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Université de Lyon

Laboratoire de Physique de l’ENS Lyon, CNRS UMR 5672, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France
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Abstract. - Fluctuations of the total entropy are experimentally investigated in two stochastic
systems in a non-equilibrium steady state : an electric circuit with an imposed mean current and
a harmonic oscillator driven out of equilibrium by a periodic torque. In these two linear systems,
we study the total entropy production which is the entropy created to maintain the system in the
non-equilibrium steady state. Fluctuation theorem holds for the total entropy production in the
two experimental systems, both for all observation times and for all fluctuation magnitudes.

Thermodynamics of systems at equilibrium has been de-
veloped by defining the internal energy, the injected work,
and the dissipated heat. The first law of Thermodynam-
ics describes energy conservation and gives a relation be-
tween those three energies. The second law of Thermo-
dynamics imposes that the entropy variation is positive
for a closed system. Statistical Physics further gives a
microscopic definition of entropy, which allows analytical
results on entropy production. The extension of Thermo-
dynamics to systems in non-equilibrium steady states is
an active field of research. Within this context, the first
law has been extended for stochastic systems described
by a Langevin equation [1–3]. It has been noted that the
second law is not verified at all times but only in aver-
age, i.e. over macroscopic times : entropy production
can have instantaneously negative values. The probabil-
ities of getting positive and negative entropy production
are quantitatively related in non-equilibrium systems by
the Fluctuation Theorem (FT). This theorem has been
first demonstrated in deterministic systems [4–6] and sec-
ondly extended to stochastic dynamics [7–10]. FTs for
work and heat fluctuations have been theoretically and
experimentally studied in Brownian systems described by
the Langevin equation [2, 3, 11–18]. For these systems in
non-equilibrium steady state, Fluctuation Theorems hold
only in the limit of infinite time:

Φ(a) ≡ ln

(

p(Xτ = +a)

p(Xτ = −a)

)

→
a

kBT
for τ → ∞ (1)

where kB is the Boltzmann constant, T the temperature
of the heat bath and p(Xτ ) is the probability density func-
tion (PDF) of Xτ . Φ is called symmetry function and Xτ

stands for either injected work or dissipated heat, averaged
over a time lag τ . For the injected work, eq. 1 is valid for
all fluctuation magnitudes a ; for the dissipated heat, eq. 1
is satisfied for values lower than the mean value [13].

We are interested here in the total entropy production
in a non-equilibrium steady state (NESS), introduced in
ref. [19–21] and directly related to previous work on house-
keeping heat [22, 23]. Entropy production has been stud-
ied both theoretically and experimentally in several sys-
tems [24–30]. In [19], Seifert and Speck have shown that
the total entropy production for a stochastic system de-
scribed by a first order Langevin equation in a NESS sat-
isfies a Detailed Fluctuation Theorem (DFT) :

Φ(a) = ln

(

p(Xτ = +a)

p(Xτ = −a)

)

=
a

kBT
∀τ ∀a (2)

The relation (2) is valid for all integration time τ and
all fluctuation magnitudes of the total entropy produc-
tion. This relation is closely related to the Jarzynski and
Crooks non-equilibrium work relations [31, 32] which can
be exploited to measure equilibrium free energy in exper-
iments [33–37] and it has been extended to Markov pro-
cesses [38].

In this Letter, we measure the total entropy produc-
tion in two out-of-equilibrium systems and show that this
quantity verifies eq. (2). In the first part of the letter, we
recall the general definition of dissipated heat, ”trajectory-
dependent” entropy and total entropy production. In the
second part, we detail our two experimental systems. The
first one is an electric circuit maintained in a NESS by
an injected mean current. The second system is a torsion
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pendulum driven in a NESS by forcing it with a periodic
torque.

The heat dissipated by the system is the heat given to
the thermostat during a time τ ; we note itQτ . It is related
to the work Wτ , given to the system during the time τ ,
and to the variation of internal energy ∆τU during this
period, thanks to the first law of Thermodynamics:

Qτ = Wτ − ∆τU . (3)

Expressions of Wτ and ∆τU for our two experimental se-
tups are given below. Following notations of ref [19], we
define the entropy variation in the system during a time τ
as :

∆sm,τ =
1

T
Qτ (4)

where T is the temperature of the heat bath. For ther-
mostated systems, entropy change in medium behaves like
the dissipated heat. The non-equilibrium Gibbs entropy
is :

S(t) = −kB

∫

d~xp(~x(t), t, λt) ln p(~x(t), t, λt) = 〈s(t)〉

(5)
where λt denotes the set of control parameters at time
t and p(~x(t), t, λt) is the probability density function to
find the particle at a position ~x(t) at time t, for the state
corresponding to λt. This expression allows the definition
of a ”trajectory-dependent” entropy :

s(t) ≡ −kB ln p(~x(t), t, λt) (6)

The variation ∆stot,τ of the total entropy stot during a
time τ is the sum of the entropy change in the system
during τ and the variation of the ”trajectory-dependent”
entropy in a time τ , ∆sτ ≡ s(t+ τ) − s(t) :

∆stot,τ ≡ stot(t+ τ) − stot(t) = ∆sm,τ + ∆sτ (7)

In this letter, we study fluctuations of ∆stot,τ computed
using (4) and (6). We will show that ∆stot,τ satisfies a
DFT (eq. (2)). In ref. [38], the relevance of boundary
terms like ∆sτ has already been pointed out.

Our first experimental system is an electric circuit com-
posed of a resistance R = 9.22 MΩ in parallel with a ca-
pacitance C = 278 pF [15]. The time constant of the
circuit is τ0 ≡ RC = 2.56 ms. The voltage V across the
dipole fluctuates due to Johnson-Nyquist thermal noise.
We drive the system out of equilibrium by injecting a con-
stant controlled current I = 1.06 · 10−13 A. After some
τ0, the system is in a NESS. Electric laws give in this
setup [15] :

τ0
dV

dt
+ V = RI + ξ , (8)

where ξ is the Gaussian thermal noise, delta-correlated in
time of variance 2kBTR.

Multiplying (8) by V and integrating it between t and
t+τ , we define the work Wτ , injected into the system, and

the dissipated heat Qτ , together with the internal energy
U :

Wτ ≡

∫ t+τ

t

V (t′)Idt′ (9)

Qτ ≡

∫ t+τ

t

V (t′)iR(t′)dt′ (10)

∆τU ≡
1

2
C
(

V (t+ τ)2 − V (t)2
)

= Wτ −Qτ (11)

where iR is the current flowing in the resistance : iR =
I −C dU

dt . This system has only one degree of freedom, so
the trajectory in phase space is defined by the voltage V (t)
alone, and the only external parameter is the constant
current I. So the variation of the ”trajectory-dependent”
entropy during a time τ is :

∆sτ = −kB ln

(

p(V (t+ τ))

p(V (t))

)

(12)

Fluctuation relations for the injected work and the dis-
sipated heat (or entropy change in medium) in this system
have been reported in [15]. Let us recall the experimental
results for the dissipated heat T.∆sm,τ , for several val-
ues of the integration time. Its average value 〈T.∆sm,τ 〉
is equal to the average of injected work and linear in τ .
The PDFs of T.∆sm,τ are plotted in figure 1a) for four
values of τ/τ0. They are not Gaussian for small times
τ and extreme events have an exponential distribution.
We now describe new results in this system. The PDF
of the ”trajectory-dependent” entropy ∆sτ is plotted in
figure 1b) ; we have superposed to it the PDF of ∆sm,τ at
equilibrium (I = 0 A). These two PDFs are independent
of the integration time. The two curves match perfectly
within experimental errors. Therefore the ”trajectory-
dependent” entropy is equal in this case to the fluctu-
ations of the entropy exchanged with the thermal bath
at equilibrium. The average value of this ”trajectory-
dependent” entropy is zero within experimental errors ; so
the total entropy production has the same average value
than the entropy ∆sm,τ . The PDFs of the total entropy
∆stot,τ/〈∆stot,τ 〉, computed by adding ∆sτ to ∆sm,τ , are
plotted in figure 1c) for different values of τ ; they are all
Gaussian.

In figure 1d), we have plotted the symmetry functions
of the dissipated heat (T∆sm,τ) together with those of the
total entropy. Φ(∆sm,τ ) is a non linear function of ∆sm,τ .
The linearity is recovered for ∆sm,τ < 〈∆sm,τ 〉. The slope
tends to 1 for large integration time. Entropy change in
medium satisfies relation (1) [15]. On the contrary, the
symmetry functions for the total entropy are linear with
∆stot,τ for all integration times τ and for all values of
∆stot,τ : Φ(∆stot,τ ) = Σ(τ)∆stot,τ . The slope Σ(τ) is
equal to 1 for all integration times within experimental
errors. Measurements can be done for other values of in-
jected current and we find the same results. Thus total
entropy satisfies relation (2).
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Fig. 1: Resistance. a) PDFs of the normalized entropy variation in the system ∆sm,τ/〈∆sm,τ 〉, with τ/τ0 = 2.4 (◦), τ/τ0 = 4.8
(�), τ/τ0 = 14.5 (⋄) and τ/τ0 = 29 (×). b) PDF of the variation of ”trajectory-dependent” entropy ∆sτ for τ/τ0 = 4.8. The
distribution is independent on τ/τ0. Continuous line is experimental PDF of the entropy variation at equilibrium (∆sm,τ,eq at
I = 0 A). c) PDFs of the total entropy production ∆stot,τ/〈∆stot,τ 〉, with τ/τ0 = 2.4 (◦), τ/τ0 = 4.8 (�), τ/τ0 = 14.5 (⋄)
and τ/τ0 = 29 (×). d) Symmetry functions Φ for ∆sm,τ/〈∆sm,τ 〉 (small symbols in light colors) and ∆stot,τ/〈∆stot,τ 〉 (large
symbols in dark colors) for the same values of τ/τ0.

This experimental result can be explained using a first
order Langevin equation and noting that fluctuations of
the voltage δV (t) = V (t) − 〈V (t)〉, when a current is ap-
plied, are identical to those at equilibrium [15]. Thus
the voltage V (t) has a Gaussian distribution with mean
〈V (t)〉 = R.I and variance (kBT/C), whereas its auto-
correlation function is the same out of equilibrium and at
equilibrium:

〈δV (t+ τ)δV (t)〉 =
kBT

C
e(−τ/τ0) . (13)

So we can compute the expression of the ”trajectory-
dependent” entropy from eq. (12) and we find:

T.∆sτ =
1

2
CδV (t+ τ)2 −

1

2
CδV (t)2 (14)

Fluctuations of the voltage are identical to those at equi-
librium, thus ”trajectory-dependent” entropy is equal to
the variation of internal energy divided by T at equilib-
rium and to the opposite of the entropy variation in the
system at equilibrium. Using eq. (7), (10) and (14), the
expression of the total entropy is :

T.∆stot,τ = I

∫ t+τ

t

V (t′) − Iτ0 (δV (t+ τ) − δV (t)) dt′

(15)

We experimentally see that the PDF of ∆stot,τ is Gaus-
sian, so fully characterized by its mean value and its vari-
ance. Its average value is linear in τ (〈∆stot,τ 〉 = RI2τ/T )
and equals the mean injected work divided by the tem-
perature T . Its variance is computed using eq. (13) and
we obtain σ2

∆stot,τ
= 2RI2kBτ/T . For a Gaussian distri-

bution, the symmetry function of ∆stot,τ is linear with
∆stot,τ , that is Φ(∆stot,τ ) = Σ∆stot,τ . The slope Σ is re-
lated to the mean and the variance of the total entropy :
Σ = 2〈∆stot,τ 〉/σ

2
∆stot,τ

= 1/kB. Experimentally, we have
normalized the total entropy by kB , and the slope is equal
to 1 for any τ as shown in fig. 1d).

We now consider the second experimental system. It
is a torsion pendulum in a viscous fluid which acts as a
thermal bath at temperature T . The system is driven out
of equilibrium by an external deterministic time depen-
dent torque M . All the details of the experimental setup
can be found in [3]. The torsional stiffness of the oscil-
lator is C = 4.65 · 10−4 N.m.rad−1, its viscous damping
ν, its total moment of inertia Ieff , its resonant frequency
f0 = ω0/(2π) =

√

C/I/(2π) = 217 Hz and its relaxation
time τα = ν/(2Ieff) = 9.5 ms. The angular motion of the
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oscillator obeys a second order Langevin equation :

d2θ

dt2
+

2

τα

dθ

dt
+ ω2

0θ =
M + η

C
, (16)

where η is the thermal noise, delta-correlated in time of
variance 2kBTν. The work injected into the system be-
tween ti and ti + τ is :

Wτ =

∫ ti+τ

ti

M(t′)
dθ

dt
(t′)dt′ . (17)

The dissipated heat is computed according to eq. (3)
where, in this case, the internal energy U(t) is :

U(t) =
1

2
Cθ(t)2 +

1

2
Ieff θ̇(t)

2 (18)

We investigate a periodic forcing : M(t) = M0 sin(ωdt) (
M0 = 0.78 pN.m and ωd/(2π) = 64 Hz). The integration
time τ is chosen to be a multiple of the period of the forcing
: τn = 2nπ/ωd. The average responses of the system <
θ(t) > and < θ̇(t) > are periodic function of the pulsation
ωd and the system is in a steady state. Results for injected
work and dissipated heat in this case are reported in [3,17].

The ”trajectory-dependent” entropy is not as simple as
in the case of the resistance. The system has two inde-
pendent degrees of freedom (θ and θ̇) and its expression is
:

∆sτn
= −kB ln

(

p(θ(ti + τn), ϕ).p(θ̇(ti + τn, ϕ))

p(θ(ti + τn), ϕ).p(θ̇(ti + τn, ϕ)

)

(19)

The DFT (eq. (2)) is valid for each fixed starting phase
ϕ = tiωd [21]. For computing correctly the total entropy,
we have to calculate the PDFs of the angular position and
the angular velocity for each initial phase ϕ. Then we
compute the ”trajectory-dependent” entropy. As fluctua-
tions of θ and θ̇ are independent of ϕ [3]. These distribu-
tions correspond to the equilibrium fluctuations of θ and
θ̇ around the mean trajectory defined by 〈θ(t)〉 and 〈θ̇(t)〉.
As a consequence, we can average ∆sτn

over ϕ which im-
proves a lot the statistical accuracy. We stress that it is
not equivalent to calculate first the PDFs over all values
of ϕ — which would correspond here to the convolution
of the PDF of the fluctuations with the PDF of a peri-
odic signal — and then compute the trajectory dependent
entropy.

In figure 2a), we recall the main results for the dissipated
heat T∆sm,τn

. Its average value 〈T.∆sm,τn
〉 is linear in τn

and equal to the injected work. The PDFs of T.∆sm,τn

are not Gaussian and extreme events have an exponential
distribution. Let us now describe new results in this sys-
tem. The PDF of the ”trajectory-dependent” entropy is
plotted in fig. 2b); it is independent of n. We superpose to
it the PDF of the variation of internal energy divided by T
at equilibrium : the two curves match perfectly within ex-
perimental errors, so the ”trajectory-dependent” entropy
can again be considered as the entropy exchanged with

the thermostat if the system is at equilibrium. The aver-
age value of ∆sτn

is zero, so the average value of the total
entropy is equal to the average of injected power divided
by T . In fig. 2c), we plot the PDFs of the normalized to-
tal entropy for four typical values of integration time. We
find that the PDFs are Gaussian for any time.

The symmetry functions of the dissipated heat
Φ(∆sm,τn

) and the total entropy Φ(∆stot,τn
) are plotted

in fig. 2d). For the dissipated heat, the symmetry function
is a non linear function of ∆Sm,τ and we observe a linear
behavior for ∆sm,τn

< 〈∆sm,τn
〉 with a slope that tends

to 1 for large time. For the normalized total entropy, the
symmetry functions are linear with ∆stot,τn

for all values
of ∆stot,τn

and the slope is equal to 1 for all values of τn.
Note that it is not exactly the case for the first values of
τn because these are the times over which the statistical
errors are the largest and the error in the slope is large.

In ref. [3], we have already shown that, when a torque
is applied, the fluctuations around 〈θ(t)〉 have the same
statistics and the same dynamics as fluctuations at equi-
librium. Using the expression of the distribution of the
angular position and the angular velocity, we can compute
the ”trajectory-dependent” entropy from eq. (19):

T.∆sτn
=

1

2
C
(

δθ(ti + τn)2 − δθ(ti)
2
)

+
1

2
Ieff

(

δθ̇(ti + τn)2 − δθ̇(ti)
2
)

(20)

where δθ and δθ̇ are the fluctuations around the mean
trajectory : θ(t) = 〈θ(t)〉+ δθ(t) and θ̇(t) = 〈θ̇(t)〉+ δθ̇(t).
The ”trajectory-dependent” entropy is equivalent to the
variation of internal energy for the system at equilibrium
divided by the temperature of the bath. The total entropy
is :

T.∆stot,τn
= Wτn

−
1

2
Cθ̄(ti)(δθ(ti + τn) − δθ(ti)

−
1

2
Ieff

˙̄θ(ti)(δθ̇(ti + τn) − δθ̇(ti)) (21)

Experimentally, we observe that the PDF of the total en-
tropy is Gaussian. We can calculate the mean value and
the variance of the total entropy for any τn. We find that
〈T.∆stot,τn

〉 is equal to the injected work. Using the first
law of thermodynamics and the equation of motion, we
write the dissipated heat as the difference between the
viscous dissipation and the work of the thermal noise :

T.∆sm,τn
=

∫ ti+τn

ti

νθ̇(t′)2dt′ −

∫ ti+τn

ti

θ̇(t′)η(t′)dt′ (22)

This expression holds at equilibrium as well as out of equi-
librium. The only difference is that when out of equilib-
rium 〈θ(t)〉 6= 0 and 〈θ̇(t)〉 6= 0. After some algebra the
total entropy is :

T.∆stot,τn
= ν

∫ ti+τn

ti

〈θ̇(t′)〉2dt′
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Fig. 2: Torsion pendulum. a) PDFs of the normalized entropy variation ∆sm,τn
/〈∆sm,τn

〉 integrated over n periods of forcing,
with n = 7 (◦), n = 15 (�), n = 25 (⋄) and n = 50 (×). b) PDFs of ∆sτn , the distribution is independent of n and here n = 7.
Continuous line is the theoretical prediction for equilibrium entropy exchanged with thermal bath ∆sm,τn,eq. c) PDFs of the
normalized total entropy ∆stot,τn

/〈∆stot,τn
〉, with n = 7 (◦), n = 15 (�), n = 25 (⋄) and n = 50 (×). d) Symmetry functions

for the normalized entropy variation in the system (small symbols in light colors) and for the normalized total entropy (large
symbols in dark colors) for the same values of n.

+ 2ν

∫ ti+τn

ti

〈θ̇(t′)〉δθ̇(t′)dt′

−

∫ ti+τn

ti

〈θ̇(t′)〉η(t′)dt′ (23)

The average value of the total entropy is
ν
∫ ti+τn

ti
〈θ̇(t′)〉2dt′ and its variance is :

〈σ2
∆stot,τn

〉 = 2kB〈∆stot,τn
〉 +B/T 2

B = 4ν

∫ ∫

dudv〈θ̇(u)〉〈θ̇(v)〉ψ(u, v) (24)

ψ(u, v) = ν〈δθ̇(u)δθ̇(v)〉 − 〈δθ̇(u)η(v)〉 (25)

The first term in the function ψ is the autocorrelation
function of the angular velocity. This function is sym-
metric around u = v. The second term is the correlation
function of the angular velocity with the noise. Due to the
causality principle, this term vanishes if u < v. Changing
variables to r = (u + v)/2 and s = u − v, eq. (24) can be
rewritten :

B =

∫ ti+τn

ti

dr

∫ τn

0

〈θ̇(r + s/2)〉〈θ̇(r − s/2)〉ψ̃(r, s) (26)

ψ̃(r, s) = 2ν〈δθ̇(s)δθ̇(0)〉 − 〈δθ̇(s)η(0)〉 (27)

After some algebra we can show that the correlation
function 〈δθ̇(s)η(0)〉 is two times the autocorrelation
function 〈δθ̇(s)δθ̇(0)〉, therefore ψ̃ = 0. Thus we ob-
tain that the variance of the total entropy is equal to
2kB〈∆stot,τn

〉. The Fluctuation Relation for the total en-
tropy is : Φ(∆stot,n) = 1/kB∆stot,n for all times τ , for all
values of ∆stot,n and for any kind of stationary forcing.

For our two experimental systems, we have obtained
that the ”trajectory-dependent” entropy can be consid-
ered as the entropy variation in the system in a time τ
that one would have if the system was at equilibrium.
Therefore the total entropy is the additional entropy due
to the presence of the external forcing : this is the part
of entropy which is created due to the non-equilibrium
stationary process. The derivation we gave for a second
order Langevin equation can be extended to a first order
Langevin equation : total entropy (or excess entropy) sat-
isfies the Fluctuation Theorem for all times and for all kind
of stationary intensity injected in the circuit or all kind of
stationary external torque. The ratio between the average
value of the total entropy at τ = τα (relaxation time) and
the variance σ2

eq of fluctuations the entropy variation at
equilibrium characterizes the distance from equilibrium d
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:

d2 =
〈∆stot,τα

〉

σeq
=

√

3nd

8

σ2
∆stot,τα

σ2
eq

(28)

where nd is the number of degrees of freedom. For the
second equality, we use the Gaussianity of ∆stot,τ , i.e.

σ2
∆stot,τ

= 2kB〈∆stot,τ 〉 and the variance of of the fluctu-
ation of entropy variation at equilibrium in terms of kB,
i.e. σ2

eq = 3/2ndk
2
B. It turns out that this expression for

d is the same that was defined in [3] with a completely
different approach. Eq. (28) indicates that, when the sys-
tem is driven far from equilibrium, σeq becomes negligible.
As a consequence the fluctuations of the total entropy be-
come equal to the fluctuations of the entropy variation in
the system in a time τ . In other words, the PDFs of the
dissipated heat far from equilibrium are Gaussian.

In conclusion, we have studied the total entropy when
the system is driven in a non-equilibrium steady state. We
have shown that the Fluctuation Theorem for the total
entropy is valid not only in the limit of large times, as it
is the case for injected work and dissipated heat, but also
for all integration times and all fluctuation amplitudes.
In the two examples we have discussed, the total entropy
corresponds to the difference between the entropy change
in medium out of equilibrium and at equilibrium.

We thank U. Seifert and K. Gawedzki for useful discus-
sions. This work has been partially supported by ANR-
05-BLAN-0105-01.
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