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In mixtures of thermotropic liquid crystals with spherical poly�methyl methacrylate� particles,
self-supporting networklike structures are formed during slow cooling past the isotropic-to-nematic
phase transition. Experimental results support the hypothesis that a third component, alkane
remnants slowly liberated from the particles, plays a crucial role. A theoretical model, based on the
phenomenological Landau–de Gennes, Carnahan-Starling, and hard-sphere crystal theories, is
developed to describe the continuous phase separation in a ternary nematic-impurity-colloid
mixture. The interfacial tension and the dispersion relation of the surface modes of the
nematic-isotropic interface are determined. The colloids decrease the interfacial tension and the
damping rate of surface waves, whereas impurities act in an opposite way. This should strongly
influence the formation of abovementioned networklike structures and could help explain some of
their rheological properties. © 2007 American Institute of Physics. �DOI: 10.1063/1.2772251�

I. INTRODUCTION

Recently, there has been a considerable interest in col-
loidal particles dispersed in anisotropic media, principally
liquid crystals.1–6 When particles are immersed in a nematic
liquid crystal, the director field is distorted by the particles,
generating interesting new phenomena. Depending on the
type of anchoring �planar or homeotropic� and on its penetra-
tion length Lp=K /W �with K the Frank elastic constant and
W the anchoring energy of the nematic at the particle
surface7,8�, different structures develop around a single par-
ticle. For instance, for homeotropic anchoring a point defect
�“hedgehog”� or a “Saturn ring” can nucleate nearby the par-
ticle depending on whether Lp is small �strong anchoring� or
large �weak anchoring� with respect to R �for a review about
this problem, see Ref. 6�. These defects give rise to highly
anisotropic, long-range elastic interactions of dipolar or qua-
drupolar type between the dispersed particles.

These induced interactions lead to original patterns, such
as chaining which is the most commonly observed at low
concentration of particles.9–11

The situation becomes different at large concentration of
particles because the latter tends to separate from the nematic
phase to form an isotropic phase �liquid or solid� which co-
exists with the nematic phase. This separation is due �only in
part, as we shall see later� to the distortions of the director
field cost energy.12–17 It turns out that the first studies have
focused on dispersions of �200 nm size poly�methyl meth-
acrylate� �PMMA� spheres in 4�-pentyl-4-cyanobiphenyl
�5CB� or N-4-methoxybenzylidene-4�-butylaniline. Micro-
scopic observations have shown that below the nematic-to-

isotropic phase transition temperature, the two phases coexist
by forming a three-dimensional network which gives to the
mixture the consistency of a soft cellular solid. More pre-
cisely, the particles are densely packed in relatively thin
walls constituting the isotropic phase, while the cavities in
between are filled with almost pure nematic liquid crystal.

In these experiments, the network was formed in the
weak-anchoring limit as the particle radius was very small
�R�Lp�. This condition is nevertheless not crucial because
similar networks were recently observed in the opposite
strong-anchoring limit by using micrometer-sized particles
for which R�Lp.16–18 These studies showed, in addition, that
experiments �including those reported before in Refs. 12–15�
were not dealing with binary but with ternary systems. The
reason is that during the process of particle preparation, the
remnant alkane cannot be removed completely. As a conse-
quence, it slowly diffuses into the suspension after homog-
enization. This phenomenon may be important, firstly, be-
cause the particles are wetted by a layer of alkane which can
change the anchoring of the liquid crystal molecules on their
surfaces. Secondly, the nematic-to-isotropic transition tem-
perature is lowered while a biphasic region shows up in the
presence of alkane, favoring the formation of the cellular
structure. It is this second point that we propose to study
theoretically.

More precisely, we shall first develop a model based on
the Landau–de Gennes mean field treatment to determine the
phase diagram of a ternary system consisting of a nematic
liquid crystal, impurities �a non-nematogenic fluid�, and col-
loids. We will see that in this mixture, a biphasic region
between the isotropic and the nematic phases appears below
the nematic-to-isotropic transition temperature of the pure
liquid crystal. We shall then study the static and dynamic

a�Author to whom correspondence should be addressed. Electronic mail:
v.popanita@gmail.com

THE JOURNAL OF CHEMICAL PHYSICS 127, 104702 �2007�

0021-9606/2007/127�10�/104702/10/$23.00 © 2007 American Institute of Physics127, 104702-1

Downloaded 13 Sep 2007 to 140.77.240.217. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2772251
http://dx.doi.org/10.1063/1.2772251
http://dx.doi.org/10.1063/1.2772251


properties of the nematic-isotropic interface �more precisely,
its surface tension and its capillary waves�. As we have al-
ready treated this problem in the particular case of a binary
mixture of liquid crystal and nonmesogenic impurities �see
the previous article19�, we shall mainly focus our attention on
the influence of added colloids on the properties of the
nematic-isotropic interface.

The paper is organized as follows. In Sec. II, we intro-
duce the free energy of a nonuniform ternary liquid crystal–
impurity–colloid mixture. In Sec. III, we present the binary
�without colloids� and ternary phase diagrams. In Sec. IV, a
general expression for the nematic-isotropic surface tension
is derived. This quantity is then calculated explicitly for typi-
cal values of the parameters. Its large variations as a function
of the colloid and the impurity concentrations are empha-
sized and are discussed in the framework of the experiments
reported before. In Sec. V, we give the dynamical governing
equations necessary to calculate the dispersion relation for
capillary waves at the nematic-isotropic interface. Numerical
results about the damping rate of the waves are then pre-
sented and discussed. Finally, in Sec. VI, we draw some
conclusions and directions for future work.

II. FREE ENERGY

The mixture is characterized by the volume fractions of
the three components,

�i =
Nivi

�i=1
3 Nivi

with �
i=1

3

�i = 1, �1�

where Ni is the number of molecules of component i �i=1
defines the liquid crystal, i=2 the non-nematogenic fluid, and
i=3 the colloids� and vi is the volume of a particle of com-
ponent i. In what follows, we consider that the volumes of a
nematic and impurity molecule are equal �v1=v2=v� and the
volume of a colloid is vR= �4� /3�R3, where R is the radius of
a colloid particle �with vR�v�. The orientational order of the
mixture is characterized by the nematic order parameter Q��

�with Cartesian indices �, �=1,2 ,3� which, in the case of
uniaxial nematic state, can be expressed as7

Q�� = S�3n�n� − ����/2. �2�

The unit vector n is the nematic director which fixes the
average local uniaxial orientation of the liquid crystal mol-
ecules. Due to the head-to-tail invariance of molecules, the
cases ±n refer to the same state. The scalar S is the orienta-
tional order parameter. The isotropic liquid is characterized
by S=0 and a perfectly oriented nematic phase �i.e., with no
fluctuations about n� would correspond to S=1. In this paper,
we suppose to simplify that n is fixed in space and time, so
that the relevant physics is only governed by the scalar order
parameter S�r , t�. We note that this is an idealization which is
neither true in general during the relaxation nor close to the
interface even at equilibrium. However, previous studies20

suggest that the slowest relaxation modes approximately ful-
fill this condition when the director anchoring is homeotropic
at the interface.

The free energy functional of the system is given by

F��1,�2,�3,Q��� =� � f��1,�2,�3,Q���

+
1

2
K����2�2 +

1

2
L1��	Q���2

+
1

2
L2���Q���2	dV , �3�

where K� is a phenomenological coefficient. The elastic con-
stants L1 and L2 are related to the Frank-Oseen elastic con-
stants by the relations K1=K3=9Sn

2�L1+L2 /2� /2 and K2

=9Sn
2L1 /2, where Sn is the bulk nematic order parameter. In

the so-called “one-constant approximation” �K1=K2=K3

=9Sn
2KS /2�, L1=KS and L2=0, values which we consider in

this paper. We neglect contributions from a gradient in the
colloid concentration. The reason is that the contribution of
colloids to the total interfacial tension is negligibly small due
to the large size of the particles �indeed, it scales as the
thermal energy divided by the size of the particle squared�.
Since the colloids are at least ten and more likely 100 times
larger than the molecules of liquid crystal, their contribution
is insignificant. The interfacial tension between phase-
separated colloidal phases can be as low as a few millionth
of a N/m.21 We have also neglected the coupling term
K0����2����Q���, since previous study indicates that its in-
fluence to interfacial tension is small.19

The bulk free energy density consists of three parts,

f��1,�2,�3,Q��� = fmix��1,�2� + fcoll��3�

+ f lc��1,�2,�3,Q��� . �4�

The first term is the free energy density of the isotropic
mixing of liquid crystal and non-nematic fluid and according
to the Flory theory is given by22

fmix =
kBT

v
��1 ln �1 + �2 ln �2 + 
�1�2� , �5�

where kB is the Boltzmann constant, T the absolute tempera-
ture, and 
=
12 the dimensionless Flory-Huggins interaction
parameter which characterizes the isotropic interaction en-
ergy �divided by kBT� between the liquid crystal and impurity
molecules.22 In this paper, we consider 
 as a constant. Be-
cause vR�v, the interaction between the colloidal particles
and the liquid crystal and impurity molecules can be ne-
glected �
13=
23=0 as these two quantities are of the order
of �v /vR�1/3
�
�.

The second term in Eq. �4� is the free energy density of
a colloidal suspension,
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fcoll =
kBT

vR

�3 ln �3 + �3

2�4 − 3�3�/�1 − �3�2, �3 � 0.52, liquid

u0�3 + 3�3 ln �3/�1 − �3/�c� , �3 � 0.52, solid,
� �6�

where the two expressions are matched by the adjustable
parameter u0=1.793 at the concentration of 0.52, while �c

=0.637 is the random close-packing fraction. The first line in
Eq. �6� is the Carnahan-Starling excess free energy density of
a hard-sphere suspension,23 while the second line is the free
energy density of a hard-sphere crystal based on free volume
considerations.24

The third term in Eq. �4� is the Landau–de Gennes free
energy density,7 which describes the weakly first-order
nematic-to-isotropic phase transition,

f lc = �1�a�T − �1 − 2�2 − 3�3�T*�Q��Q��

− BQ��Q�	Q	� + C�Q��Q���2� . �7�

In this expression, T* is the spinodal temperature of the iso-
tropic phase of the pure liquid crystal, and a, B, and C are
three constant coefficients. For 5CB for instance, they have
the following values: a�3.5�104 J /m3 K, B�7.1
�105 J /m3, and C�4.3�105 J /m3.8,25 We shall take these
values in the following. The term �1−2�2−3�3�T* en-
sures that the nematic-to-isotropic transition temperature de-
creases linearly as a function of the impurity and colloid
concentrations. The physical origin of the coupling param-
eters 2 and 3 is discussed in Refs. 19 and 14, respectively.
In this paper, we consider them as phenomenological param-
eters.

For the pure liquid crystal ��1=1 and �2=�3=0�, using
the form of Eq. �2� for Q��, the bulk free energy density has
the well-known expression,

f lc = 3
2a�T − T*�S2 − 3

4BS3 + 9
4CS4. �8�

This equation describes a weakly first-order nematic-to-
isotropic phase transition. At T=TNI=T*+B2 /24aC, the two
phases, nematic �Snem 0=B /6C� and isotropic �Siso=0�, coex-
ist in equilibrium.

III. PHASE DIAGRAMS

A. Basic equations for calculating phase diagrams

The calculation of the static phase diagrams only re-
quires to know the bulk free energy density. For conve-
nience, we introduce nondimensional quantities. The tem-
perature is replaced by the reduced temperature �
= �T−T*� / �TNI−T*�. The orientational order parameter is
normalized with respect to its value in the pure liquid crystal

at the transition temperature TNI: S̄=S /Snem 0. Setting f̄coll

= fcoll / �kBT /vR� and ̄2,3=24aT*C2,3 /B2, the dimensionless

free energy f̄ = f / f0 �with f0=B4 /242C3� reads after omitting
the bar notation,

f = ��1 + �����1 ln �1 + �2 ln �2 + 
�1�2�

+ �R�1 + ���fcoll + �1��� + 2�2 + 3�3�S2 − 2S3 + S4� ,

�9�

where �=kBT* / �vf0�, �R=kBT* / �vRf0�, and �= �TNI−T*� /T*.
Below TNI, a phase separation may occur depending on

the initial composition of the mixture. During this process,
the system of average composition ��2 ,�3� splits into a
nematic phase of composition ��2nem,�3nem� and an isotro-
pic phase of composition ��2iso ,�3iso�. The values of �2nem,
�3nem, �2iso, and �3iso are given at equilibrium by the equa-
tions �remembering that �1=1−�2−�3 in each phase�

�2 � �2�Snem,�2nem,�3nem� = �2�0,�2iso,�3iso� ,

�3 � �3�Snem,�2nem,�3nem� = �3�0,�2iso,�3iso� , �10�

g � g�Snem,�2nem,�3nem� = g�0,�2iso,�3iso� ,

where �2�S ,�2 ,�3�, �3�S ,�2 ,�3�, and g�S ,�2 ,�3� are de-
fined by the equations

�2�S,�2,�3� =
�f

��2
; �3�S,�2,�3� =

�f

��3
;

�11�
g�S,�2,�3� = f − �2�2 − �3�3.

We emphasize that in the definition of grand potential
g�S ,�2 ,�3�, �2 and �3 are the constant chemical potentials
of the impurities and of the colloids, respectively. As for the
orientational order parameter Snem, it is obtained by minimiz-
ing the free energy density �Eq. �9�� with respect to S, which
gives

Snem = 1
4 �3 + 9 − 8�2�2 + 3�3 + ��� , �12�

while Siso=0. Note that, with our new notations, Snem 0=1 in
the pure liquid crystal ��2=�3=0� at �=1. In the following,
we discuss separately the cases of the binary and ternary
diagrams.

B. Binary phase diagram of the liquid
crystal–impurity mixture

This case corresponds to �3=0. To simplify, we denote
by � the average impurity volume fraction �2 and by
1−� the liquid crystal volume fraction �1. To compute the
phase diagram, we must choose a value for �. This param-
eter depends on f0, the value of the energy barrier to over-
come at the nematic-to-isotropic phase transition in the pure
liquid crystal. From typical values of a, B, and C given
above for 5CB, we calculate f0�5500 J /m3. Volume v rep-
resents in an ideal mixture the molecular volume. In the case
of liquid crystal 5CB, each molecule has the shape of a cyl-
inder of length of 3 nm and of diameter of 0.5 nm. That

104702-3 Nematic-isotropic interface in ternary mixtures J. Chem. Phys. 127, 104702 �2007�

Downloaded 13 Sep 2007 to 140.77.240.217. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



gives v�22.5�10−27 m3. From this value, we calculate �
�300. It turns out that if we perform the calculations with
this value of �, we do not find any phase separation at the
nematic-to-isotropic phase transition.

On the other hand, choosing a smaller value of � allows
us to find a phase diagram compatible with observations.26

Such a phase diagram, calculated for �=0.8, 2=1, and 

=1, is shown in Fig. 1. Consequently, we must decrease the
value of � by more than two orders of magnitude to obtain
an acceptable phase diagram. That means that the mixing
entropy of the liquid crystal and impurity molecules is
smaller than expected. This is possible if molecules of each
species form clusters. So v must be considered as an effec-
tive volume �larger than the molecular volume� characteriz-
ing the nonideality of the mixture. In the following, we shall
retain the phenomenological value �=0.8.

We now briefly describe the obtained phase diagram. For
a temperature below TNI ��NI=1�, there exists a two-phase
coexistence region between an isotropic �high-�� and a nem-
atic �low-�� phase. On decreasing temperature �note that the
spinodal temperature of the isotropic phase of the pure liquid
crystal corresponds to �*=0�, the biphasic region broadens.
When the system is thermally quenched from the stable iso-
tropic phase into the biphasic region, fluctuations of the con-
centration and of the orientational order occur, and nematic
droplets nucleate. At the end of the process, the system sepa-
rates into two phases of compositions �nem and �iso. For the
quench represented by the arrow in Fig. 1, the initial average
composition �=0.2 at high temperature ��1 �corresponding
to �2 /�1=� / �1−��=0.25� splits into �nem=0.031 and
�iso=0.935 at temperature �=0.1. We note that in this ex-
ample, the impurity is strongly rejected into the isotropic
phase �as expected for nonmesogenic molecules�.

In the next section, we establish the phase diagram for
the ternary mixture at the reduced temperature �=0.1. We
also discuss what happens when colloids or impurities are
progressively added to the mixture.

C. Ternary phase diagram of the liquid
crystal–impurity–colloid mixture

For the three-component system consisting of liquid
crystal, impurities, and colloids, the equilibrium equations
�10� involve four independent concentration variables,
namely, two for each phase ��2nem and �3nem for the nematic

phase, and �2iso and �3iso for the isotropic liquid�. If one of
these variables is specified, the other three are fixed by the
three equations �10�. It is possible, therefore, to compute at
each reduced temperature � the binodal curve which gives
the two-phase equilibrium compositions of the three-
component system.

An example of phase diagram is plotted in Fig. 2 for �
=0.8, 2=1, 
=1, �=0.1, �R=0.006, and 3=1.35. The last
two values have been chosen in order that there exists a
two-phase coexistence region �gray region in the phase dia-
gram� between a rich-in-colloid isotropic phase and a nem-
atic phase in which the colloid concentration practically can-
cels. This is typically what is observed experimentally with
colloidal particles of diameter in the range of a few tens of
nanometers. We recall that the colloids are expelled from the
nematic phase because they distort the director field, which
is unfavorable energetically. We shall note that points repre-
senting the nematic phase are located in the lower part of the
left side of the triangle �corresponding to �3�0�. We shall
also emphasize that in the isotropic phase, the hard-sphere
colloid is in the liquid state below the coexistence boundary
�3iso�0.52 and in the solid state at higher concentration
0.52��3iso��c=0.637, where �c is the random close-
packing fraction. Finally, for �3iso�0.637, no phase is de-
fined by the model.

From this phase diagram, we can describe two comple-
mentary situations which could be test experimentally. First,
we can add impurities to a given mixture of liquid crystal
and colloids of constant ratio �3 /�1, for instance �3 /�1

=0.10. This is what happens in the experiments performed
with PMMA colloids where the remnant alkane slowly dif-
fuses in the mixture or is directly added.12,14,15 The followed
path in this case corresponds to the dashed–double dotted

FIG. 1. Phase diagram for nematic–non-nematic binary mixture for �=0.8,
2=1, and 
=1.

FIG. 2. Phase diagram calculated for a three-component system consisting
of liquid crystal, impurities, and colloids. The solid curve refers to the bin-
odal. Inside the gray region, there is phase separation. The dashed lines give
the volume fractions of each species in the two phases at their intersections
with the bimodal. Along the dashed-dotted line �the dotted line�, �2 /�1

=0.25 ��3 /�1=0.10�. In the isotropic phase, the hard-sphere colloid is in
the liquid state �IL� below the coexistence boundary �3iso�0.52, whereas it
is in the isotropic solid state �IS� at higher concentration 0.52��3iso��c

=0.637, where �c is the random close-packing fraction.
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line in the ternary phase diagram. Starting from the bottom
of phase diagram, we immediately see that adding impurities
to the mixture tends to simultaneously increase the impurity
concentration and decrease the colloid concentration in the
isotropic phase, whereas the liquid crystal remains almost
pure in the nematic phase. As a result, the colloid, which
initially forms a solid phase, melts to give a disordered sus-
pension when the impurity concentration is sufficiently large
�in this example, when �2�0.09�.

Second, we can add colloids to a well-defined mixture of
liquid crystal and impurities �imposing, for instance,
�2 /�1=0.25�. In this case, we follow the dashed-dotted line
in the ternary phase diagram. Starting from the left of the
phase diagram, we immediately note that when �3 increases,
the impurity concentration strongly decreases in the isotropic
liquid, whereas the liquid crystal remains almost pure in the
nematic phase as in the previous case. As for the colloidal
particles, they first form a disordered suspension in the iso-
tropic liquid to finally solidify when �3 exceeds 0.52.

In the next section, we show that changing the concen-
trations of the different species along a given path leads to
large variations of the nematic-isotropic surface tension.

IV. INTERFACIAL TENSION

We consider a planar nematic-isotropic interface of unit
surface area in equilibrium and take the z axis perpendicular
to the interface. We choose the origin z=0 such that the
nematic phase �S=Snem� lies in the region z�0 and the iso-
tropic phase �S=0� in the region z�0. The free energy func-
tional �3� can be expressed as �by using real variables�

F = �
−�

�

dz� f +
1

2
K�2

�dz�2�2 +
1

2
K�3

�dz�3�2

+
1

2
KS�dzS�2	 . �13�

The interfacial tension 	 is defined as the difference, per
unit area of the interface, between the actual free energy of
the system and that of the two phases if each were uniform
and isolated. It is thus given by

	 = f0�
−�

�

dz��g +
1

2
l�2

2 �dz�2�2 +
1

2
l�3

2 �dz�3�2

+
1

2
lS
2�dzS�2	 , �14�

where �g=g�S�z� ,�2�z� ,�3nem�−g�0,�2iso ,�3iso� is the di-
mensionless energy difference calculated from Eq. �11� and S
the order parameter normalized to its value in the pure liquid
crystal �S�S /Snem 0�. The three correlation lengths are de-
fined to be lS= �KSSnem 0

2 / f0�1/2, l�2
= �K�2

/ f0�1/2, and l�3
= �K�3

/ f0�1/2. As we shall see later, they give the typical
widths of the profiles in S, �2, and �3, respectively.

Minimizing the functional in Eq. �14� with respect to
�2�z�, �3�z�, and S�z�, we obtain the corresponding Euler-
Lagrange equations for the equilibrium profiles of the order
parameter and of the impurity and colloid compositions,

l�2

2 dz
2�2 =

��g

��2
, �15�

l�3

3 dz
2�3 =

��g

��3
, �16�

lS
2dz

2S =
��g

�S
, �17�

with the following boundary conditions �i=2,3�:

��i,S� = 
��inem,Snem� as z → − �

��iiso,0� as z → � ,
� �18�

and dz�i�±��=dzS�±��=0.
Multiplying Eq. �15� by dz�2, Eq. �16� by dz�3, and Eq.

�17� by dzS, adding the resulting equations, and then integrat-
ing once with respect to z, we obtain

�g = 1
2 l�2

2 �dz�2�2 + 1
2 l�3

2 �dz�3�2 + 1
2 lS

2�dzS�2. �19�

Using this expression to eliminate �g term from Eq. �14�, the
interfacial tension becomes

	 = f0�
−�

�

�l�2

2 �dz�2�2 + l�3

2 �dz�3�2 + lS
2�dzS�2�dz . �20�

To calculate 	 we need the values of KS and K�i
�i

=2,3�. For the former, we use the experimental value of
KS=2.1�10−12 N given for 5CB in Ref. 25, from which we
calculate lS=1.7�10−8 m by taking the previous values of
Snem 0 and f0. The stiffness coefficient K�2

is unknown ex-
perimentally for a 5CB-alkane mixture. For this reason, we
propose to take K�2

/KS=40, as in Ref. 27, which gives ex-
plicitly K�2

=3.8�10−10 N and l�2
=2.6�10−7 m. As for

K�3
, it must be very small in comparison with KS and K�2

because of the “large” size of the particles, so we shall take
K�3

=0. In the following, we set K�2
�K� �l�2

� l��.
With this particular choice, the length scales are well

separated because l�� lS. A direct consequence is that the
differential equations ��15�–�17�� are decoupled since on the
distance over which each variable changes significantly, the
others may be considered as constant. In practice, that means
that in the right-hand side of each equation, Eqs. �15�–�17�,
the partial derivative can be replaced by a total derivative. As
a result the typical distances over which S and � change are
given, respectively, by lS and l�̃. More precisely, it can be
checked numerically that the real profiles are very close to
hyperbolic tangent profiles of the forms

�2�z� =
1

2��2nem + �2iso + ��2iso − �2nem�tanh
z

2l�

� ,

�21�

S�z� =
Snem

2 �1 − tanh
z

2lS
� .

From these profiles and Eq. �20�, we can immediately calcu-
late the interfacial tension,
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	/	S = Snem
2 + ��2iso − �2nem�2� l�

lS
� , �22�

where 	S is the surface tension of the pure liquid crystal:
	S= �2/6�f0lS �knowing that in this limiting case, the S�z�
profile given in Eq. �21� is exact�. Note that in Eq. �22�, Snem

is calculated from Eq. �12�, while �2iso and �2nem are the
concentrations calculated from the ternary phase diagram.
We emphasize that all these quantities depend on the colloid
concentration �3. As a consequence, the surface tension
must change in the presence of the colloids, which is not
obvious at the first sight from Eq. �22�.

To illustrate this important point, let us return to the two
experimental situations described at the end of the previous
section. More precisely, let us discuss how the surface ten-
sion changes when impurities �colloids� are added to a
colloid–liquid crystal mixture of a given composition �3 /�1

�to an impurity–liquid crystal mixture of a given composition
�2 /�1�. All calculations were performed at reduced tem-
perature �=0.1, by taking as reference surface tension 	S of
value of 2.2�10−5 N/m.

In the first case �corresponding to the dashed–double
dotted line of equation �3 /�1=0.10 in Fig. 2�, the reduced
surface tension 	 /	S strongly increases when �2 increases
�Fig. 3�a��. In the second case �corresponding to the dashed-
dotted line of equation �2 /�1=0.25 in Fig. 2�, 	 /	S strongly
decreases when �3 increases �Fig. 3�b��. These large varia-
tions can be easily explained by considering that the term
proportional to Snem

2 in Eq. �22� is practically constant,
whereas the second term, proportional to ��2iso−�2nem�2 �al-

ways very close to �2iso
2 as the nonmesogenic impurities are

expelled from the nematic phase� strongly increases
�strongly decreases� when one adds impurities �colloids� to
the mixture. This can be seen immediately from the phase
diagram by moving along the dashed–double dotted line �the
dashed-dotted line�.

We can expect that these large variations of the surface
tension play an important role in experiments. Indeed, our
calculations show that adding a small amount of impurity
can strongly increase the nematic-isotropic surface tension
�Fig. 3�a��. In contrast, adding colloids to an impure liquid
crystal leads to an opposite effect �Fig. 3�b��. This second
effect could explain qualitatively why the mesh size of the
observed cellular superstructure decreases when the concen-
tration of colloids is increased.14 The elastic modulus G�
should also depend on the impurity concentration. Such ef-
fects were indeed reported recently in experiments18 but they
are not yet well documented.

Another question that arises is how to measure the sur-
face tension. This could be performed by using the sessile �or
pendant� drop method,8,28 provided that the colloid can flow
in order that the drop equilibrates in the gravity field. Ac-
cording to our calculations, this condition is fulfilled for
small concentrations of colloids or large concentrations of
impurities. In practice, it will also be necessary to break the
cellular structure which spontaneously forms during the
phase transition in order to separate the nematic phase from
the isotropic one. This could be done by centrifugation, the
colloid being generally more dense than the nematic phase,
but one must be careful to not separate the colloids from the
rest of the mixture, which is an experimental challenge. An
alternative method to estimate the surface tension would be
to look at the damping rate of the capillary waves at the flat
nematic-isotropic interface, for instance, by using new devel-
oped microscopy techniques which are more local than usual
scattering techniques. This question, which represents in it-
self another experimental challenge, is analyzed in detail in
the next section from a theoretical point of view.

V. CAPILLARY WAVES

A. Equations of motion

We assume that the heat diffusion is sufficiently rapid in
order that the system remains at thermal equilibrium. We
therefore ignore the equation for energy conservation and
assume an isothermal system at a specified temperature. We
further assume that the fluid is incompressible. Within these
approximations, the equations of motion for the velocity and
the nematic order parameter become29–31

��v� = 0, �23�

�
dv�

dt
= ���− p��� + ���

d + ���
v � +

�F

��2
���2���, �24�

0 = h�� + h��
v − ��� − ���		, �25�

where � is the density and p the pressure, while  and 	 are
the Lagrange multipliers associated with conditions Tr Q=0
and Q��=Q��, respectively. In this expression, �, �, and 	

FIG. 3. �a� Nematic-isotropic reduced interfacial tension 	 /	S as a function
of impurity volume fraction �2 for �=0.1 and �3 /�1=0.1. �b� The same
quantity as a function of colloid volume fraction �3 for �=0.1 and �2 /�1

=0.25. 	S is the nematic-isotropic interfacial tension for the pure liquid
crystal.
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run from 1 to 3, summation over repeated indices is implied,
���	 is the Levi-Civita symbol, and d /dt is the total time
derivative � /�t+v ·�. The distortion stress �d �which results
from molecular displacement keeping the orientation fixed:
r→r+u�r� and Q���r�→Q��� �r��=Q���r�� and the elastic
molecular field h �which results directly from the virtual ori-
entational distortion: Q���r�→Q��� �r�� are obtained in the
standard manner and read

���
d = −

�F

����Q	��
��Q	�, �26�

h�� = − �F/�Q��. �27�

The viscous stress tensor �v and the viscous molecular field
hv are introduced through the consideration of entropy pro-
duction in a dissipative flowing nematic. Within a tensorial
description of the Ericksen-Leslie theory,31–33 they are given
by

���
v = �1Q��Q��A�� + �4A�� + �5Q��A�� + �6Q��A��

+ 1
2�2N�� − �1Q��N�� + �1Q��N��, �28�

− h��
v = − 1

2�2A�� + �1N��, �29�

where

N�� =
dQ��

dt
+ Q��W�� − W��Q�� �30�

is the time rate of change of the order parameter with respect
to the background fluid angular velocity, also known as the
corotational time derivative. The quantities �1, �4, �5, �6,
�1, and �2=�6−�5 are viscous coefficients which can be
expressed in terms of the Leslie coefficients ��i� and the
value of the order parameter S,31 while A��= 1

2 ���v�+��v��
and W��= 1

2 ���v�−��v�� are, respectively, the symmetric and
antisymmetric parts of the velocity gradient tensor.

The impurity composition equation of motion takes the
Cahn-Hilliard form34

d�2

dt
= ���2� �F

��2
� , �31�

where the transport coefficient �� is assumed to be constant.
The complete dynamics is described by Eqs. �23�–�25� and
�31�.

We consider a two-dimensional flow with horizontal and
vertical velocity components u and w in the x and z direc-
tions, respectively, and we simplify the expressions �28� and
�29� by assuming that

�1 = �5 = �6 = 0, �4 = 2� , �32�

which give �2=0.31 In terms of Leslie coefficients �i, these
relations are equivalent to

�1 = �5 = �6 = 0, − �2 = �3 = � = 9S2�1/4,

�33�
�4 = �4 = 2� .

Within these approximations, the coefficient � describes the
dissipation due to shear flow �shear viscosity�, while �1 is

associated with the standard rotational viscosity 	1=�3−�2

=2�=9S2�1 /2.
Using these hypotheses, the basic Eqs. �23�–�25� and

�31� take the following forms:

0 = �xu + �zw , �34�

�
du

dt
= − �xp + ��2u − KS�

2S�xS

+ � �f

��2
− K��2�2��x�2, �35�

�
dw

dt
= − �zp + ��2w − KS�

2S�xS

+ � �f

��2
− K��2�2��z�2, �36�

�1
dS

dt
= −

�f

�S
+ KS�

2S , �37�

d�2

dt
= ���2� �f

��2
− K��2�2� , �38�

where �=�iso=� in the isotropic phase �when �3=0�, while
�=�nem= ��+2�� /2 in the nematic phase �note that this vis-
cosity corresponds to the second Miesowicz viscosity �b

�Ref. 8� measured when the nematic phase is sheared parallel
to the director�.

In what follows, we shall suppose that the stationary
planar nematic-isotropic interface �i.e., the base state of the
system� is situated at z=0, such that the nematic lies in the
region z�0 and the isotropic phase in the region z�0. The x
axis is taken in the direction of the wave vector k of the
perturbation along the interface. This is possible without loss
of generality if the system is isotropic in x and y directions,
which implicitly assumes that the director anchoring on the
interface is homeotropic and the biaxiality of the nematic
phase is negligible. In this way, the wave number k repre-
sents the modulus of the two-dimensional wave vector in the
plane of the interface. Due to thermal fluctuations, small am-
plitude monochromatic waves of the form � exp�ikx−�t�
develop at the interface. In our notation, k is the wave vector
�real number� and � is the angular frequency. The latter
quantity is generally a complex number whose the real part
gives the relaxation time 1/R��� of the wave and the imagi-
nary part, the phase velocity I��� /k.

B. Dispersion relation

To obtain the dispersion relation we use the method of
matched asymptotic expansions.35 The results obtained for
similar systems using this method were extensively pre-
sented previously.19,36–38 The method consists of matching
the solution obtained in an outer region, where z is of the
order of l�=�2 /�	�1�10−2 m, to that calculated in an in-
ner region in which z is of the order of lS= �KSSnem 0

2 / f0�1/2

�1.7�10−8 m. There are two outer regions �one, deep into
the nematic phase, z→−�, and the other deep into the iso-
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tropic phase, z→ +�� in which the dominant physics is hy-
drodynamics, i.e., the dissipation due to the shear flow. In
contrast, the variations of the nonconserved order parameter
S and of the conserved parameter �2 are the dominant pro-
cesses in the inner region.19

The corresponding dispersion relation is given by38

��� − �S�� = ��
2 . �39�

The angular frequency �S� �corresponding to the inner re-
gion of size lS� fixes the angular frequency in the limit k
→�. It expresses in the form19

�S� =
	k2

�1	S/KS + ��2iso − �2nem�2/2k��

. �40�

The difference ��2iso−�2nem� is calculated for a colloid com-
position �3 different from 0 accordingly with the ternary
phase diagram shown in Fig. 2.

As for ��, it gives the angular frequency in the opposite
limit k→0 �corresponding to the outer region of dimension
l��. It is identical to the classical capillary-wave dispersion
relation for a sharp interface. It reads39,40

��
2 = �1 +

k�knem
2 + kiso

2 � − 2k3

�knem + kiso��k2 − knemkiso�
	�0

2, �41�

where �0
2=−	k3 /2� is the capillary-wave dispersion relation

for ideal �inviscid� fluids, knem=k�1−��� /�nemk2�1/2, and
kiso=k�1−��� /�isok

2�1/2. The latter expression is exact if the
viscosities of the two phases are constant. It turns out that in
our case, �iso corresponds to the viscosity of a disordered
colloidal hard-sphere dispersion. As a consequence �iso is not
constant but depends on the angular frequency given here by
R���. According to de Kruif et al.,41 the viscosity of a dis-
ordered suspension can be written as

�iso =
�0 − ��

1 + Pe
+ ��, �42�

where �� and �0 are the high- and low-frequency limiting
viscosities, of expressions

�� = ��1 −
�3iso

0.63
�−2

,

�43�

�0 = ��1 −
�3iso

0.71
�−2

.

In Eq. �42�, Pe is the Peclet number or the dimensionless
angular frequency. This number measures the importance of
hydrodynamic effects with respect to thermal ones. It is de-
fined to be

Pe =
6��R3R���

kBT
. �44�

In the following, we shall assume that Eq. �41� still applies
on condition to use expression �42� for the viscosity of the
isotropic liquid.

The real part of the solution of Eq. �39� and its
asymptotic limits given by Eqs. �40� and �41� are drawn in
Fig. 4 for �=0.1, �3=0.4, and a radius of the colloidal par-

ticles R=100 nm. To perform numerical calculations, we
have taken the typical experimental values given in the lit-
erature for 5CB: �=�=0.01 Pa s and �=103 kg/m3.8 For the
transport coefficient �� introduced in Eq. �31�, we have
taken ��=4.5�10−13 m3 s /kg. This value has been esti-
mated by assuming that the typical molecular velocities vS

= lS / tS and v�= l� / t� are equal. Note that here lS

= �KSSnem 0
2 / f0�1/2, tS=3�1Snem

2 /2f0, l�= �K� / f0�1/2, and t�

=K� /��f0
2.

Two regions can be clearly distinguished. In the short
wavelength limit �region II�, the interface is diffuse and the
relaxation of the two order parameters is the dominant pro-
cess. The dispersion relation is given by Eq. �40� �dashed
curve in Fig. 4�. In the long wavelength limit, the viscous
damping process in the outer region dominates and the cor-
responding dispersion relation is given by Eq. �41� �dotted
curve in Fig. 4�.

The transition between these two regions takes place
when R����=R��S��. That gives the critical wave number
kc�2.1�104 cm−1 corresponding to the critical wavelength
c�3�10−4 cm. In Fig. 4, the influence of colloids on the
dispersion relation is not clearly visible. For this reason, we
superposed in Fig. 5 the curves representing the dispersion
relations of a ternary and a binary mixture. More precisely, in
Fig. 5, the solid line refers to the previous ternary mixture
with �3=0.4 and �2 /�1=0.25, whereas the dashed line has
been calculated for a binary mixture with �2 /�1=0.25 �and
�3=0�.

We observe that the presence of colloids tends to de-
crease the damping rate mainly in the hydrodynamic regime.
The effect increases when the wavelength increases. This can
be explained by considering the influence of two factors.
First, the colloids decrease the nematic-isotropic interfacial
tension �see Fig. 2�. In the case of the ternary mixture with
�3=0.4, the interfacial tension has the value 	 /	S�4, while
for the binary mixture without colloids, 	 /	S�21. This ef-
fect tends clearly to decrease the damping rate. Second, the
colloids increase the viscosity of the isotropic phase �see

FIG. 4. The damping rate R��� as a function of k for the colloid compo-
sition �3=0.4, reduced temperature �=0.1, and the fixed ratio �2 /�1

=0.25. The general dispersion relation �Eq. �39�� �continuous curve�, the
inner region dispersion relation �Eq. �40�� �dashed curve�, and the outer
region dispersion relation �Eq. �41�� �dotted curve�. It must be noted that in
the whole range of wave vectors shown in this graph, � is a real number so
that R���=� �waves are overdamped�.
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Eqs. �42� and �43��. This effect also tends to decrease the
damping rate. As can be seen from Fig. 6 where the viscosity
of the isotropic phase �given by Eq. �42�� is plotted as a
function of the wave vector for �3=0.4 and �2 /�1=0.25,
this effect is stronger below a typical wave vector of about
2�103 cm−1. More precisely, this curve shows that the col-
loids increase the viscosity by a factor of 7.5 �with respect to
the value without colloids� below this limit and by a factor of
5.3 above. The sum of these two effects explains the increase
by one order of magnitude of the damping rate observed at
large wavelength �Fig. 5�.

Coming back to Fig. 5, we shall note in addition that the
value of kc that defines the “transition” between hydrody-
namic and relaxation of the order parameter regimes differ in
the two cases. Without colloids kc=kc2�4.3�104 cm−1,
while kc=kc1�1.3�104 cm−1 in the presence of colloids.
This result is expected inasmuch as the colloids tend to de-
crease the damping rate mainly in the hydrodynamic regime.

Finally, we shall note that our analysis only makes sense
if the wavelength of the perturbation is larger than the mean
distance between the colloidal particles. For colloidal par-
ticles of radius R=100 nm and a concentration �3=0.4, this

condition is satisfied as long as k� �3�3 /4��1/3�2� /R�
�3�105 cm−1, which is the case in all our calculations.

VI. CONCLUSIONS

In this paper we have examined a few properties of a
three-component system composed of a liquid crystal, a non-
nematogenic fluid �impurities�, and colloids. This theoretical
study was motivated by recent experimental observations
showing that during the preparation of mixtures of a liquid
crystal with PMMA spheres, a third component, alkane,
slowly liberates from the particles and diffuses into the sus-
pension. This phenomenon was shown to influence the mesh
size of the cellular structure formed after the nematic-
isotropic phase separation, as well as its rheological proper-
ties.

In this context we have more explicitly studied the phase
diagram and the static and dynamical properties of the
nematic-isotropic interface. Our main results can be summa-
rized as follows.

�1� If one adds colloids to a liquid crystal–impurity mixture
of a given composition �2 /�1, the colloids go into the
isotropic phase �there are expelled from the nematic
phase�. In this case, we have shown that the impurity
concentration decreases in the isotropic liquid so that
the nematic-isotropic surface tension also decreases.

�2� Inversely, if one adds impurities to a liquid crystal–
colloid mixture of fixed composition �1 /�3, they con-
centrate into the rich-in-colloid isotropic liquid and the
nematic-isotropic surface tension increases.

�3� Finally, capillary waves are strongly influenced by im-
purities and colloids. This comes from the fact that
their dispersion relation strongly depends both on the
viscosity of the two phases and on the surface tension.
In particular, we have shown that adding colloids to a
liquid crystal–impurity mixture of a given composition
�2 /�1 tends to decrease the damping rate of the waves
because the surface tension decreases and the viscosity
of the isotropic liquid increases.

We must nevertheless mention that our calculations are
simplified as they neglect the coupling between the nematic
director and the hydrodynamic flow, as well as the anchoring
effect of the director at the interface. In addition, we did not
use the complete set of Leslie viscosities and we assumed
that the viscosity of the isotropic phase �without the colloids�
is independent of the impurity concentration. In spite of
these simplifications, we hope that our model retains the es-
sential physics and will be helpful to better understand the
microstructure and the rheological properties of the cellular
networks formed in the coexistence region.

Finally, note that our calculations could be generalized in
order to take into account the coupling between the interface
oscillations, the director field, and the velocity. One could
also include density effects, in particular, to study interfaces
in lyotropic liquid crystals.

FIG. 5. The damping rate R��� as a function of k for �=0.1 without col-
loids �dotted curve� and for a colloid concentration �3=0.4 �continuous
curve�. In both cases, �2 /�1=0.25. Without colloids, waves are over-
damped above k�33.6 cm−1 and start to propagate below. The arrow indi-
cates the limit between these two regimes. In contrast, waves are over-
damped in the case of �3=0.4 in the whole range of wave vectors shown in
the figure �they would start to propagate below k�1.5 cm−1�.

FIG. 6. The viscosity of the isotropic phase as a function of k for �=0.1, for
colloid concentration �3=0.4, and the ratio �2 /�1=0.25.
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