragment of lin-13, a member of the LIN-35Rb class of genes involved in vulval development (Ferguson and Horvitz, 1989; Thomas et al., 2003). The LIN-13 protein is characterized by 24 zinc fingers of the C2-H2 class and a LXCXE motif and the first five zinc fingers (Fig. 1C). Interaction was validated by re-transformation in strains PJ69-4a and PJ69-4α, mating and testing reporter gene activity (Fig. 1A). To confirm the interaction, we performed binding studies using a GST-tagged HPL-2 protein and an in vitro translated 35S-LIN-13 protein in a GST-pulldown assay (Fig. 1B and supplementary material). 35S-LIN-13 was retained on GST-HPL-2 but not GST-only resin, confirming the specificity of the two-hybrid interaction. We next asked if HPL-2 and LIN-13 also associate in vivo in C. elegans. To this end, we performed immunoprecipitation (IP) experiments from extracts expressing a functional LIN-13::GFP fusion protein using either GFP or HPL-2 specific antibodies, followed by Western blot analysis of the resulting immunocomplexes. As shown in Fig. 1D, we found that HPL-2 antibodies efficiently coimmunoprecipitated LIN-13::GFP from these extracts. Conversely, GFP antibodies directed against LIN-13::GFP were able to coimmunoprecipitate HPL-2. Neither HPL-2 nor LIN-13::GFP could be precipitated by non-specific antibodies. Therefore, the HPL-2/LIN-13 interaction observed in vitro is also found in vivo. The CSD and Hinge region of HPL-2 are required for interaction with LIN-13 via a PLVPV HP1 consensus motif

For most known HP1-interacting proteins, association with HP1 involves the CSD (Lechner et al., 2000, 2005; Linder et al., 2001; Murzina et al., 1999; Nakayama et al., 2001; Vassallo and Tanese, 2002). To define the region of HPL-2 required for interaction with LIN-13, we performed binding studies with in vitro translated proteins deleted for the different domains of HPL-2. We tested CD alone, hinge (H) alone, H + CSD, and CSD alone (Figs. 2A and B). While the CSD alone was sufficient for interaction with LIN-13, this interaction was approximately 10-fold stronger when the hinge region was also included, as quantified by ImageQuant. Neither the hinge region nor the CD alone was able to interact with LIN-13. These results indicate that the CSD is essential for the interaction with LIN-13, and that amino acids present in the variable hinge region may contribute to this interaction. Since the CSD of HP1 proteins often interacts with a conserved pentapeptide motif PXVXL, we tested whether a PLVPV motif present in the N-terminal portion of LIN-13 included in the two-hybrid clone (Fig. 1C) is responsible for the interaction with HPL-2. We used site directed mutagenesis to change the conserved amino acids Val-442 and Val-444 to Asp (D) and Glu (E), respectively, to create AD-LIN-13PLDPF. Substitution of these amino acids significantly reduced the interaction between HP1 and TAF9130 (Vassallo and Tanese, 2002). After verifying the expression of the LIN-13PLDPF mutant protein by Western blot analysis (data not shown), we tested its interaction with HPL-2 in the yeast two-hybrid system. As shown in Fig. 2C, the interaction of LIN-13 with HPL-2 was lost when the PLVPV sequence was mutated. Altogether, these results show that HPL-2 shares interaction properties with its homologues in other species.

Deletion of conserved residues within the CSD abolishes HPL-2 homodimerization but not interaction with LIN-13

Three hpl-2 deletion alleles, ok916, ok917, and tm1489, have been independently isolated. tm1489 comes from the Japanese National Bioresource Project, while ok916 and ok917 come from the C. elegans Knockout Consortium. We mapped the extent of the deletion in these alleles by sequencing the entire hpl-2 coding sequence from homozygous mutant animals (see Supplementary material for experimental details). ok916 is a 1739-bp deletion. RT-PCR analysis on total RNA from ok916 mutant animals showed that this deletion results in the splicing of exon 3 to a cryptic splice donor site within exon 6, creating an open reading frame of 167 amino acids (aa) (Fig. 3A). ok917 is a smaller deletion of 779 bp which joins exon 3 to exon 5 of hpl-2b and results in a frameshift. Sequence analysis showed that this mutation results in an open reading frame of 171 aa. The region deleted in ok916 and ok917 alleles includes conserved residues within the CSD domain (Figs. 3B, C). To study the potential effect of the loss of this region on the ability
HPL-2 to dimerize and interact with LIN-13, we inserted a stop codon after nucleotide position 453 within the hpl-2 sequence, corresponding to the 5′ breakpoint of the ok916 and ok917 deletion alleles. This resulted in DB- and AD-tagged HPL-2 proteins with a partially deleted CSD. Following Western blot analysis to confirm expression of these truncated proteins in yeast (data not shown), two-hybrid assays were performed to test their ability to homodimerize and interact with LIN-13. Surprisingly, we found that although the truncated protein was unable to homodimerize, it maintained the ability to interact with LIN-13 when assayed on SC minus histidine plus 1 mM 3-AT (Fig. 4) but not on higher concentrations of 3-AT or on SC minus adenine, suggesting that the interaction is nonetheless weaker.

Fig. 1. HPL-2 self-dimerizes and interacts with LIN-13 in yeast two-hybrid and GST pulldown assays. (A) Two-hybrid assay. Left, selective media lacking leucine and tryptophan. Right, selective media lacking leucine, tryptophane, adenine and histidine supplemented with 1 mM 3-aminotriazole (3-AT). (a) DB-HPL-2 × AD-LIN-13; (b) DB × AD-LIN-13; (c) DB-HPL-2 × AD; (d) DB × AD; (e) DB × AD-HPL-2; (f) DB-HPL-2 × AD-HPL-2. (B) In vitro translated and labeled 35S-HPL-2 (left panel) and 35S-LIN-13 (right panel) were incubated with immobilized control GST or GST-HPL-2 (see Fig. 2). Bound interactors were eluted, resolved on SDS-PAGE and visualized by autoradiography. (C) Schematic representation of the LIN-13 protein. Solid bars represent zinc fingers. Position of both LSCSE Rb binding and PLVPV HP1 binding consensus motifs are indicated. The fragment corresponding to the cDNA clone recovered in the two-hybrid screen is indicated below the full-length sequence. (D) HPL-2 coimmunoprecipitates with LIN-13. Worm extracts derived from LIN-13∷GFP transgenic animals were immunoprecipitated with anti-HPL-2 (left) or anti-GFP antibody (right) as indicated (IP), and the lysates were analyzed by Western blot. Input represents 1/50 of starting material. The third lane in each panel shows control IPs using either HPL-2 pre-immune sera, or anti-FLAG antibodies.
compared to full-length HPL-2. These results suggest that while the CSD residues missing in the ok916 and ok917 deletion alleles are essential for dimerization, they may not be absolutely required for the interaction of HPL-2 with the PLVPV motif of LIN-13. Sequencing of the tm1489 allele confirmed that it is a deletion which starts 58 nucleotides upstream of the ATG and takes out the entire first and second exons, including sequences coding for the CD (Fig. 3A). This deletion is a clear molecular null allele, consistent with the observed phenotype, as described below.

hpl-2 and lin-13 genetically interact with the synMuv pathway of vulval development

All three hpl-2 mutant alleles show phenotypes similar to those we previously reported for hpl-2 (RNAi) animals, including sterility, slow growth and an everted vulva (evl, Table 1A; Couteau et al., 2002). However, the penetrance of these phenotypes appeared to be higher for the ok917 and tm1489 alleles, which at 25°C were also thin and scrawny and showed additional defects in vulva development. These data are consistent with the molecular analysis suggesting that ok916 and perhaps ok917 are not null alleles. The difference in the severity of phenotypes between ok916 and ok917 is likely to be due to differences in the residues added to the carboxyl terminus of the respective proteins.

In *C. elegans*, the vulva is derived from three of the six equivalent vulva precursor cells (VPCs), P(5–7).p (Sulston and Horvitz, 1977). The three other VPCs, P3.p, P4.p and P8.p normally adopt a cell fate giving rise to non-vulval cells. A conserved Ras-mediated signaling cascade is responsible for inducing the P(5–7).p cells to adopt a vulval fate (Aroian et al., 1990; Beitel et al., 1990) by overcoming inhibitory signals from two functionally redundant sets of genes, known as synMuvA...
Fig. 3. Deletion mapping of the *ok916*, *ok917* and *tm1489* mutants. (A) Genomic structure of the *C. elegans* hpl-2a and hpl-2b gene products showing the region deleted in the three mutants (stippled lines). Deletion breakpoints are given with reference to the ATG start codon and bases of positional ambiguity are in the parentheses. (B) Schematic representation of the HPL-2A and HPL-2B proteins, showing the chromo domain (CD), chromo shadow domain (CSD), and hinge region (H). Dotted lines designate the highly conserved CSD region of HPL-2A aligned against other HP1 proteins in panel C. (C) Alignment of the amino acid sequence of the C-terminal end of the CSD from *C. elegans* HPL-2A (CeHPL-2A) and HPL-2B (CeHPL-2B), *D. melanogaster* HP1 isoforms (DmHP1a,-b,-c) and *H. sapiens* HP1 isoforms (HsHP1α,-β,-γ). Black and gray shaded residues denote identical and conserved amino acids respectively, and amino acids essential for interaction are indicated by triangles.

Fig. 4. HPL-2Δ does not homodimerize but is able to interact with LIN-13. Left, selective media lacking leu and trp. Right, selective media lacking leu, trp, his with 1 mM 3-AT. (A) DB-HPL-2Δ × AD-LIN-13, (B) DB-HPL-2Δ × AD, (C) DB × AD-HPL-2Δ, (D) DB-HPL-2Δ × AD-HPL-2Δ, (E) DB-HPL-2Δ × AD-HPL-2, (F) DB-HPL-2 × AD-HPL-2.
Thomas et al., 2003). Surprisingly, we found that at 20°C, hpl-2(RNAi) progeny from fertile lin-13(n388) hpl-2(tm1489) lin-13(n388) hpl-2(tm1489)/+ 25 0 96 100 127 hpl-2(tm1489) hpl-2(tm1489)/+ 25 0 10 212 lin-13(n388) lin-13(n388)/+ 25 90 100 119 20°C lethality. Altogether, these results suggest that although at 20°C, hpl-2 behaves as synMuvB genes, at 25°C it has additional functions redundant with both synMuvA and B genes.

Like hpl-2, lin-13 strictly behaves as a synMuvB gene at 15°C and 20°C but shows a Muv phenotype at 25°C (Table 1C; Ferguson and Horvitz, 1989; Melendez and Greenwald, 2000; Thomas et al., 2003). Surprisingly, we found that at 20°C, hpl-2 lin-13 double mutant animals without maternal contribution also showed a Muv phenotype (38%, n = 211, see Supplementary material for strain construction). In addition, in the presence of maternal contribution of both gene products, these animals also showed a synergistic increase in sterility. Since both the lin-13 and hpl-2 alleles used in these experiments are nulls, these results suggest that although both genes participate in vulval development by acting in the same complex with at least some of the synMuvB genes, they may have additional, redundant functions in both vulval and germline development.

The fact that at 25°C hpl-2 mutants show an interaction with both synMuvA and B mutants raised the possibility that hpl-2 may belong to the recently described synMuvC group of genes (Ceol and Horvitz, 2004). However, while synMuvC mutants alone or in combination with synMuvB mutants mostly affect the specification of P8.p, the Muv phenotype associated with hpl-2 single mutants at 25°C concerns P3.p, P4.p and P8.p cells, which were induced respectively in 44%, 78% and 56% of animals showing a Muv phenotype (n = 23). Furthermore, we found that inactivation of the synMuvC gene trr-1/TRRAP in an hpl-2 mutant background resulted in synthetic lethality. While trr-1(RNAi) feeding on wild-type worms did not cause any embryonic lethality at either 20°C or 25°C (n = 66 and n = 191, respectively)
respectively), trr-1(RNAi) feeding on hpl-2(tm1489) worms resulted in 30% (n = 212) embryonic lethality at 20°C and 60% (n = 202) embryonic lethality at 25°C. In both cases, 100% of the remaining progeny arrested development as early larvae. trr-1(RNAi) was also found to result in embryonic lethality in combination with several other synMuvB genes tested (Ceol and Horvitz, 2004). Although we considered the possibility that the synergistic effect, we observe might be due to the enhanced response to dsRNA recently reported for several synMuvB mutants (Wang et al., 2005), we think this unlikely as the synMuvB mutations found to synergize with trr-1(RNAi) by Ceol and Horvitz (2004) include ones shown to have an enhanced RNAi response (lin-35, dpl-1), as well as ones that do not (lin-36, lin-37). Altogether, these results suggest that hpl-2 and the synMuvC genes act in distinct pathways in vulval development, while for viability trr-1 may function redundantly with hpl-2.

HPL-2 localization in nuclear foci depends on LIN-13

We previously showed that an HPL-2::GFP fusion protein is ubiquitously expressed in most, if not all nuclei throughout embryonic and larval development and into adulthood, with a signal concentrated in a limited number of nuclear foci in early embryos (Couteau et al., 2002). Interestingly, a LIN-13::GFP fusion protein shows very similar nuclear foci in embryos (Melendez and Greenwald, 2000), suggesting that both HPL-2 and LIN-13 may be enriched in particular nuclear subdomains. To test whether the two proteins colocalize in at least some of these nuclear foci, we constructed a transgenic strain coexpressing both HPL-2::RFP and LIN-13::GFP fusion proteins. In early stage live embryos, we observed an overlap of most of the larger LIN-13 and HPL-2 nuclear foci (Figs. 5A–C). These results are consistent with HPL-2 and LIN-13 interacting at a subset of specific chromosomal sites. We next asked whether there is interdependence in the localization of HPL-2 and LIN-13. To this end, we performed lin-13(RNAi) on HPL-2::GFP strain and introduced the LIN-13::GFP construct in the hpl-2 (tm1489) mutant strain. In wild-type embryos, hpl-2::GFP is concentrated in a median number of 15.4 foci per nucleus (Fig. 6). Strikingly, these HPL-2 foci were completely lost in lin-13 (RNAi) animals (Figs. 5D–G, 6). By contrast, LIN-13 nuclear foci were unaltered in the absence of hpl-2 (Figs. 5L–M).

We next tested whether RNAi of other synMuvB genes, including lin-9, lin-35, hda-1, let-418 and mep-1 might also effect HPL-2 localization (Figs. 5I–K and Fig. 6). While lin-9, lin-35, let-418 and mep-1 had no significant effect on the number of HPL-2 nuclear foci (one-way ANOVA test, followed by Tukey Honest Significant Differences; $P < 0.001$), in hda-1 (RNAi) embryos the median number of foci per nucleus was found to increase to 18.0 (Fig. 6). We also tested the synMuvA gene lin-15A but were unable to obtain a reliable count of the number of foci per nucleus due to defects in nuclear morphology in a significant fraction of the embryos observed. Interestingly, inactivation of the synMuvC genes trr-1 and mys-1 had a pronounced effect on the median number of HPL-2 foci per nucleus, which was found to increase to 20.0 and 18.4 respectively (Fig. 5H and Fig. 6). Altogether, these results suggest that while LIN-13 alone may be sufficient for recruiting HPL-2 in nuclear foci, other synMuv genes, including the class B gene hda-1, and the class C genes trr-1 and mys-1, may also either directly or indirectly influence this recruitment to a subset of chromosomal sites.

HP1 specifically recognizes the H3 N-terminal tails when di- and tri-methylated on lysine 9 (MeK9H3) (Bannister et al., 2001; Jacobs et al., 2001; Lachner et al., 2001; Nakayama et al., 2001; Nielsen et al., 2002). To ask whether H3-K9 methylation might also play a role in the recruitment of HPL-2, we stained fixed samples with tri-methyl K9 antibodies in combination with anti-GFP antibodies to detect the HPL-2::GFP fusion protein. As shown in Fig. 7, although a partial overlap between the two signals can be detected in some cases, the majority of the large HPL-2 foci do not colocalize with tri-methyl K9 staining. Similar results were obtained with di-methyl K9 antibodies (data not shown). These results suggest that the large HPL-2 foci that we observe do not correspond to chromosomal regions enriched in H3-K9 methylation, although at other chromosomal sites HPL-2 and H3-K9 methylation may overlap.

lin-13 and hpl-2 regulate the expression of specific genes

To gain insight into the molecular mechanism responsible for the hpl-2 and lin-13 phenotypes, we sought to identify potential targets of these two genes using various cell type-specific GFP reporter transgenes. Several synMuv genes have been shown to regulate the lin-39Hox gene in VPCs (Chen and Han, 2001). To test whether lin-13 and hpl-2 have a similar function, we used an integrated lin-39::GFP reporter transgene normally weakly expressed in a subset of VPCs and more strongly in nerve cord neurons (Fig. 8A). In hpl-2 and lin-13 mutants, we observed an increased expression of the lin-39 reporter in neuronal cells as well as additional unidentified cells in the mid-body region (Figs. 8B, C). Although we were unable to specifically quantify GFP expression in VPCs, the relevant targets for vulval cell fate specification, these results suggest that hpl-2 and lin-13 may play a more general role in the regulation of lin-39 expression.

Fig. 5. HPL-2 localization in nuclear foci depends on LIN-13. (A–C) Localization of HPL-2 and LIN-13 in a live 64-cell stage embryo. (A) LIN-13::GFP (B) HPL-2::RFP (C) Merge. Images correspond to one optical section, not submitted to deconvolution. Scale bar represents 10 μm. Inserts in panel C show an enlargement of the boxed nucleus. Scale bar represents 2.5 μm. (D–G) HPL-2::GFP foci disappear in lin-13(RNAi)-treated animals. (H–K) HPL-2::GFP expression in a live wild-type embryo (74-cell stage). (E) HPL-2::GFP expression in a live lin-13(RNAi) embryo (72-cell stage). Scale bar represents 10 μm. (F–G) Images show an enlargement of boxed nuclei visible in panels D and E, respectively. (H–K) Enlargements of live embryos expressing hpl-2::GFP in different RNAi backgrounds, trr-1 (H), lin-35 (I), lin-15B (J), lin-9 (K). (L–M) LIN-13::GFP foci are not affected in hpl-2(tm1489) animals. LIN-13::GFP expression is shown in a live wild-type embryo (L) or in a live hpl-2(tm1489) mutant embryo (M). Images shown in panels D–K correspond to maximum intensity projection of deconvoluted sections and are displayed with the same dynamic for comparison purposes, except for lin-13 images (E, G), whose dynamics were increased by a factor of 4. Images shown in panels L–M correspond to maximum intensity projection of deconvoluted sections and are displayed with the same dynamic for comparison purposes. Scale bar represents 2.5 μm (F–K).
We also found that a lag-2∷GFP reporter was widely derepressed in both mutant backgrounds, as previously shown for HDA-1 and more recently other synMuv genes (Dufourcq et al., 2002; Poulin et al., 2005). As shown in Fig. 8D, in wild-type animals expression of lag-2∷GFP is restricted to the distal tip cell of the gonad, the ventral nerve cord and a few cells of the vulva. In hpl-2 and lin-13 animals, lag-2∷GFP expression was widely derepressed, notably in cells of the pharynx, hypodermis and intestine (Figs. 8E, F). The effect on lag-2 and lin-39 expression is unlikely to be due to a general effect of the hpl-2 and lin-13 mutations on transgene expression as we did not notice any effect on the expression of several other transgenes in the soma, either in an extrachromosomal or integrated context (data not show). Furthermore, quantitative real-time PCR analysis using RNA derived from a mixed stage population of worms revealed a threefold increase in lin-39 expression and a two and a half-fold increase in lag-2 expression in hpl-2 animals compared to wild-type (Fig. 8G). Altogether, these results are consistent with hpl-2 and lin-13 playing a role in either directly or indirectly repressing the expression of specific genes.

Discussion

HPL-2 interaction with LIN-13 relies on conserved domains

HP1 family proteins are essential components of constitutive heterochromatin in both yeast and Drosophila. More recent evidence from mammals suggests a broader role for HP1 family proteins in the epigenetic regulation of gene expression. Several examples of gene-specific recruitment of HP1 via its association with transcriptional regulators that bind specific DNA sequences have been reported (Ayyanathan et al., 2003; Nielsen et al., 2001; Ogawa et al., 2002). In vitro, the association of TIF1 with HP1 has been shown to be required for progression through differentiation (Cammas et al., 2004), while Rb has been found to be associated with the recruitment of HP1 to the cyclin E promoter (Nielsen et al., 2001). An interaction with the...
E2F-6 complex has also been shown to mediate recruitment of HP1 to the promoter of E2F and myc-responsive genes (Ogawa et al., 2002). Nonetheless, the role played by HP1 proteins in specific developmental context remains poorly understood. In C. elegans, the synMuvB pathway of vulval development includes homologues of the recently described RB containing complexes Myb-MuvB or dREAM (Korenjak et al., 2004; Lewis et al., 2004). Here, we have shown that HPL-2 physically interacts with the LIN-13 zinc finger protein, another component of the Rb-related synMuvB pathway, both in vitro and in vivo, and that this interaction is required for the recruitment of HPL-2 in nuclear foci. Our results suggest that HPL-2 shares interaction properties with its homologues in other species. Most notably, interaction with LIN-13 involves both CSD and hinge regions, and is mediated by a PLVPV motif in the N-terminus of LIN-13.

Unique and redundant functions of hpl-2 and lin-13 in development

We find that hpl-2 and lin-13 share several properties that distinguish them from classical synMuvB genes. By definition, synMuvB mutants only result in a Muv phenotype in combination with mutations in the synMuvA pathway, and do not genetically interact (Ferguson and Horvitz, 1989). By contrast, at 25°C mutations in hpl-2 and lin-13 alone give rise to a significant percentage of Muv animals. In addition, at 20°C hpl-2 and lin-13 double mutants show a Muv phenotype and a synergistic increase in sterility. Altogether, these results suggest that although HPL-2 and LIN-13 may participate in vulval development by acting in the same complex with at least some of the synMuvB proteins, they are likely to have additional, redundant functions in both vulval and germline development.
development. The exquisite temperature dependence of the phenotypes observed for both lin-13 and hpl-2 has already been noted for other synMuv genes (Ferguson and Horvitz, 1989; Thomas et al., 2003). Elevated temperature conditions have been shown to be associated with defects in heterochromatin assembly in different systems (Allshire et al., 1995; Ayoub et al., 1999; Spofford, 1976), consistent with the idea that at least a subset of synMuv genes including hpl-2 and lin-13 act in chromatin-related pathways. The Muv phenotype observed at 25°C could be attributed to the participation of hpl-2 and lin-13 to both synMuvA and B pathways, or to yet another pathway at this temperature. Ceol and Horvitz recently described a third class of synMuv genes, called synMuvC, that encode homologues of the Tip60/NuA4 histone acetyltransferase complex and act redundantly with both class A and B genes (Ceol and Horvitz, 2001). Our data suggest that in vulval cell fate specification, hpl-2 acts independently of synMuvC genes, consistent with multiple chromatin modifying proteins being implicated in this specific developmental pathway.

The observation that depletion of both maternal and zygotic activity at 25°C results in larval arrest for lin-13, and adult sterility for hpl-2, is consistent with LIN-13 and HPL-2 having additional, independent functions in larval development. Consistently, HP1 family proteins are known to interact specifically with a number of different nuclear proteins and in addition to LIN-13 we have isolated a number of other potential HPL-2 partners (M. Karali and F. Palladino, unpublished). In the context of the dynamic structure of chromatin, only a subset of HP1 interactions are likely to take place in a given cell type at a specific stage of development.

lin-13 and hpl-2 may regulate the expression of specific genes

Our data suggest that lin-13 and hpl-2 may play a general role in regulating the expression of at least two genes, the lin-39 Hox and the lag-2 Notch ligand genes. Both lag-2:‘GFP and lin-39:‘GFP reporters were widely derepressed in both hpl-2 and lin-13 mutant backgrounds. Interestingly, the C. elegans Polycomb group proteins MES-2, MES-3 and MES-6, involved in the chromatin based control of gene expression in the germline, have also been shown to repress Hox expression in the soma (Ross and Zarkower, 2003), while lag-2 expression has previously been shown to be negatively regulated by the histone deacetylase hda-1 (Dufourcq et al., 2002) and more recently other synMuvB and C genes (Poulin et al., 2005). During vulval development, lag-2 acts in a LIN-12/Notch signaling pathway which prevents certain VPCs from adopting the primary vulval cell fate (Chen and Greenwald, 2004; Sternberg, 1988). The global ectopic expression of the lag-2:‘GFP reporter we observe in hpl-2 and lin-13 mutant animals suggests that lag-2 expression may be under control of lin-13 and hpl-2. lin-12 gain of function alleles (Greenwald et al., 1983) and ectopically expressed mutant forms of LAG-2 (Henderson et al., 1997) result in multivulval phenotypes. In principle, derepression of LAG-2 could therefore result in the same phenotype and contribute to the Muv phenotype observed in single hda-1, lin-13 and hpl-2 mutant strains (Dufourcq et al., 2002, our data). We note however that, in contrast to lin-12 gain of function alleles which cause a Muv phenotype because all six Pn.p cells adopt 2° vulval cell fates (Greenwald and Seydoux, 1990), in hpl-2 and lin-13 single mutants ectopically induced VPCs adopt 1° and 2° cell fate, as shown for other synMuv’s (data not shown and Sternberg, 1988). Regardless of the precise mechanism, our results are consistent with HPL-2 and LIN-13, together with other synMuv proteins, regulating gene expression either directly or indirectly in multiple developmental pathways.

A function for LIN-13 in recruiting HPL-2 to chromatin

Consistent with an interaction between HPL-2 and LIN-13, we have shown that the foci observed in embryos with HPL-2:‘RFP and LIN-13:‘GFP fusion proteins overlap. Furthermore, HPL-2 localization in these foci is strictly dependent on LIN-13, while LIN-13 distribution does not seem to be affected in the absence of HPL-2. Altogether, these results strongly suggest that LIN-13 directly recruits HPL-2 to a limited number of target loci. Nonetheless, our localization studies show that other synMuv genes may also influence HPL-2 localization. Most notably, we found that inactivation of synMuvC genes and to a lesser extent hda-1/ HDAC, resulted in a significant increase in the number of HPL-2 nuclear foci. The synMuvC genes encode homologues of the Tip60/NuA4 histone acetyltransferase complex, which could act either in transcriptional repression or activation (Ceol and Horvitz, 2004), while class I histone deacetylase such as HDA-1 are associated with repression. One interpretation of the effect of inactivation of trr-1, mys-1, and to a lesser extent hda-1, on HPL-2 distribution is that the dynamic acetylation/deacetylation equilibrium of specific chromosomal regions is perturbed, leading to recruitment of HPL-2 to ectopic sites. One possible consequence of this ectopic recruitment may be to reduce the amount of HPL-2 available for repression at target genes. We note that while LIN-13 distribution was not affected by inactivation of most of the synMuvB genes tested in this study (data not shown), inactivation of trr-1 had an effect on LIN-13 distribution similar to that observed for HPL-2, reinforcing the idea that chromatin architecturation may be perturbed in a synMuvC mutant context.

Although HP1 proteins have been shown to bind chromatin by specifically recognizing histone H3 N-terminal tails methylated on lysine 9 (MeK9H3), several recent reports suggest that HP1 can also be found on chromatin independently of MeK9H3 (Cowell et al., 2002; Greil et al., 2003; Li et al., 2003), indicating the existence of more than one mechanism of HP1 recruitment. Our data suggest that LIN-13 may provide one such mechanism. Nonetheless, MeK9H3 may target HPL-2 to other chromosomal regions, as we were able to observe some overlap in HPL-2 and MeK9H3 localization, and HPL-2 does show an in vitro binding preference for peptides methylated on lysine 9 (data not shown). Furthermore, LIN-13 cannot be the sole mechanism for targeting HPL-2 because while in larva and adults hpl-2 expression persists in most if not all cell types, including VPCs and hypodermal cells (Couteau et al., 2002), LIN-13 expression is
very low and limited to a few cell types including hypodermal cells but not VPCs (Melendez and Greenwald, 2000). Interestingly, recent data suggest that for LIN-35Rb, the relevant transcription targets for vulval cell fate specification are likely to be in the hypodermal syncytium (Myers and Greenwald, 2005). If HPL-2 and LIN-13 interact as a single complex in vulval cell fate specification, they are also likely to act in hypodermal cells, where both proteins are expressed. Altogether, our data suggest that LIN-13, HPL-2 and other synMuv proteins including HDA-1, LIN-35Rb, and LIN-9 may be found either in the same or in distinct repressor complexes depending on the specific developmental pathway. In *Drosophila*, the presence of at least two distinct RB complexes, termed dREAM and myb-MuvB, has recently been described (Korenjak et al., 2004; Lewis et al., 2004). Interestingly, while both complexes were found to contain homologues of synMuvB gene products, they differed in the presence of individual subunits. In a more general way, we suggest that in *C. elegans* the LIN-13/HPL-2 complex may act as a chromatin scaffold that, in turn, coordinates the activities of large macromolecular complexes that modify chromatin structure to silence gene expression, including the synMuvB complex. In this context, LIN-13 may fulfill a function similar to the mammalian KAP1-KRAB repressor system, which directs binding and deposition of HP1 to silence gene expression (Abrink et al., 2001; Lechner et al., 2000; Peng et al., 2000; Schultz et al., 2002).

It has been recently shown that members of the *C. elegans* RB pathway, including the synMuvB genes *lin-35Rb*, *dpl-1/DP* and *lin-9*, negatively regulate RNAi, presumably through the repression of a subset of RNAi genes in the soma (Wang et al., 2005). Of particular interest, *hpl-2* and *lin-13*, but not other synMuv genes, were found to have a similar function. However, despite the fact that both HPL-2 and LIN-13 proteins contain a putative RB binding motif, so far we have been unable to detect a direct interaction between LIN-35Rb and either HPL-2 or LIN-13. Further analysis is required to gain better understanding of the link between LIN-35Rb, LIN-13, HPL-2 and other synMuv class genes in vulval and other developmental pathways. These studies should contribute to an understanding of how HP1 and other chromatin-associated proteins may be adapted to specific pathways of development in higher eukaryotes.

Acknowledgments

We are grateful to M. Labouesse for critical reading of the manuscript, J.B. Sibarita for providing expertise with deconvolution, G. Yvert for providing expertise with statistical analyses, and the Microscopy platform of the IFR128. Thanks to Y. Kohara for cDNA clones, K. Giesler and E. Goillot for yeast strains, the *C. elegans* Knockout Consortium and the National BioResource Project for *hpl-2* alleles. Some *C. elegans* strains were obtained from the Caenorhabditis Genetic Center, which is supported by the National Center for Research. This work was supported by the CNRS and the Association pour la Recherche sur le Cancer (ARC). V. Coustham was supported by the Ministere de la Recherche and the ARC. K. Monier was supported by the Federation pour la Recherche Medicale.

References

Ferguson, E.L., Horvitz, H.R., 1989. The multivulva phenotype of certain
Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123, 109–121.

