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Abstract

We present a method for determining the probability that a given point lies in the vacant region of

a Boolean model subject to the condition that this probability takes imposed values on certain points.

This method is based on a characterisation of the intensity of the Boolean model as a Young measure,

such that after discretisation a large deviations principle holds; this induces a concentration property

which can be transposed for the Boolean model, yielding the maximum of entropy state satisfying the

conditioning. The numerical computation of this Gibbs state gives the parameters of the conditioned

Boolean model, and thus one can answer both numerically and theoretically to the problem of finding

the vacancy function at any point.

MSC 2000: primary 60G55, secondary 60D05, 60K40.
Keywords: Point processes, Young measures, simulation, maximum entropy principle, Boolean model.

1 Introduction

The motivation for this work comes from the following question: assume that one has drilled a few wells
searching for oil, and has thus obtained some information from those test wells: how can one predict the
outcome of a new well at some other position? The answer to this question depends strongly on the
underlying model: in this paper we propose to use a concentration property of Young measures associated
to the Boolean model of stochastic geometry. The oil reservoir is given by some domain D×R− where D is
a compact subset of R

2, and we denote by (x, z) the variables. In this domain oil is assumed to be contained
in a subset which is the occupied phase of a Boolean model, for convenience we assume that this model is
driven by the following facts:

• the random shape is a ball with random radius R with law µ0,

• the centers of those balls are located at the points of a Poisson Point Process X with intensity measure
Λ (for instance λ times the Lebesgue measure) on R

2 × R,

and thus
Oil =

⋃

y∈X

B(y,Ry) ∩D × R−.

Remark 1 We use the following notations for point processes (taken from [vL00]): a point process on a
complete separable metric space X is a measurable mapping from a probability space into the set N lf of
locally finite point configurations x on X endowed with the smallest σ-algebra, denoted by N lf , such that
for all bounded Borel subset A of X the mapping

N lf → N,

x 7→ Nx(A) := ]{x ∩ A},
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is measurable.

Drilling a well at some point (x, 0) one can gain the information 1Oil(x, z) for z ∈ [−Depth, 0], let us assume
that this information is summarised in the following quantity (outcome)

Q(x) =
1

Depth

∫ 0

−Depth
1Oil(x, z) dz,

then if the depth of the well is sufficiently large one can state that if µ is for instance compactly supported
and Λ is invariant under vertical translations:

Q(x) ' P (x ∈ Oh),

where Oh denotes the occupied region for any horizontal slice of the Boolean model: this comes from the
ergodic theorem as

1Oil(x, z) = 1Oilh(z)(x),

where
Oilh(z) =

⋃

y∈X

B(y,Ry) ∩ {(x, z) : x ∈ R
2}

is a Boolean model the parameters of which can be fully determined from Λ and µ (see section 5). Actually
one has

P (x ∈ Oh) = P ((x, 0) ∈ Oil),

so that one has the following set of conditions:

C = {P ((xi, 0) ∈ Oil) = qi, i = 1, . . . , N},

where xi is the location of the i-th well, and qi the observed measure of the outcome of this well.
The computation of the occupancy function is a classical fact for the Boolean model [SKM87, Mol96]:

P ((x, z) ∈ Oil) = 1 − exp


−E



∑

y∈X

1B(y,Ry)(x, z)




 ,

the expectation on the right hand side is obtained thanks to Campbell’s formula [Kin93]:

E




∑

y∈X

1B(y,Ry)(x)



 =

∫

R3×R+

1B(y,R)(x, z) dΛ(y) dµ(R),

so that

P ((x, z) ∈ Oil) = 1 − exp

(
−
∫

R3×R+

1B(y,R)(x, z) dΛ(y) dµ(R)

)
.

One observes here that this quantity is expressed thanks to the intensity measure Λ⊗µ of the marked Poisson
Point Process of the couples (position, radius): this remark is at the core of our approach here, indeed such a
measure may be seen as a special case of a Young measure (parametrised probability measure) on the space
R

3 ×R+, such a measure determines the law of the Boolean model, and the condition on the Boolean model
writes as a condition on this Young measure. The problem at hand now becomes: how does the condition
force the behaviour of the Young measure, and what does it imply for the Boolean model?
The answer to this question will come from the following developments: in section 2 we propose a discreti-
sation of the Young measures that approximates the actual intensity thanks to laws of large numbers and
central limit theorems, those results are a generalisation of results presented in [MP98]. In section 3 we
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prove a large deviation principle for the discretised Young measures and the associated concentration prop-
erty, which yields the maximum of entropy states presented in section 4 for the Boolean model. Numerical
methods and results for those maximum of entropy states are presented in section 5. From section 2 on we
shall assume the following hypotheses:

(H0) the intensity measure Λ is invariant under vertical translations.

(H1) Λ is absolutely continuous with respect to the Lebesgue measure L3, and there exists a constant C > 0
such that

∀x ∈ R
3,

1

C
≤ dΛ

dL3
(x) ≤ C.

(H2) The laws (µx)x∈R3 of the radius of the balls located at points x are compactly supported: there exists
R0 such that µx([0, R0]) = 1 for all x ∈ R

3.

We shall use the notation µ for the Young measure with disintegration (µx)x∈R3 with respect to Λ.

2 Discretised Young measures

2.1 Young measures

Young measures first appeared as a way to generalize the notion of measurable function, where the deter-
ministic values at the points x of the source space were replaced by probability measures on the goal space,
for instance Dirac masses represent deterministic functions. Later Young measures were developed as a more
general mathematical object, one can cite [Val90] or [CRdFV04] for a precise presentation of Young measures
in general frameworks.

In all this section we shall consider Young measures defined on a product space X × M , where X is a
compact subset of R

d with smooth boundary, and M is a compact subset of R
e, with d, e ≥ 1. We assume

that

(H1′) X is endowed with a finite non negative measure Λ such that Λ � Ld, the d-dimensional Lebesgue
measure, with a density λ uniformly bounded on X :

0 <
1

C
≤ λ(x) =

dΛ

dLd
(x) ≤ C < +∞, ∀x ∈ X .

Definition 1 The Young measure with base Λ and disintegration (µx)x∈X is the measure µ on X × M

defined by

∀φ non negative measurable on X × M , 〈µ, φ〉 =

∫

X

〈µx, φ(x, ·)〉 dΛ(x),

where the application x 7→ µx ∈ M+
1 (M ) is supposed to be measurable, M+

1 (M ) being the space of probability
measures on M .

Remark 2 The narrow and vague topology induce the same topology on the set of Young measures on
X × M .

As one can deduce from Jirina’s theorem [Jǐr59], one has the equivalence

µ is a Young measure ⇐⇒ ∀f ∈ Cb(X ), 〈µ, f〉 =

∫

X

f(x) dΛ(x).
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2.2 Discretisations with respect to a uniform mesh

In [MR94] or [MP98] the discretisations were made either according to regular or random partitions of the set
X and there was no dependency on x for the laws at each point, in this paper we will use only the regular
partition, though one may try to adapt the random case, but will accept more general Young measures.
We define the regular mesh of step 1/n of X as the collection of the intersections of X with the cubes of
side-length 1/n with vertices on the lattice (1/n)Zd, the cube with ‘lower-left’ vertex at i = (i1, . . . , id) will
be denoted by Cni , and we set

X
n
i = Cni ∩ X .

We will introduce two different discretisations of a Young measure µ:

Definition 2 Let µ be a Young measure as in definition 1, and n ≥ 1, for all i ∈ Z
d such that Λ(X n

i ) > 0
define

µn(i) =
1

Λ(X n
i )

∫

X n
i

µx dΛ(x), µn(i) = δ0 otherwise,

then µn is defined as the Young measure with locally constant disintegration:

∀x ∈ X
n
i , µ

n
x = µn(i).

We can also define:

Definition 3 Let µ be a Young measure as above, and (Ω,F , P ) some complete probability space, let(
Mn

(i)

)

i∈Zd
be a sequence of independent random variables defined on this probability space with respective

laws
(
µn(i)

)

i∈Zd
, then µ̃n is defined as the random Young measure with locally constant disintegration:

∀x ∈ X
n
i , ∀ω ∈ Ω, µ̃nx(ω) = δMn

(i)
(ω).

If we denote by X a marked Poisson Point Process with intensity µ on X × M , we will also denote by
X
n

and ω 7→ X̃n(ω) the (random) marked Poisson Point Processes associated to those (random) Young
measures. In the following paragraph we shall examine the convergence of those approximations towards the
original Young measure, as well as the convergence in law of the associated point processes.

2.3 Laws of large numbers and coupling results

The results of this section are straightforward, their purpose is to justify the chosen discretisations of the
intensity measure. The transcription in terms of marked Poisson Point Processes is also a classical result on
convergence of point processes: the main part of this paper lies in the concentration property of section 3
whereas all the results here are only presented for the sake of completeness.

One checks easily:

Proposition 1 As n tends to infinity, one has the vague convergence of µn towards µ.

The proof is straightforward, one has for all compactly supported continuous function φ on X × M :

〈µn, φ〉 − 〈µ, φ〉 =
∑

i∈Zd

∫

X n
i

∫

M

( 1

Λ(X n
i )

∫

X n
i

(φ(z,m) − φ(x,m)) dΛ(z)
)
dµx(m) dΛ(x),

and one sees easily that each integrand converges to 0 thanks to the uniform continuity of φ with respect to
its first variable in the bounded sets X n

i ,

|〈µn, φ〉 − 〈µ, φ〉| ≤ Λ(X )ωφ(
√
dn−1),
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where ωφ is the continuity modulus of φ, thus the vague convergence of proposition 1.

One may refine the previous statement by computing the exact rate of convergence in a metric associated
to the vague convergence. We use here the Dudley metric for bounded measures:

dD(µ, ν) = sup
‖φ‖∞≤1, L(φ)≤1

|〈µ− ν, φ〉| ,

where L(φ) is the Lipschitz constant of φ. Now it becomes obvious that one obtains

Theorem 1 One has
dD(µ, µn) ≤ Aε,

where A depends only on X and Λ.

As for the random discretised Young measures µ̃n, in order to show their almost sure vague convergence,
one only has to show that for each compactly supported continuous function φ, one has the almost sure
convergence of the sequence (〈µ̃n, φ〉)n≥1, let indeed (φm)m∈N be a denumerable dense subset of C (X ×M ),
if one has the convergence of (〈µ̃n, φm〉)n≥1 towards 〈µ, φm〉 outside a neglectable set Nm ⊂ Ω of F , then
for all ω ∈ Ω \⋃m∈N

Nm one has for any continuous function φ on X × M

lim sup
ε→0

|〈µ̃n(ω) − µ, φ〉| ≤ inf
m∈N

(2Λ(X )‖φ− φm‖∞) = 0.

Theorem 2 One has

µ̃n
vaguely−→
a.s.

µ, as n tends to +∞.

The proof of this theorem comes from the following rate of convergence in Lp norm for the difference
µ̃n − µ applied to any continuous function φ, as is done in [MP98].

Proposition 2 Let φ be any continuous function on X × M , then for any p ≥ 1 there exists a constant
Cp,φ such that

E [|〈µ̃n − µ, φ〉|p] ≤ Cp,φn
−pd/2.

The first step is to replace φ be the function ψ defined by

∀(x,m) ∈ X × M , ψ(x,m) = φ(x,m) −
∫

M

φ(x, q) dµx(q),

so that ‖ψ‖∞ ≤ 2‖φ‖∞ and the quantity to estimate is now

E [|〈µ̃n − µ, ψ〉|p] = E





∣∣∣∣∣∣

∑

i∈Zd

∫

X n
i

ψ(x,Mn
(i)) dΛ(x)

∣∣∣∣∣∣

p

 ,

this is a power of a sum of independent centered random variables. Let us suppose that p is even, the right
hand side can be expanded with a multinomial formula, and the expectations of the terms of this expansion
are zero by independence as soon as there is a term to the power 1 in the product, there remains the terms
of the form

∑

|k|=p, ki≥2 or ki=0

E




∏

i∈Zd

(∫

X n
i

ψ(x,Mn
(i)) dΛ(x)

)ki



 ,

where k = (ki)i∈Zd is a multi-index whose length |k| is equal to
∑

i∈Zd ki. All those terms are uniformly

bouded by C‖ψ‖p∞n−pd, and the most numerous terms are those for which the ki’s are either 0 or 2, the
number of which can be estimated by npd/2, so that one has

E [|〈µ̃n − µ, ψ〉|p] ≤ Bn−pd/2,

5



and the estimate of the theorem is obtained for even p’s. The general estimate for p is obtained by using
Hölder’s inequality for p ≤ 2k with exponents 2k/p and (2k/p)′.

From proposition 2 it is easy to deduce theorem 2: for each positive η one has

P (|〈µ̃n − µ, ψ〉| > η) ≤ B

ηpnpd/2
,

if one takes p sufficiently large (p > 2/d) Borel-Cantelli’s lemma gives the desired result as the sum of those
terms is finite.

The natural correspondence between intensity measures and point processes is summarised in the follow-
ing result [Nev77]:

Theorem 3 Let (µm)m∈N be a sequence of Λ-based Young measures on X ×M vaguely converging towards
µ, then the associated marked Poisson Point Processes (Xm)m∈N converge in law towards X.

One can easily obtain coupling results for the point processes associated to the discretised Young measures
(note that this coupling ignores the notion of Young measure), with obvious notations one has

Proposition 3 There exists a coupling of (X
n
)n≥1 and X marked Poisson processes with intensity measures

(µn) and µ such that X
n

converges almost surely towards X. Furthermore there exists a coupling of (X
n
)n≥1

and (X̃n)n≥1 and a constant K such that

P (X̃n 6= X
n
) ≤ Kn−d.

Let us describe those couplings: all the processes are based on the same source Poisson Point Process Y

with intensity measure Λ on X , this process is classically defined as the identity mapping on

ΩX =
⋃

m≥0

(X ,B(X ),Λ/Λ(X ))m,

endowed with the probability measure

PX =
∑

m≥0

exp(−Λ(X ))
1

m!
Λ⊗m.

Since the support {x1, . . . , xm} ⊂ X of this point process is of Lebesgue measure 0, one may use the following
elementary lemma (Lebesgue points):

Lemma 1 Let Cn(x) denote the cube containing x ∈ X with side of length 1/n and vertices on the lattice
(1/n)Zd, then one has

1

Λ(Cn(x) ∩ X )

∫

Cn(x)∩X

µz dΛ(z)
vaguely−→ µx, Ld almost everywhere.

Let us denote by N ⊂ X the set of points where the conclusion of the lemma does not hold. If we denote

for x /∈ N by M
(n)
x a random variable with law Λ(Cn(x) ∩ X )

−1 ∫
Cn(x)∩X

µz dΛ(z), and Mx with law µx,

then there exists a probability space (Ωx,Fx,Px) such that one has the almost sure convergence of the

random variables M
(n)
x towards Mx on this probability space. For the points in N take any probability

space (Ωx,Fx,Px). Then consider the product probability space

Ω = ΩX ×
∏

x∈X

Ωx,

P = PX ⊗
⊗

x∈X

Px,
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and the random variables defined for ω ∈ Ω

ω = (x1, . . . , xm, (ωx)x∈X ) ,

X
n
(ω) =

{
(xi,M

(n)
xi

(ωxi
)), i = 1, . . . ,m

}
,

X(ω) = {(xi,Mxi
(ωxi

)), i = 1, . . . ,m} .

Then one checks easily the almost sure convergence of those random variables.

Now if we denote by Z(x, n) the center of Cn(x), one defines X̃n and a new version of X
n

on the same
probability space by

X
n
(ω) =

{
(xi,M

{j(xi})
Z(xi,n)(ωZ(xi,n))), i = 1, . . . ,m

}
,

X̃n(ω) =
{
(xi,M

{0}
Z(xi,n)(ωZ(xi,n))), i = 1, . . . ,m

}
,

where j(xi) is the number of points xj up to xi−1 belonging to the same cube as xi, and (M
{m}
Z(x,n))m∈N are

independent identically distributed random variables with common law Λ(Cn(x) ∩ X )
−1 ∫

Cn(x)∩X
µz dΛ(z).

Obviously the probability that two points belong to the same cube is of order less than n−d, so that with
probability greater than 1 −O(n−d) those two processes coincide.

2.4 Central limit theorems

As in [MP98] one can obtain central limit theorems for sequences (µ̃n)n≥1:

Theorem 4 Let φ be a continuous function on X × M , one has

nd/2 〈µ̃n − µ, φ〉 law−→
n→+∞

N (0, σ2
µ(φ)),

where N (0, σ2
µ(φ)) denotes the Gaussian centered random variable with variance

σ2
µ(φ) =

∫

X

∫

M

(
φ(x,m) −

∫

M

φ(x, q) dµx(q)

)2

dµx(m)λ(x) dΛ(x).

The proof of this theorem is similar to the one in [MP98], except for the variance, where the density λ
appears because of the choice of the regular discretisation of space into cubes, and not cells of constant Λ
measure.

Let us use once again the function ψ defined by

ψ(x,m) = φ(x,m) −
∫

M

φ(x, n) dµx(n),

so that
〈µ̃n − µ, φ〉 = 〈µ̃n, ψ〉.

One has

nd/2〈µ̃n, ψ〉 =
∑

i∈Zd

nd/2
∫

X n
i

ψ(z,M (i)
n ) dΛ(z)

︸ ︷︷ ︸
Xn,i(ψ)

,
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which is a sum of independent, uniformely bounded by n−d/2, centered random variables, the number Nn of
which is of order nd.
Let us compute the variance of those random variables: let us introduce the discretised function

ψX n
i

(x,m) =
1

Λ(X n
i )

∫

X n
i

ψ(z,m) dΛ(z), ∀(x,m) ∈ X
n
i × M .

Then
|Xn,i(ψ) −Xn,i(ψX n

i
)| ≤ nd/2Λ(X n

i )ωψ(
√
d/n),

where ωψ is the continuity modulus of ψ. Thanks to the fact that E[Xn,i(ψ)] = 0 one has

var(Xn,i(ψ)) = E[Xn,i(ψ)2],

= E[Xn,i(ψX n
i

)2] + oψ(n−d),

= ndΛ(X n
i )2E

[(
ψX n

i
(M (i)

n )
)2
]

+ oψ(n−d),

One is in the context of a variant of the Lindeberg central limit theorem ([Bil95], Theorem 27.2), if we denote
by s2n the sum of those variances, one has:

s2n =
∑

i∈Zd

(
ndΛ(X n

i )2E

[(
ψX n

i
(M (i)

n )
)2
]

+ oψ(n−d)

)
,

=
∑

i∈Zd

Λ(X n
i )

n−d

(
Λ(X n

i )E

[(
ψX n

i
(M (i)

n )
)2
])

+ oψ(1),

=
∑

i∈Zd

∫

X n
i

(∫

M

(ψX n
i

(m))2 dµx(m)

)
Λ(X n

i )

n−d
dΛ(x) + oψ(1),

→n→+∞

∫

X

∫

M

ψ(x,m)2 dµx(m)λ(x) dΛ(x),

where this last convergence is achieved thanks to the fact that the boundary terms, which are not exactly a
discretisation of this integral (whereas the interior terms fit exactly), are few since the boundary is regular.
The other hypothesis for the Lindeberg theorem is achieved as for instance

∑
i∈Zd E[X2+δ

n,i ]

s2+δn

≤ Nn(n
−d/2)2+δ

s2+δn

, δ > 0,

→n→+∞ 0,

so that one may conclude that
nd/2〈µ̃n, ψ〉

sn

law−→
n→+∞

N (0, 1).

One just has then to use the asymptotics of sn to conclude the proof of the central limit theorem 4.

3 Large deviations and concentration

3.1 Large deviations for the discretised Young measures

Random Young measures are infinite dimensional random variables so that in order to prove large deviations
properties we will use the abstract Gärtner-Ellis theorem [DZ98] or its version known as Baldi’s theorem,
first used for stochastic homogenisation in [Bal88]. The starting point is the computation of the log-Laplace
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transform: let φ be a continuous function on X × M , then if one defines a discretisation of the function φ
on each X n

i by

φn(x,m) =
1

Λ(X n
i )

∫

X n
i

φ(y,m) dΛ(y), ∀x ∈ X
n
i ,

then

E
[
exp〈ndµ̃n, φ〉

]
= E

[
exp〈ndµ̃n, φn〉 + oφ(n

d)
]
,

=
∏

i∈Zd

E

[
exp

(
nd
∫

X n
i

φn(x,M
(i)
n ) dΛ(x)

)]
× exp(oφ(n

d)),

=
∏

i∈Zd

E
[
exp

(
Λ(X n

i )ndφn(Zi,n,M
(i)
n )
)]

× exp(oφ(n
d)),

where Zi,n denotes any point in X n
i . By taking the logarithm of this expression, one obtains

n−d logE
[
exp〈ndµ̃n, φ〉

]

= n−d
∑

i∈Zd

logE
[
exp

(
Λ(X n

i )ndφn(Zi,n,M
(i)
n )
)]

+ oφ(1),

→n→+∞

∫

X

log

∫

M

exp (φ(x,m)λ(x)) dµx(m)λ(x)−1 dΛ(x).

If one denotes this limit by `µ(φ), one has:

Proposition 4 The function `µ is finite convex and differentiable on the set of continuous functions on
X × M , and its Legendre transform is given by

• if ν is not absolutely continuous with respect to µ or if ν is not a Young measure with base Λ, then

Iµ(ν) = +∞,

• otherwise

Iµ(ν) =

∫

X

∫

M

log
dνx
dµx

(m) dνx(m) dx.

Hence using for instance Baldi’s theorem [Bal88] one has the following result:

Theorem 5 The sequence of random Young measures (µ̃n)n≥1 satisfies a large deviation principle with
respect to the vague/narrow topology in the space Mb(X ×M ) of bounded measures on X ×M with speed
nd and rate function Iµ.

3.2 Proof of proposition 4

The proof follows the lines of [MP98] with only minor changes. The regularity and boundedness of `µ are
straightforward. Recall that its Legendre transform I(ν) is defined by

Iµ(ν) = sup
φ

(〈ν, φ〉 − `µ(φ)) ,

where the supremum is taken on all continuous functions φ on X × M . Then one checks that:

1. if ν is not a non negative measure Iµ(ν) = +∞, as there exists a function φ which is non positive with
〈ν, φ〉 ≥ 0 so that `µ(φ) ≤ 0. Then Iµ(tφ) ≥ t〈ν, φ〉 which tends to +∞ with t.
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2. If Iµ(ν) is finite, so must be ν. One checks easily that for all continuous function φ on X and real
number t,

Iµ(ν) ≥ 〈ν, tφ⊗ 1〉 − `(tφ⊗ 1),

≥ t

(
〈ν, φ⊗ 1〉 −

∫

X

φ(x) dΛ(x)

)
,

so that

〈ν, φ⊗ 1〉 −
∫

X

φ(x) dΛ(x) = 0,

using [Jǐr59] one sees that this is equivalent to ν being a Λ-based Young measure.

3. Let us recall that the Kullback information for probability measures on M is given by

K(µ|π) =

∫

M

log
dµ

dν
(m) dµ(m),

= sup
ψ

(
〈µ, φ〉 − log

∫

M

expψ(m) dπ(m)

)
,

where the supremum is taken either over all continuous functions ψ on M or over all bounded mea-
surable functions. Then

〈ν, φ〉 − `µ(φ) =

∫

X

{∫

M

φ(x,m)λ(x) dνx(m)

− log

[∫

M

exp (φ(x,m)λ(x)) dµx(m)

]} 1

λ(x)
dΛ(x),

≤
∫

X

K(νx|µx) dx,

the inverse inequality comes from Jensen’s inequality:

`µ(φ) =

∫

X

log

[∫

M

exp (φ(x,m)λ(x)) dµx(m)

]
dx,

≤ Ld(X ) log

(
1

Ld(X )

∫

X

∫

M

exp (φ(x,m)λ(x)) dµx(m) dx

)
,

so that

〈ν, φ〉 − `µ(φ) ≥ Ld(X )

∫

X

〈νx, φ(x, ·)〉 1

Ld(X )
dΛ(x) −

Ld(X ) log

(
1

Ld(X )

∫

X

∫

M

exp (φ(x,m)λ(x)) dµx(m) dx

)
,

≥ Ld(X )
[∫

X

〈νx, λ(x)φ(x, ·)〉 dx

Ld(X )
−

log

(∫

X

∫

M

exp (φ(x,m)λ(x)) dµx(m)
dx

Ld(X )

)]
,

and by taking the supremum over all bounded measurable functions φ one has

sup
φ

(〈ν, φ〉 − `µ(ν)) ≥ Ld(X )K(ν′|µ′),

where the measure ν′ and µ′ are the probability measures on X × M given by

〈µ′, φ〉 =
〈
µ, (Ld(X )λ)−1φ

〉
, and 〈ν′, φ〉 =

〈
ν, (Ld(X )λ)−1φ

〉
.
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Hence this lower bound becomes

Ld(X )

∫

X ×M

log
dν′

dµ′
(x,m) dν′(x,m)

= Ld(X )

∫

X ×M

log
dνx
dµx

(m) dµx(m)
1

Λ(X )λ(x)
dΛ(x),

=

∫

X

K(νx|µx) dx,

so that one obtains the desired result by combining the two bounds.

Remark 3 We have thoroughly used the fact that the supremum defining the Legendre transform may be
taken with measurable functions such as λφ (see lemma 6.2.13 in [DZ98]) as we are in a finite measure
space.

3.3 Concentration principle

The large deviation property implies a concentration property as may be seen in [MR94]. Let us recall the
meaning of such a property in our context:

Proposition 5 Let E be a closed subset of the set Mb(X × M ) of non negative bounded measures on
X × M , and set E ? the subset of E where Iµ achieves its minimum value, then

1. for any open neighbourhood W ′ of 0 in Mb(X × M ),

lim inf
n→+∞

n−d logP(µ̃n ∈ E +W ′) > −∞,

2. for any open neighbourhood W ? of 0 in Mb(X ×M ), there exist α > 0 and W open neighbourhood of
0 such that

∀W ′,
P(µ̃n ∈ (E +W ) \ (E ? +W ?))

P(µ̃n ∈ (E +W ′))
≤ exp

(
−ndα

)
,

for n large enough.

Roughly speaking, this means that when n tends to infinity, under some set of constraints on the reali-
sations of the Young measure, one has the concentration of the measure around a measure maximizing an
entropy. The laws of the marks tend to fit that of maximum entropy, those measures are the Gibbs states
associated with the constraints.

The proof of this proposition follows exactly the lines of [MR94].

4 Maximum of entropy states for the Boolean model

The aim of this section is now to apply the concentration result to the initial problem of finding the most
probable state for the local laws of the radius in the Boolean model to satisfy the desired constraints. This
procedure will be achieved thanks to proposition 5 by maximizing the entropy under the constraints. In this
context the entropy of a Λ-based Young measure ν will be finite only if one has the absolute continuity of
νx with respect to µx for Λ almost every point x ∈ X . If we denote by ρ(x, ·) its density, finding the Gibbs
state amounts to maximizing

Iµ(ν) =

∫

X

∫

M

ρ(x.m) log ρ(x,m) dµx(m) dx,

11



under the constraints ρµ ∈ C , and
∫

M

ρ(x,m) dµx(m) = 1, for Λ almost every x.

This can be achieved as in [Rob91] by Lagrange multipliers (even if the number of constraints is infinite).
We recall in a few lines the context: X = D × [−Depth, 0] is a compact subset of R

3, the set of marks
is a compact set [0, R0] ⊂ R+ and the constraints are

C = {P ((xi, 0) ∈ Oil) = qi, i = 1, . . . , N},

where xi is the location of the i-th well, and qi the actual measure of the outcome of this well. This set of
constraint rewrites as

∫

R3

∫

R+

1B(y,R)(xi, 0) dµy(R) dΛ(y) = − log(1 − qi), i = 1, . . . , N,

where the a priori law of the radius of a ball centered at y is µy, so that one has to maximize the entropy

Iµ(ν) =

∫

D×[−Depth,0]

∫ R0

0

ρ(x,m) log ρ(x,m) dµx(m) dx,

subject to

∫ R0

0

ρ(x,m) dµx(m) = 1, for Λ almost every x,

∫

R3

∫

R+

1B(y,R)(xi, 0)ρ(y,R) dµy(R) dΛ(y) = − log(1 − qi), i = 1, . . . , N.

This gives the following solution:

ρ?(y,R) =
1

Zβ(y)
exp

(
−

N∑

i=1

βi1B(y,R)(xi, 0)

)
,

where Zβ(x) is the partition function

Zβ(x) =

∫ R0

0

exp

(
−

N∑

i=1

βi1B(y,R)(xi, 0)

)
dµy(R),

and β1, . . . , βN are the Lagrange multipliers associated to the constraints at x1, . . . , xN .
The computation of the Lagrange multipliers comes from the inverse problem: given β1, . . . , βN the compu-
tation of the constraints is given by the following numerical integration:

∫

R3

∫

R+

1B(y,R)(xi, 0)
1

Zβ(y)
exp



−
N∑

j=1

βj1B(y,R)(xj , 0)



 dµy(R) dΛ(y) = ci,

so that one can deduce qi from this integral. The resolution of the inverse problem would give the Lagrange
multipliers as functions of the qi’s.

5 Numerical results

Let us start this section with a remark: in the introduction we saw that the probability to be in the occupied
phase was the same according to whether we were talking about the 3-dimensional Boolean model or the 2-
dimensional one: this enables us to reduce the dimension of the problem by one and to consider the problem
in a compact subset of R

2. We will use the following notations:

12



• λ > 0 is the constant intensity measure of the point process,

• µ0 is the law of the radius on [0, R0].

The transformation from 3D to 2D gives the following intensity:

• λ̃ = 2Eµ0 [R]λ is the intensity in the plane,

• µ̃0 the induced law of the radius is given by:

µ̃0([R̃, R0]) =
1

2Eµ0 [R]

∫ R0

R̃

√
R2 − R̃2 dµ0(R).

5.1 Algorithms for the determination of the Gibbs states

The first question is to give an algorithm for the direct problem: given the Lagrange multipliers can we
compute easily the probability to be in the occupied region?
It seems that the most tractable algorithm, in absence of an exact integration which could be possible for
toy models only, is to use Monte-Carlo techniques.
Let x1, . . . , xN be the positions in R

2 of the wells, and set G = {x1, . . . , xN}⊕B(0, R0), alternatively denote
by G(x) the set G ∪ {x} ⊕B(0, R0) for x ∈ R

2. The integral to compute is either

λ̃

∫

R2

∫

R+

1|xi−y|≤R
1

Zβ(y)
exp


−

N∑

j=1

βj1|xj−y|≤R


 dµ̃0(R) dy,

or λ̃

∫

R2

∫

R+

1|x−y|≤R
1

Zβ(y)
exp



−
N∑

j=1

βj1|xj−y|≤R



 dµ̃0(R) dy.

To compute the approximate probability that the point z = xi (resp. x) lies in the occupied phase one
will perform a Monte-Carlo simulation on G (resp. G(x)): let X1, . . . , XM be M independent uniformly
distributed points on this set (obtained for instance by a rejection method).

− log(1 − q(z)) = λ̃

∫

R2

∫

R+

1|z−y|≤R
1

Zβ(y)
exp


−

N∑

j=1

βj1|xj−y|≤R


 dµ̃0(R) dy

' λ̃L2(G(x))

M

M∑

k=1

1|z−Xk|≤Rk

1

Z̃β(Xk)
exp


−

N∑

j=1

βj1|xj−Xk |≤Rk


 ,

where R1, . . . , RM are sampled according to µ̃0 and Z̃β(Xk) is a Monte-Carlo approximation of Zβ(Xk). The
proposed estimated probability q̂(z) is then given by

q̂(z) ' 1 − exp



− λ̃L2(G(x))

M

M∑

k=1

1|z−Xk |≤Rk

1

Z̃β(Xk)
exp



−
N∑

j=1

βj1|xj−Xk |≤Rk







 .

The second question is to solve the inverse problem and deduce the correct Lagrange multipliers from
the observed occupation probabilies: we have not yet found how to manage this problem in an efficient way.
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5.2 Numerical results

We give below a numerical result for the toy model in one space dimension and for the exponential law µ0.
The choice of this law, though contradicting hypothesis (H2) gives closed formulæ for the partition function
and can be easily implemented. With two points one obtains the following results:
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Figure 1: Constraints at points 0 and 1 for an exponential law of radius, with different parameters ranging
from 0.5 (bottom) to 2 (top)
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