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Abstract: The properties of several multifractal formalisms based on wavelet coef-

ficients are compared from both mathematical and numerical points of view. When it

is based directly on wavelet coefficients, the multifractal formalism is shown to yield, at

best, the increasing part of the weak scaling exponent spectrum. The formalism has to

be based on new multiresolution quantities, the wavelet leaders, in order to yield the

entire and correct spectrum of Hölder singularities. The properties of this new multifrac-

tal formalism and of the alternative weak scaling exponent multifractal formalism are

investigated. Examples based on known synthetic multifractal processes are illustrating

its numerical implementation and abilities.
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1 Introduction

The purpose of multifractal analysis is to study functions or signals whose pointwise

Hölder regularity may change widely from point to point. In such situations, the deter-

mination of the pointwise regularity at each point is numerically unstable; usually, it is

quite meaningless since the exact regularity at a particular point usually does not carry

a useful information. Therefore, one rather wishes to derive some information concern-

ing the size of the sets of points where the pointwise regularity exponent takes a given

value H. This “size” is mathematically formalized as the Hausdorff dimension d. These

dimensions define a function of the exponents H referred to as the spectrum of singular-

ities (or multifractal spectrum) of f and denoted df (H). Therefore, performing the

multifractal analysis of a function (or of a signal) f means to determine (or to

estimate) its spectrum of singularities df (H). When working on real-life signals,

the spectrum df (H) cannot be computed by first determining the regularity exponent at

each point, since it was precisely introduced as a substitute for this quantity; hence the

necessity to introduce a method that yields this spectrum from numerically computable

quantities derived from the signal. This is precisely the goal of “multifractal formalisms”

and the purpose of the present work is to introduce a new multifractal formalism, based

on new multiresolution quantities, the wavelet leaders.

However before introducing wavelet techniques, we will first examine how such for-

malisms were introduced in the setting of measures and functions; indeed a careful in-

spection of these more simple settings will be the key to a good understanding of what

the alternative wavelet extensions yield.

In this paper, we first provide the reader with a description of the different multifractal

formalisms which have been introduced in the setting of measures (Section 2) and in the

setting of functions (Section 3). The first wavelet-based formulas are presented in Section

4; we will discuss the pertinence of these wavelet-based formulas and show that they lead

to numerically unstable computations. The way to overcome these problems is to give up

basing the multifractal formalism directly on wavelet coefficients but rather on wavelet

leaders. This is developed in Section 5. Finally, In Section 6 we show that the previous

multifractal formalism based on wavelet coefficients can be (partly) interpreted as yielding

the spectrum of singularities based on another pointwise regularity exponent: The weak

scaling exponent.

This paper is partly a review paper and partly a research paper. Its main novelty is
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twofold:

• We show that, both numerically and theoretically, a wavelet-based multifractal

formalism yields more accurate results if it is built on wavelet leaders rather than

directly on wavelet coefficients. The particular examples supplied by Brownian

motion and fractional Brownian motions are investigated in details and the per-

formances of the different multifractal formalisms are compared both theoretically

and numerically on these examples.

• We show that a multifractal formalism based on wavelet coefficients can only be

expected to yield the weak scaling spectrum (see Definition 19), and therefore it

can yield the spectrum of singularities only in the particular cases where the two

spectra coincide.

The numerical data shown in this paper only involve synthetic signals (Fractional

Brownian Motions and multiplicative cascades) whose spectra are knowm exactly, since

they thus supply reliable benchmarks in order to compare the different methods under

investigation. Let us mention, however, that multifractal analysis is now successfully used

in many fields of science (turbulence, clouds modelling, physiological signals and images,

traffic data, rough interfaces...), see [1, 4, 13, 23, 34, 48, 58] and references therein.

Inside mathematics, multifractal measures or functions were also shown to be relevant

in many different areas, such as analytic number theory, Diophantine approximation,

Peano-type functions, dynamical systems, stochastic processes,..., see [29, 30, 34] and

references therein.

2 Multifractal analysis of measures

2.1 Mathematical notions

We start by introducing the mathematical tools that are needed in the multifractal anal-

ysis of measures. The first one is the definition of Hausdorff dimension (see e.g., [20]).

Definition 1. Hausdorff dimension: Let A ⊂ Rd. If ε > 0 and δ ∈ [0, d], we denote

M δ
ε = inf

R

(∑
i

|Ai|δ
)
,

where R is an ε-covering of A, i.e. a covering of A by a countable collection of bounded

sets {Ai}i∈N of diameters |Ai| ≤ ε. The infimum is therefore taken on all ε-coverings.
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For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
ε→0

M δ
ε ;

note that the limit exists (it can take the value +∞) since M δ
ε is a decreasing function

of ε. There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞; and ∀δ > δ0, mesδ(A) = 0.

This critical δ0 is called the Hausdorff dimension of A.

Multifractal analysis is relevant for measures whose regularity changes from point to

point. Therefore we need to introduce the following notion of pointwise regularity of

measures.

Definition 2. Hölder exponent: Let x0 ∈ Rd and let α ≥ 0. A nonnegative measure

µ defined on Rd belongs to Cα(x0) if there exists a constant C > 0 such that, in a

neighbourhood of x0,

µ(B(x0, r)) ≤ Crα,

where B(x0, r) denotes the open ball of center x0 and radius r. Let x0 belong to the

support of µ; then the Hölder exponent of µ at x0 is

hµ(x0) = sup{α : µ ∈ Cα(x0)}.

Definition 3. Singularity (or multifractal) spectrum: Let Eµ(H) denote the set of

points where the Hölder exponent of µ takes the value H. (Note that Eµ(H) is included in

the support of µ.) The spectrum of singularities of µ (denoted by dµ(H)) is the Hausdorff

dimension of Eµ(H).

Remarks: In the previous definition, when Eµ(H) = ∅, then its dimension is −∞.

This is actually more than a simple convention. Indeed, the multifractal formalism that

is studied below is expected to yield −∞ for the values of H for which Eµ(H) = ∅.
The Hölder exponent of a measure is called the “local dimension” by some authors.

We will need to be able to deduce the Hölder exponent at every point from a “dis-

cretized version” of µ, i.e. from the values of µ on a countable collection of sets. A

possible choice for this collection of sets is supplied by the dyadic cubes which are de-

fined as follows.
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Definition 4. Dyadic cube: A dyadic cube of scale j is a cube of the form

λ =
[
k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd
2j
,
kd + 1

2j

)
,

where k = (k1, . . . kd) ∈ Zd.
Each point x0 ∈ Rd is contained in a unique dyadic cube of scale j, denoted by λj(x0).

The cube 3λj(x0) is the cube of same center as λj(x0) and three times wider; i.e. it

is the cube

λ =
[
k1 − 1

2j
,
k1 + 2

2j

)
× · · · ×

[
kd − 1

2j
,
kd + 2

2j

)
.

The following lemma is a key ingredient in the derivation of the multifractal formalism

for measures.

Lemma 1. Let µ be a nonnegative measure defined on Rd. Then

hµ(x0) = lim inf
j→+∞

(
log (µ[3λj(x0)])

log(2−j)

)
. (1)

Proof: By definition of the Hölder exponent,

∀ε > 0, ∃r > 0, ∀r ≤ R, µ(B(x, r)) ≤ rH−ε;

but 3λj(x0) ⊂ B(x0, 3
√
d2−j), so that

µ(3λj(x0)) ≤ (3
√
d)H−ε2−j(H−ε),

and it follows that

hµ(x0) ≤ lim inf
j→+∞

(
log (µ(3λj(x0)))

log(2−j)

)
.

On the other hand, if hµ(x0) = H, then there exists a sequence of balls Bn = B(x0, rn)

and εn > 0 such that rn → 0, εn → 0 and rH+εn
n ≤ µ(Bn) ≤ rH−εnn . Let jn be such that

1
22−jn < rn ≤ 2−jn ; then Bn ⊂ 3λjn(x0) so that µ(Bn) ≤ µ(3λjn(x0)), which implies the

lower bound for the Hölder exponent.

Remark: This lemma relies heavily on the fact that the measure µ is nonnegative,

and therefore is an increasing set function; indeed, if µ is no more assumed to be a

nonnegative measure, then one easily checks that (1) is no more valid. This property will

play a key-role in the following, therefore we introduce the following terminology.
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Definition 5. Hierarchical set functions: A function defined on a collection of

sets is called hierarchical if it is nonnegative and increasing, i.e. satisfies

A ⊂ B =⇒ µ(A) ≤ µ(B);

The first example of multifractal measures studied were multiplicative cascades, which

were introduced by B. Mandelbrot for modelling the distribution of energy in fully de-

veloped turbulence, see [45]; their mathematical properties were investigated by J.-P.

Kahane and J. Peyrière in [36]. The purpose of the multifractal formalism is to derive

the spectrum of singularities from global quantities which are effectively computable in

practice. Such formulas were initially introduced by G. Parisi and U. Frisch in the context

of fully developed turbulence in order to interpret the nonlinearity of the scaling function

associated with the increments of the velocity field, see [55]; in the measure setting, and

more precisely for invariant measures of dynamical systems they were introduced by T.

Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Shraiman in [23]. There exists sev-

eral variants for the mathematical formulation of the multifractal formalism, see [12, 54]

for instance, and we present the one given by R. Riedi in [56], because it presents a

very good compromise between effective computability and numerical stability, as will be

shown below.

2.2 Derivation of the multifractal formalism

Since Lemma 1 shows that the pointwise Hölder exponents can be derived from the

quantities µ(3λ), it is natural to base a multifractal formalism on these quantities. We

now assume that µ is compactly supported.

Definition 6. Measure (or box-aggregated) structure functions and scaling

functions: Let Λj denote the collection of dyadic cubes of scale j. The structure

function of the measure µ is

Σµ(p, j) = 2−dj
∑
λ∈Λj

∗
µ(3λ)p, (2)

where the notation Σ∗ means that the sum is only taken on the cubes λ such that µ(λ) 6= 0.

The scaling function of µ is defined for p ∈ R by

ηµ(p) = lim inf
j→+∞

(
log (Σµ(p, j))

log(2−j)

)
.
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Let us now show why the spectrum of singularities is expected to be recovered from

the scaling function. The definition of the scaling function roughly means that Σµ(p, j) ∼
2−ηµ(p)j . Let us estimate the contribution to Σµ(p, j) of the cubes λ that cover the points

of Eµ(H). Lemma 1 asserts that they satisfy µ(3λ) ∼ 2−Hj ; since we need about 2−dµ(H)j

such cubes to cover Eµ(H), the corresponding contribution roughly is

2−dj2dµ(H)j2−Hpj = 2−(d−dµ(H)j+Hp)j .

When j → +∞, the dominant contribution comes from the smallest exponent, so that

ηµ(p) = inf
H

(d− dµ(H) +Hp). (3)

Proposition 1. For any compactly supported Borelian measure µ, the scaling function

ηµ(p) is a concave function on R.

Remark: We state this concavity result only for the first scaling function that we

meet. However, the same proof applies to all scaling functions defined in the paper: All

of them are concave.

Proposition 1 is a consequence of the following lemma of [24].

Lemma 2. Let (ai)i=1,...,N be a finite collection of positive real numbers. Then the

function ω : R −→ R defined by

ω(p) = log

(
N∑
i=1

api

)
is a convex function on R.

Proof of Lemma 2: The function ω(p) clearly is a continuous function defined on

the whole R. Thus, in order to prove that ω(p) is convex, it is sufficient to check that

∀p, q ∈ R, ω

(
1
2
(p+ q)

)
≤ 1

2
(ω(p) + ω(q)). (4)

Consider the vectors in RN

A = (ap/21 , . . . a
p/2
N ) and B = (aq/21 , . . . a

q/2
N );

The Cauchy-Schwartz inequality applied to these vectors yields

N∑
i=1

a
(p+q)/2
i ≤

(
N∑
i=1

api

)1/2( N∑
i=1

api

)1/2

.

9



Taking the logarithm on both sides of this inequality yields exactly (4).

Proof of Proposition 1: For each j, we will apply Lemma 2 to the collection of

(µ(3λ))λ∈Λj
such that µ(λ) 6= 0 (and therefore µ(3λ) 6= 0); this collection is finite, since

µ is assumed to be compactly supported; it follows that, for any j, the function

p→ log

∑
λ∈Λj

∗
µ(3λ)p


is convex; therefore, when divided by log(2−j), it is concave; Proposition 1 follows be-

cause concavity is preserved under taking infimums and pointwise limits, and therefore

under taking liminfs.

Proposition 1 is in agreement with the fact that the right-hand side of (3) necessarily

is a concave function (as an infimum of a family of linear functions) no matter whether

dµ(H) is concave or not. However, if the spectrum also is a concave function, then

the Legendre transform in (3) can be inverted (as a consequence of general result on

the duality of convex functions, see for instance Chapter 1.3 of [11]), which justifies the

following definition.

Definition 7. A measure µ follows the multifractal formalism for measures if its spec-

trum of singularities satisfies

dµ(H) = inf
p∈R

(d− ηµ(p) +Hp). (5)

Let us now explain the reason for the convention in the definition of Σ∗ used in (2);

indeed structure functions are often defined using µ(λ) instead of µ(3λ), and with the

convention that the sum is taken only on the nonvanishing terms. One easily checks that

this simpler way to define the structure function actually yields the same values of ηµ(p)

for positive p; however, it is no more the case if p is negative for the following reason: It

may happen that the cube λ barely intersects the support of the measure; then µ(λ) does

not vanish, but may be arbitrarily small and, when raised to a negative power, it will

therefore lead to totally unstable computations; the convention for the Σ∗ used above

turns this drawback: When µ(λ) 6= 0, the cube 3λ “widely” intersects the support of the

measure.

The derivation exposed above is not a mathematical proof, and the determination

of the range of validity of (5) (and of its variants) is one of the main mathematical
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problems concerning the multifractal analysis of measures. Nonetheless, let us stress the

fact that the justification of this derivation relies heavily on (1), i.e. on the fact that the

Hölder exponent of a measure can be estimated from the set of values that it takes on

dyadic cubes. The formulation of the multifractal formalism given by (5) combines two

advantages:

• It is based on quantities that are effectively computable in practice: By contrast

with alternative formulas proposed by some mathematicians, the structure function

is not based on the consideration of a non-countable collection of coverings of the

support of µ.

• The scaling function has “good” mathematical properties, see [38, 56] (for instance

it is invariant under bi-Lipschitz deformations of the measure, which is a natural

requirement since the spectrum of singularities has this invariance property).

This last remark points the way towards the kind of criteria that we will use in order

to select multifractal formalisms: In situations where the validity of several possible

multifractal formalisms cannot be justified in all generality, a weaker benchmark in order

to compare them will be to determine which ones satisfy invariance properties which

are obvious for the spectrum of singularities. Such properties will be reffered to as

robustness properties in the following. For instance, if the scaling function is defined

through wavelet coefficients, we will require that it is independent of the (smooth enough)

wavelet basis chosen. Note also that, in several applications, it happens that the spectrum

of singularities itself has no direct scientific interpretation and multifractal analysis is only

used as a classification tool in order to discriminate between several types of signals; then,

one is no more concerned with the validity of (5) but only with having its right-hand

side defined in a meaningful way; therefore, in such cases, robustness criteria are the only

mathematical requirements which remain in order to compare the pertinence or several

possible scaling functions.

3 Multifractal analysis of functions: Increments vs. oscil-

lations

Let us now consider the multifractal analysis of functions. We will start by recalling

the corresponding relevant definitions in this context. Multifractal analysis is relevant

for functions whose regularity changes from point to point. Therefore we introduce the
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following notion of pointwise regularity of functions, which is the most widely used. (Note

however that in some specific settings, other pointwise regularity exponents of functions

can be used: The weak scaling exponent, see Section 6 and the T pu exponent, see [32] and

references therein.)

Definition 8. Hölder exponent: Let x0 ∈ Rd and let α ≥ 0. A locally bounded

function f : Rd → R belongs to Cα(x0) if there exists a constant C > 0 and a polynomial

P satisfying deg(P ) < α and such that, in a neighbourhood of x0,

|f(x)− P (x− x0)| ≤ C|x− x0|α.

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.

Definition 9. Singularity (or multifractal) spectrum: Let f be a locally bounded

function, and let Ef (H) denote the set of points where the Hölder exponent of f takes

the value H. The spectrum of singularities of f (denoted by df (H)) is the Hausdorff

dimension of Ef (H).

Remarks: If hf (x0) < 1 (which is often the case in signal processing), then the

polynomial P (x− x0) boils down to f(x0).

The function hf (x0) may take the value +∞.

If 0 < hf (x0) < 1, then the Hölder exponent expresses how “spiky” the graph of f is

at x0. For instance the Hölder exponent of f(x) = |x−x0|α is α at x0 and +∞ elsewhere

(if α is not an even integer).

3.1 Comparison of multifractal formalisms

The numerical determination of the spectrum of singularities of a signal meets the same

problem as for measures. The multifractal formalism in this context was introduced

by G. Parisi and U. Frisch; they proposed to derive it from the estimation of the Lp

norm of increments of the signal [55]: Let us assume that the function f considered is a

one-variable function. A structure function based on increments is

Σ1
f (p, j) = 2−j

∑
k

∗
∣∣∣∣f (k + 1

2j

)
− f

(
k

2j

)∣∣∣∣p (6)

12



where the
∑∗ means that the sum is taken only on non vanishing terms. The scaling

function of f is defined for p ∈ R by

η1
f (p) = lim inf

j→+∞

 log
(
Σ1
f (p, j)

)
log(2−j)

 . (7)

The same arguments as for the derivation of the multifractal formalism for measures lead

to

df (H) = inf
p∈R

(1− η1
f (p) +Hp) (8)

(recall that we deal with functions of one variable here, so that d is replaced by 1 in

this formula). Since (6) involves only first order differences, one expects (8) to yield the

spectrum of singularities of f only if all Hölder exponents take values less than 1.

A first problem which is met here is that there is no formula corresponding to (1)

and based on increments of f : For instance, if 0 < α < 1; the function

xα sin
(

2π
x

)
vanishes at the points 2−j but its Hölder exponent at 0 is not +∞ but α. A second

problem is that this structure function does not clearly extend to the several dimensional

setting. (Which increments should be preferred on a cube?)

Let us now describe an alternative point of view which solves these difficulties. The

function f is defined on Rd, and we assume for the sake of simplicity that 0 < hf (x) < 1;

then the local quantity based on dyadic cubes which is considered is the oscillation of

f .

Definition 10. Oscillations: The oscillation of a function f over a set K is

Oscf (K) = sup
x∈K

f(x)− inf
x∈K

f(x).

The motivation for basing the study of pointwise Hölder regularity on the oscillation

is that it is a hierarchical notion in the sense of Definition 5: Indeed, clearly,

µ ⊂ ν =⇒ Oscf (µ) ≤ Oscf (ν)

and therefore the Hölder exponent at each point can be derived from the knowledge of

the oscillation on the countable collection of dyadic cubes, as shown by the following

lemma.
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Lemma 3. Let f : Rd → R be a locally bounded function satisfying hf (x0) = H, with

0 < H < 1; then

H = lim inf
j→+∞

(
log (Oscf (3λj(x0)))

log(2−j)

)
. (9)

This lemma corresponds to Lemma 1 in the context of functions; its proof is very

similar, so that we leave it. Let us just insist on the fact that it holds because the

oscillation is a hierarchical notion, when increments are not.

Following the same arguments as in the case of positive measures, one can base a

multifractal formalism on this lemma by introducing the structure function

Σ2
f (p, j) = 2−dj

∑
λ∈Λj

∗
(Oscf (3λ))p ;

following in this function setting the idea of [56], the Σ∗ means that the sum is restricted

to the cubes λ for which Oscf (λ) 6= 0. The corresponding scaling function of f is

η2
f (p) = lim inf

j→+∞

 log
(
Σ2
f (p, j)

)
log(2−j)

 . (10)

The same arguments as above lead to the formula

df (H) = inf
p∈R

(d− η2
f (p) +Hp), (11)

which we expect to hold only when the spectrum of singularities of f is supported inside

the interval (0, 1) (i.e. if there are no Hölder exponents larger than 1 in the signal).

3.2 Examples: Brownian motion and fractional Brownian motions

We do not intend to investigate in details the properties of the multifractal formalisms

supplied by (8) and (11), because our main motivation is to focus on wavelet-based

formulas, which will be shown to possess better mathematical and numerical properties.

However, we will only illustrate them by simple examples supplied by Brownian motion

and by fractional Brownian motions (hereafter F.B.M.). Such examples provide us with

theoretical and numerical benchmarks on which alternative formalisms can as well be

tested.

Recall that Brownian motion is the only stochastic process (or random function)

(Bt)t≥0 with stationary independent increments (i.e. satisfying if t > s, Bt − Bs is
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independent of Bs and has the same law as Bt−s) and with continuous sample paths.

(Uniquenes is implied by the normalization E(|Bt|2) = 1.)

Fractional Brownian motion of index γ (0 < γ < 1) is the only Gaussian random

process (Bγ
t )t≥0 satisfying

E(|Bγ
t −Bγ

s |2) = |t− s|γ .

One can show that Brownian motion is precisely B1/2
t . The key role played by fractional

Brownian motions in signal processing comes from the fact that they supply the most

simple one parameter family of stochastic processes with stationary increments, and

therefore are widely used in modelling. We will use the following important feature:

F.B.M. of index γ can be deduced from Brownian motion by a sample path by sample

path fractional integration of order γ − 1/2 if γ > 1/2, and by a sample path by sample

path fractional derivation of order (1/2)− γ if γ < 1/2.

Recall that, with probability 1, a sample path of Brownian motion has everywhere

the Hölder exponent 1/2, so that its spectrum of singularities is

d(H) = 1 if H = 1
2

= −∞ else,

}
(12)

see for instance [1, 35].

The following theorem illustrates the superiority of the multifractal formalism based

on oscillations (as opposed to increments).

Theorem 1. Let Bt be a generic sample path of Brownian motion; then, with probability

1, the multifractal formalism based on increments (8) yields that a.s.

inf
p∈R

(d− η1
B(p) +Hp) = 3

2 −H if H ∈
[

1
2 ,

3
2

]
= −∞ else,

whereas the multifractal formalism based on oscillations (11) yields the correct spectrum

given by (12).

The proof of Theorem 1 is given in the Appendix where, in particular, we will show

that a.s.
η1
B(p) = p/2 if p ≥ −1

= 1 + 3p/2 else,

}
(13)

and a.s. ∀p ∈ R, the lim inf in (7) is a true limit, which clearly implies the first part of

Theorem 1. The fact that this lim inf actually is a limit is important when one wants
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to double check numerically this result in simulation, since, in practice, only true limits

can be estimated. Note that we will give another proof of the second part of Theorem

1 in the more general setting supplied by F.B.M.; however, we prefer to separate the

case of Brownian motion which will be treated completely by elementary means, whereas

F.B.M. case requires the use of more sophisticated tools derived from the so-called small

ball estimates.

Let us consider a generic sample path of Brownian motion Bt on [0, 1] (by scaling

invariance, the particular choice of interval is irrelevant). The increments B(k+1)/2j −
Bk/2j are I.I.D. random variables of common law 2−j/2χj,k, where the χj,k are standard

Gaussians; thus, in order to estimate (6) for Brownian motion, we have to estimate the

order of magnitude of

A(p, j) =
2j∑
k=1

|χj,k|p, (14)

and the structure function will be

Σ1
B(p, j) = 2−j(1+p/2)A(p, j).

(With probability one, a non-degenerate Gaussian random variable does not vanish so

that, in all computations that will be performed in this section and in the following

concerning Brownian motion or F.B.M., the
∑∗ sums are just usual sums.)

Note at this point that the problem of estimation of the A(p, j) is not the same as

estimating moments of order p of a Gaussian variable, since the computations here are

performed sample path by sample path, and not in expectation; indeed, if such a process

models a given observed signal, then the “rule of the game” is that one sample path is ob-

served, and not averages over a large number of realizations. This remark is particularly

relevant fo large negative values of p where the two approaches lead to different results

(moments diverge if p < −1, whereas the order of magnitude of A(p, j)) can always be

estimated for any negative value of p).

Let us now consider the fractional Brownian case. With probability 1, a sample path

of F.B.M. of order β has everywhere the Hölder exponent β so that its spectrum of

singularities is
d(H) = 1 if H = β

= −∞ else,

}
(15)

see for instance [1, 35].
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Theorem 2. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of order β;

then, with probability 1,

∀p ∈ R, η2
Bβ

(p) = βp (16)

and the lim inf in (10) is a true limit.

The multifractal formalism based on oscillations (11) yields the correct spectrum (15)

for the F.B.M..

Proof of Theorem 2: First we recall a well-known result concerning the uniform

modulus of continuity of the sample paths of F.B.M. of order β [35]: With probability 1,

there exists C > 0 such that

sup
t

(
sup
h≤1

|Bβ(t+ h)−Bβ(t)|
|h|β| log h|

)
≤ C

It follows that, with probability 1, all oscillations

OscBβ
(Ij,k) = sup

s∈Ij,k

Bβ(s)− inf
s∈Ij,k

Bβ(s)

are bounded by CN−β logN (where N = 2j is the number of intervals considered).

‘Small ball estimates’ for a random process Xt are concerned with the estimation of

IP
(

sup
0≤s≤t

|Xs| ≤ ε

)
Lower bounds for the oscillation are a consequence of the small ball estimates for the

F.B.M.; indeed

sup
0≤s≤t

Bβ(s)− inf
0≤s≤t

Bβ(s) ≤ 2 sup
0≤s≤t

|Bβ(s)|

and, by Theorem 2.1 of [53], if ε ≤ tβ ,

IP
(

sup
0≤s≤t

|Bβ(s)| ≤ ε

)
≤ exp

(
−Ctε−1/β

)
.

Since all oscillations have the same law it follows that, for a given N , all oscillations

OscBβ
(Ij,k) are larger than 2N−β(logN)−2β with probability at least 1−N exp(−C(logN)2).

As above, a direct application of the Borel-Cantelli Lemma shows that both the multi-

fractal formalism based on oscillations yields the correct spectrum (11) for a.e. sample

path of the F.B.M.
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As mentioned above, our purpose in this section was only to illustrate the two multi-

fractal formalisms based on increments and oscillations on the particular examples pro-

vided by Brownian motion and F.B.M.. However, the proof of Theorem 2 clearly shows

that results on the multifractal formalism based on oscillations immediately follow from

small ball estimates for the process considered (such estimates for Gaussian processes can

be found in [41, 42, 53] for instance), so that general results of validity of the multifractal

formalism supplied by (11) could clearly be easily proved for general Gaussian processes.

4 Multifractal analysis of functions: Wavelet based for-

mulas

Lemma 3 can be generalized to higher Hölder exponents by using higher order differ-

ences in the definition of the oscillation, see [29], however, it leads to rather complicated

quantities for the computation of structure functions, and it presents strong instabilities

under the presence of noise. Therefore, once wavelet techniques were available, alterna-

tive formulas were proposed; they were based either on the continuous wavelet transform

of the signal (by Arneodo et al., see [4, 6] and references therein) or on its coefficients on

an orthonormal wavelet basis, see [27, 29] and references therein. The starting point of

all these methods is a wavelet characterization of the Hölder exponent. Let us start by

recalling basic definitions concerning wavelet expansions. Though formulas based on the

discrete wavelet coefficients were introduced later than those based on the continuous

wavelet transform, we start by describing the discrete ones, since they are in spirit very

close to the dyadic partitionings we introduced in the measure setting, and they pave the

way to the wavelet leaders technique of Section 5.

4.1 Wavelet bases

We now recall the definition of wavelet bases. Let r ∈ N; an r-smooth wavelet basis

of Rd is composed of 2d − 1 wavelets ψ(i) which belong to Cr and satisfy the following

properties:

• ∀i, ∀α such that |α| ≤ r, ∂αψ(i) has fast decay,

• The set of functions 2dj/2ψ(i)(2jx − k), j ∈ Z, k ∈ Zd, i ∈ {1, ..., 2d − 1} is an

orthonormal basis of L2(R)d.
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The wavelet basis is ∞-smooth if it is r-smooth for any r ∈ R, in which case all wavelets

ψ(i) belong to the Schwartz class.

Thus any function f in L2(Rd) can be written

f(x) =
∑

c
(i)
j,kψ

(i)(2jx− k) (17)

where

c
(i)
j,k = 2dj

∫
f(x)ψ(i)(2jx− k)dx.

(Note that, in (17), wavelets are not normalized for the L2 norm but for the L∞ norm,

which avoids an extra factor 2dj/2 in all mathematical results concerning Hölder regular-

ity.) Let us note at this point that it is often relevant to use a slight generalization based

on biorthogonal wavelets, the definition of which we now recall.

A Riesz basis of an Hilbert space H is a collection of vectors (en) such that the finite

linear expansions
∑N

n=1 anen are dense in H and

∃C,C ′ > 0 : ∀N,∀an, C
N∑
n=1

|an|2 ≤

∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

anen

∣∣∣∣∣
∣∣∣∣∣
2

H

≤ C ′
N∑
n=1

|an|2.

Two collections of functions (en) and (fn) form biorthogonal bases if each collection is

a Riesz basis, and if 〈en|fm〉 = δn,m. When such is the case, any element f ∈ H can be

written

f =
∞∑
n=1

〈f |fn〉en.

Biorthogonal wavelet bases are couples of bases of the form 2dj/2ψ̃(i)(2jx − k) and

2dj/2ψ(i)(2jx − k), j ∈ Z, k ∈ Zd, i ∈ {1, ..., 2d − 1} which are biorthogonal (for the

L2 norm).

The relevance of biorthogonal wavelet bases is due to two reasons: On one hand

their construction is more flexible and, for instance, allows for wavelets which have some

symmetry properties, which is an important requirement in image processing, see [15];

on the other hand, for theoretical purposes, this setting is often more adapted to derive

the properties of some random processes; we will see the example of Brownian motion

and of F.B.M. in Sections 4.3 and 5.4 where a decomposition on well chosen biorthogonal

wavelet bases allows to decorrelate the wavelet coefficients of these processes (the wavelet

coefficients become independent random variables), and therefore greatly simplifies their

analysis.
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Wavelets will be indexed by dyadic cubes as follows: Since i takes 2d − 1 values, we

can consider that i takes values among all dyadic subcubes λi of [0, 1)d of width 1/2

except for [0, 1/2)d; thus, the set of indices (i, j, k) can be relabelled using dyadic cubes

as follows: λ denotes the cube {x : 2jx− k ∈ λi}; we note ψλ(x) = ψ(i)(2jx− k) (an L∞

normalization is used), and cλ = 2dj
∫
ψλ(x)f(x)dx. We will use the notations c(i)j,k or cλ

indifferently for wavelet coefficients. Note that the index λ gives an information on the

localization and the scale of the corresponding wavelet; for instance, if the wavelets ψ(i)

are compactly supported then ∃C : supp(ψλ) ⊂ Cλ where Cλ denotes the cube of same

center as λ and C times larger; thus the indexation by the dyadic cubes is more than a

simple notation: The wavelet ψλ is “essentially” localized around the cube λ. Finally,

Λj will denote the set of dyadic intervals λ of width 2−j .

4.2 Hölder regularity and derivation of the multifractal formalism

The wavelet characterization of the Hölder exponent requires the following regularity

hypothesis, which is slightly stronger than continuity.

Definition 11. Uniform Hölder function: A function f is a uniform Hölder func-

tion if there exists ε > 0 such that f ∈ Cε(Rd), i.e.

∃C > 0 such that ∀x, y ∈ R, |f(x)− f(y)| ≤ C|x− y|ε.

The following proposition was proved in [25].

Proposition 2. Let α > 0. If f is Cα(x0), then there exists C > 0 such that the wavelet

coefficients of f satisfy

∀j ≥ 0, |cj,k| ≤ C2−αj(1 + |2jx0 − k|)α. (18)

Conversely, if (18) holds and if f is uniform Hölder, then ∃C > 0 and a polynomial P

satisfying deg(P ) < α and such that, in a neighbourhood of x0,

|f(x)− P (x− x0)| ≤ C|x− x0|α| log(1/|x− x0|).

The influence cone above x0 is the set of dyadic cubes which are of the form λj(x0)

and their 3d − 1 immediate neighbours at the same scale, i.e. the dyadic cubes λ of

scale j such that dist(λ, λj(x0)) = 0. Note that it is composed of the cubes of scale

j included in 3λj(x0). The regularity criterium supplied by Lemma 2 has often been
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loosely interpreted as stating that the wavelet coefficients decay like 2−αj in the influence

cone; indeed, it is the case for cusp-like singularities which behave like

A+B|x− x0|α

in the neighbourhood of x0; such functions are characterized by the fact that there are

no strong oscillations in the neighbourhood of x0. Let us assume for the moment that,

indeed, the function considered exhibits only this type of pointwise singularities, and

therefore, the Hölder exponent at x0 is given by

hf (x0) = lim
j→+∞

(
log (|cλn |)
log(2−jn)

)
, (19)

where the λn are dyadic cubes of scale jn in the influence cone above x0. Following the

same arguments as above, we introduce the structure function

W 1
f (p, j) = 2−dj

∑
λ∈Λj

∗
|cλ|p, (20)

where the
∑∗ means here that the sum is taken on the nonvanishing wavelet coefficients.

The corresponding scaling function of f is

ζ1
f (p) = lim inf

j→+∞

 log
(
W 1
f (p, j)

)
log(2−j)

 .

One is therefore led to the following multifractal formalism

df (H) = inf
p∈R

(d− ζ1
f (p) +Hp). (21)

Several criticisms can be addressed to this multifractal formalism:

1. It implicitely assumes that the only singularities met are cusp-like singularities.

This is of course an assumption which is impossible to check on a signal. Let us

briefly mention other types of singularities which can be met. On the opposite

from cusp singularities are the chirp-like singularities which display very strong

oscillations in the neighbourhood of x0, such as

Cα,β(x) = |x− x0|α sin
(

1
|x− x0|β

)
, (22)

where α > 0 and β > 0. Such functions are counterexamples to (19); indeed their

wavelet coefficients display a much stronger decay in the influence cone: They decay
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faster than 2−Nj for any N > 0. They have indeed large wavelet coefficients which

make (18) optimal for them too, but these large coefficients are situated far away

from the influence cone: They correspond to indices (j, k) such that |2jx0 − k| ∼
2−j/(1+β), see [33] for precise statements. This is illustrated numerically in Fig. 1,

top row.

2. The quantity

lim inf
j→+∞

 log
(
|cλj(x0)|)

)
log(2−j)

 (23)

on which the corresponding exponent is based does not define a quantity which is

independent of the wavelet basis chosen.

3. Wavelet coefficients can be extremely small by chance, so that we expect the struc-

ture function defined in (20) to be completely unstable for p < 0.

4. One can show that the scaling function ζ1
f (p) is independent of the (smooth) wavelet

basis chosen when p > 0 but it is not the case any longer if p < 0.

We will address these problems in a detailed way in the following: In Section 5 we

will introduce a multifractal formalism based on alternative quantities that will have

the required robustness properties; and in Section 6 we will show that the wavelet-based

formula (21) actually is a multifractal formalism adapted (for p > 0) to another exponent,

the weak-scaling exponent, and we will extend this multifractal formalism in a robust

way for p < 0.

4.3 Examples: Brownian motion and fractional Brownian motions

We now show that, even when the signal only displays cusp-like singularities, then (21)

does not necessarily yield the right spectrum of singularities. This pathology already

appears on the particularly striking examples supplied by the sample paths of Brownian

motion, and of F.B.M. (we treat only the F.B.M. case since Brownian motion is the

subcase corresponding to the Hurst exponent β = 1/2).

An important result of Paul Lévy states that, if (en) is an orthogonal basis of L2(R),

and if fn denotes a primitive of en, then Brownian motion can be decomposed on the fn
in the following particularly simple way

Bt =
∑

χn(fn(t)− fn(0))
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where the χn are independent identically distributed (i.i.d.) standard Gaussians. Let

us apply this result using an orthonormal wavelet basis for the en. A primitive of ψ is

supplied by the function ψ1 whose Fourier transform is given by ψ̂1(ξ) = ψ̂(ξ)/ξ. The

primitive of 2j/2ψ(2jx− k) is 2−j/2ψ1(2jx− k), therefore

Bt =
∑
j,k

χj,k(ψj,k(t)− ψj,k(−k)).

The contributions of the terms corresponding to j < 0 and the constant terms belongs

to C∞ (if the wavelet used is C∞), therefore one can write

Bt =
∑
j≥0,k

χj,kψj,k(t) +R(t),

where R(t) is a C∞ process. We can apply the same argument in order to obtain a

wavelet decomposition of F.B.M. since, as mentioned already, F.B.M. of index γ can be

deduced from Brownian motion by a sample path by sample path fractional integration

of order γ − 1/2 if γ > 1/2, or a fractional derivation of order (1/2) − γ if γ < 1/2.

(We refer the reader to [2, 51] where the wavelet decomposition of F.B.M. is investigated

in details and, in particular, the remainders R(t) and Rα(t) are given an explicit form

which allows for accurate simulations of the long range dependence.) Let

ψ̂α(ξ) =
1
|ξ|α

ψ̂(ξ) (24)

(ψα is the fractional integral of ψ of order α). If the wavelet ψ has enough vanishing

moments, then ψα is a wavelet and the 2j/2ψα(2jx − k) and the 2j/2ψ−α(2jx − k) form

biorthogonal bases, see [29, 49]; the point of using these bases in order to analyze F.B.M. is

that, as a consequence of the previous remarks, the coefficients of F.B.M. are decorrelated

on it. More precisely, if t ∈ [0, 1] then

Bβ(t) =
∞∑
j=0

∑
k∈Z

2−βjξj,k ψβ+1/2(2
jt− k) +R(t) (25)

where R(t) is a C∞ random process, and the ξj,k are I.I.D. standard centered Gaussians,

see [2, 51]. Therefore

W 1
Bβ

(p, j) = 2−βpj
2j∑
k=1

|χj,k|p,

which, up to the factor 2−(1+βp)j has exactly the same expression as A(p, j) defined by

(14). Therefore the computation performed in Section 3.2 yields the following result.

23



Proposition 3. Let Bβ(t) be a generic sample path of F.B.M. of order β ∈ (0, 1), and

assume that the wavelet used is C2. Then, with probability 1, the wavelet multifractal

formalism (21) applied to Bβ(t) yields

inf
p∈R

(d− ζ1
Bβ

(p) +Hp) = β + 1−H if H ∈ [β, β + 1]

= −∞ else,

 (26)

and the lim inf in the definition of the scaling function ζ1
Bβ

(p) is a limit.

5 Wavelet leaders

In this section, we exhibit quantities dλ called the wavelet leaders which are based on the

wavelet coefficients, and such that the formula corresponding to (23) yields an exponent

which is independent of the wavelet basis chosen, and which, under a very mild uniform

regularity assumption, actually is the Hölder exponent. We investigate the properties of

the multifractal formalism based on these quantities and, in particular, the stability of

the structure function for p < 0.

5.1 Pointwise Hölder regularity conditions

We saw that the Hölder exponent of a function f is not necessarily given by (23). An-

other indication that (23) is not the right quantity to consider in the derivation of the

multifractal formalism is that the necessity to base a multifractal formalism on a quan-

tity which is “hierarchical” (in the sense of Definition 5) was put into light several times

in previous sections. A simple quantity which is larger than |cλ| and is hierarchical is

supplied by the wavelet leaders, which are defined as follows.

Definition 12. Wavelet Leaders: Let f be a bounded function; the wavelet leaders

of f are

dλ = sup
λ′⊂3λ

|cλ′ |. (27)

If x0 is a given point, then

dj(x0) = dλj(x0).

Note that since f ∈ L∞,

|cλ| ≤ 2dj
∫
|f(x)||ψλ(x)|dx ≤ C sup |f(x)|,
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so that ∀λ, dλ ≤ C ‖ f ‖∞, and therefore the wavelet leaders are finite. We will

usually assume in the following that the function studied is bounded, so that the wavelet

leaders are finite. Note however that wavelet leaders are well defined under the weaker

assumption that f belongs to the Bloch space which coincides with the Besov space B0,∞
∞

and is characterized by the condition

∃C > 0, ∀λ, |cλ| ≤ C

(see Chap. 6.8 of [49] and references therein for properties of this function space).

The following proposition allows to characterize the pointwise regularity by a decay

condition of the dj(x0) when j → +∞.

Proposition 4. Let f ∈ L∞(Rd) and α > 0. The condition

∀j ≥ 0, dj(x0) ≤ C2−αj (28)

is equivalent to (18). (This is illustrated numerically in Fig. 1, bottom row.)

Proof of Proposition 4: We first prove that (18) implies (28). Let j ≥ 0 and

assume that λ′ ⊂ 3λj(x0). Since

|cλ′ | ≤ C2−αj
′
(1 + |2j′x0 − k′|)α, j′ ≥ j − 1 and |k′2−j′ − x0| ≤ 4d2−j ,

it follows that |cλ′ | ≤ C2−αj , so that dj(x0) ≤ C2−αj .

Let us now prove the converse result. If λ′ is a cube of side 2−j
′
, denote by λ (= λ(λ′))

the dyadic cube defined by

• If λ′ ⊂ 3λj′(x0), then λ = λj′(x0),

• else, if j = sup{l : λ′ ⊂ 3λl(x0)}, then λ = λj(x0), and it follows that

2−j−1 ≤ |k′2−j′ − x0| ≤ 4d2−j .

In the first case, by hypothesis, |cλ′ | ≤ dj′(x0) ≤ C.2−αj
′
. In the second case,

|cλ′ | ≤ dj(x0) ≤ C2−αj ≤ C|x0 − k′2−j
′ |α,

so that (18) holds in both cases.

Note that, as a consequence of Proposition 4 and Theorem 3 of [26], it follows that

Condition (28) is independent of the wavelet basis which is chosen, if the wavelets are

r-smooth with r > α.
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Figure 1: Cusp vs Chirp singularity. Left column, cusp singularity |x−x0|h (top row)

versus chirp singularity (bottom row) |x− x0|h sin( 1
|x−x0|β

) with β = 1. Central column,

wavelet coefficients, cλ for λ such that 2−jk = t0, right column, wavelet leaders, dλ for

λ such that 2−jk = t0. One sees that while the decrease along scales j of the wavelet

coefficients correctly characterizes the Hölder exponent cusp singularities, while it does

not for chirp-type ones. The decrease along scales j of the wavelet leaders do accurately

characterize all type of singularities, as in Eq. 28.

5.2 Multifractal formalisms

The reader will have noticed the striking similarity between Lemma 1 and Proposition

4: Both provide a characterization of pointwise Hölder regularity by a condition on

hierarchical quantities considered in the influence cone. Therefore one can derive the

multifractal formalism for functions exactly in the same manner as was done previously

for measures. It is therefore natural to use a structure function based on wavelet leaders,

i.e. which is of the form

2−dj
∑
λ∈Λj

∗
(dλ)p;
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however, obtaining the correct definition for the
∑∗ in this setting is much more delicate

than in the measure setting of Section 2; the problem for measures was to find a way

to keep the contribution of a cube in the structure function only if it did include an

important amount of the support of the measure. When one tries to reproduce this

feature in the wavelet setting one meets three problems:

• The size of the support of the wavelet changes with the wavelet used, so that

formulas based on the consideration that the support of the function analyzed

intersects “widely” the support of the wavelet cannot be universal, but have to be

taylored to the particular wavelet basis used.

• Such considerations become irrelevant if the support of the wavelet is the whole

Rd, which is the case if the wavelet used belongs to the Schwartz class.

• If the wavelets used have a finite smoothness and a finite number of vanishing mo-

ments, then they cannot analyze smoother parts of the function. If such smoother

parts occur on a set of dimension d, the multifractal formalism can yield incorrect

results for the largest Hs (which may be infinite); since the multifractal formalism

yields a concave function, this error can make the whole decreasing part of the

spectrum wrong (which is the part obtained for p < 0 in the Legendre transform

formula).

We are confronted with a deadlock:
∑∗ formulas make sense only if the wavelet is

compactly supported, hence has a finite smoothness, in which case, the p < 0 part of

the scaling function may be completely unstable, since it can be changed by adding an

arbitrarily small and smooth perturbation on the function.

Therefore, there is no universal formula without any drawback; However, this discus-

sion shows that one may use the following “rule of thumb”: On one hand, it is reasonable

to use a
∑∗ formula based on compactly supported wavelets when analyzing compactly

supported functions which are not arbitrarily smooth inside their support; on the other

hand, one should rather use wavelets in the Schwartz class when analyzing functions with

full support, in which case wavelet leaders are not expected to vanish (this could only

happen for “toy examples”, i.e. for artificial functions which are defined through their

wavelet coefficients on the precise wavelet basis which is used for the analysis); and, in

that case, we do not need to eliminate vanishing wavelet leaders in the definition of the

structure function. Therefore, we separate two cases depending on whether the wavelets
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are compactly supported or belong to the Schwartz class.

First case: Compactly supported wavelets

Definition 13. Leader based Multifractal Formalism 1: Let f be a uniform

Hölder function and assume that the wavelets used are compactly supported. The extended

wavelet leaders are

eλ = sup
supp(ψλ′ )⊂3supp(ψλ)

|cλ′ |,

where supp(ψλ) stands for the support of the wavelet ψλ, i.e., the closure of the set of

points x such that ψλ(x) 6= 0.

The wavelet structure function W 2
f (p, j) is defined for p ∈ R by

W 2
f (p, j) = 2−dj

∑
λ∈Λj

∗
(eλ)p,

where the
∑∗ means that the sum is taken on all λ′ such that

sup
supp(ψλ′ )⊂supp(ψλ)

|cλ′ | 6= 0.

The scaling function of f is defined by

ζ2
f (p) = lim inf

j→+∞

 log
(
W 2
f (p, j)

)
log(2−j)

 .

Second case: Wavelets in the Schwartz class

Definition 14. Leader based Multifractal Formalism 2: Let f be a uniform

Hölder function. The wavelet structure function W 3
f (p, j) is defined for p ∈ R by

W 3
f (p, j) = 2−dj

∑
λ∈Λj

(dλ)p.

The scaling function of f is defined by

ζ3
f (p) = lim inf

j→+∞

 log
(
W 3
f (p, j)

)
log(2−j)

 .
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Note that we can consider ζ3
f (p) even if the wavelets do not belong to the Schwartz

class.

In both cases, the same argument as above yields the following multifractal formalism

based on the wavelet leaders

df (H) = inf
p∈R

(d− ζf (p) +Hp), (29)

where ζf (p) stands either for ζ2
f (p) or ζ3

f (p) depending on the type of wavelet basis which

is used.

Numerically, the determination of the scaling functions ζ2
f (p) or ζ3

f (p) requires the

knowledge of the wavelet coefficients on more scales than the function ζ1
f (p); indeed,

in order to be trustable, the computation of a wavelet leader at a given scale requires

the computation of the wavelet coefficients on several scales below. In the second case,

the heuristic argument used in the derivation of the multifractal formalism is backed by

mathematical results: It is proved in [29] that the scaling function ζ3
f (p) is independent

of the wavelet basis (in the Schwartz class) which is chosen and, if f is a uniform Hölder

function, then

df (H) ≤ inf
p∈R

(d− ζ3
f (p) +Hp). (30)

One pitfall of using (29) in applications is that, as mentioned already, the right-hand

side of (29) is, by construction, a concave function. Since, in practice, using a Legendre

transform of a scaling function is the only way to estimate numerically spectrums of

singularities of signals, this may give the (perhaps erroneous) feeling that all spectrums

of singularities of signals are concave functions, and therefore that mathematical models

that yield concave spectrums are the only relevant ones (this remark also applies to all

the variants of the multifractal formalisms that were mentioned above). Let us just men-

tion at this point very simple models of random wavelet series with wavelet coefficients

correlated through a Markov chain on the dyadic tree; such models have been proposed to

model signals and images; however, they have recently been shown to yield non concave

spectrums, see [19] and references therein.

5.3 Robustness for wavelet-based quantities

Let us be more specific concerning the requirement of independence of the wavelet basis,

since it is related to our previous discussion on robustness criteria. The scaling functions

ζ2
f and ζ3

f are defined by conditions on the wavelet coefficients. Since the left-hand side
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of (29) is defined independently of any wavelet basis, the multifractal formalism will have

no chance to hold if the scaling function depends on the wavelet basis chosen. Näıvely, in

order to check this independence, one should first dispose of a description of all possible

wavelet bases, which is not realistic. In practice, one checks a stronger (but simpler)

requirement which implies that the scaling function considered has some additional sta-

bility; indeed, the matrix of the operator which maps an orthonormal wavelet basis onto

another orthonormal wavelet basis is invariant under the action of infinite matrices which

belong to algebras Mγ that are defined below; therefore, one can check that the scal-

ing function is also invariant under this action, which is the purpose of Corollary 1 and

Proposition 6.

Definition 15. Algebras Mγ: Let γ > 0; an infinite matrix A(λ, λ′) indexed by the

dyadic cubes belongs to Mγ if

|A(λ, λ′)| ≤ C 2−( d
2
+γ)(j−j′)

(1 + (j − j′)2)(1 + 2inf(j,j′)dist(λ, λ′))d+γ
.

Matrices of operators which map a smooth wavelet basis onto another one belong

to these algebras. It is proved in [49] that the matrix which maps an r-smooth wavelet

basis onto another r-smooth wavelet basis belongs to Mγ for any γ < r, and that the

spaces Mγ are algebras. More generally, matrices (on wavelet bases) of pseudodifferential

operators of order 0, such as the Hilbert transform in dimension 1, or the Riesz transforms

in higher dimensions, belong to these algebras (for any γ > 0 if the wavelets are C∞).

We denote by Op(Mγ) the space of operators whose matrix on a wavelet basis belongs

to Mγ . The following result is proved in [29].

Proposition 5. Let p > 0 and A ∈ Op(Mγ) for a γ > 0. If ζ3
f (p) < pγ, then

ζ3
A(f)(p) ≥ ζ3

f (p).

Applying this proposition to the operator that maps an r-smooth wavelet basis onto

another r-smooth wavelet basis, and also to the inverse of this operator, shows that,

under the hypotheses of Proposition 5, the scaling function ζ3
f (p) is independent of the

wavelet basis.

Another important remark is that ζ2
f (p) and ζ3

f (p) clearly coincide as long as p > 0

and ζ3
f (p) < pr. This follows from the fact, by definition of dλ and eλ, one has,

W 3
f (p, j) ≤W 2

f (p, j) ≤ 3dW 3
f (p, j).

Thus the following result holds.
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Corollary 1. Assume that the wavelet basis used is r-smooth; if p > 0 and ζ3
f (p) < pr,

then the scaling function ζ3
f (p) is independent of the wavelet basis used and ζ2

f (p) = ζ3
f (p).

Note that, if the wavelets belong to the Schwartz class, then the previous result holds

on the whole range p > 0.

Unfortunately, the case p < 0 leads to strongly different conclusions (and therefore

justifies the introduction of two different scaling functions). In order to state the results

in that case, we will need here a different requirement than the one used in Proposition

5.

Definition 16. Quasidiagonal infinite matrix: An infinite matrix A(λ, λ′) is qua-

sidiagonal if A is invertible, and if A and A−1 belong to Mγ for any γ > 0.

Let C = {cλ}λ∈Λ be a collection of coefficients indexed by the dyadic cubes. A property

P is robust if the following condition holds: If P(C) holds then, for any quasidiagonal

operator M, P(MC) holds.

The matrix of an operator which maps a wavelet basis in the Schwartz class onto

another one is quasidiagonal, see [49]. Therefore, in order to check that a condition

defined on the wavelet coefficients is independent of the wavelet basis (in the Schwartz

class) used, one can check the stronger property that it is invariant under the action of

quasidiagonal matrices. The following result is proved in [29].

Proposition 6. If p < 0, then ζ3
f (p) is independent of the wavelet basis in the Schwartz

class which is used.

5.4 Illustrations and examples

5.4.1 Fractional Brownian Motion

The following result shows that both multifractal formalisms based on wavelet leaders

yield the correct spectrum of singularities for F.B.M.

Theorem 3. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of order β.

Assume that the wavelet used belongs to the Schwartz class, then, with probability 1,

∀p ∈ R, ζ3
Bβ

(p) = βp (31)

and the liminfs in the definitions of the scaling functions are true limits; the wavelet

leaders based multifractal formalism (29) yields the correct spectrum (15).
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Figure 2: Fractional Brownian Motion. From a single sample path of fractional Brow-

nian motion synthetized numerically (using the Circulant embedding Matrix technique[8])

with β = 0.35 (number of sampling points: 218), one obtains: Left, solid (black) line:

theoretical ζf (p), dashed (black) line corresponds to Eq. 13, solid (blue) line with ’o’:

ζ3
f (p), dashed (red) line with ’+’: ζ1

f (p). Right, large full (black) dot, theoretical d(H),

solid (blue) line with ’o’: d3(H), dashed (red) line with ’+’: d1(H). While the wavelet

based and leader based formalisms both yield the correct ζf (p)s for positive ps, the leader

based one only is able to correctly measure the ζf (p)s for negative ps. The corresponding

Legendre transform (solid (blue) line with ’o’:) concentrates around the theoretical d(H).

Its extension around the correct value gives us an idea of the accuracy of the numerical

procedure.

Proof of Theorem 3: First, we note that the previous robustness results of Section

5.3 for ζ3
f (p) imply that the results do not depend of the wavelet basis in the Schwartz

class which is used, and, in particular, we can use the biorthogonal basis generated by

the wavelets (24) which leads to the decomposition (25). Then

IP(dλ ≤ j−4β2−βj) =
∏
λ′⊂3λ

IP
(
|cλ′ | ≤ j−4β2−βj

)

=
∏
λ′⊂3λ

IP
(
2−βj

′ |χλ′ | ≤ j−4β2−βj
)

≤
∏
λ′⊂3λ

j−4β2β(j′−j).
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We pick the scale j′ = j +
[

2 log j
log 2

]
+ 1, and we note that the number of subintervals of

scale j′ which are subintervals of λ is larger than j2, so that

IP(dλ ≤ j−4β2−βj) ≤
(
j−4β2β(j′−j)

)j2
,

and one easily checks that this quantity is bounded by e−j
2

for j large enough. Since∑
j

∑2j

k=0 e
−j2 is finite, the Borel-Cantelli lemma implies that for j large enough, all the

dλ are larger than j−4β2−βj . On the other hand, we already saw that, with probability

one, for j large enough, all the |χλ| indexed by a dyadic subinterval of [0, 1] are bounded

by j, and (31) follows from these two estimates.

Fig. 2 compares the wavelet and leader based multifractal formalisms practically

applied to a sample path of fractional Brownian motion produced numerically using the

so called Circulant embedding Matrix synthesis procedure [8]. One clearly sees that the

wavelet formalism cannot reach the negative p part of ζ(p) and hence fails to measure

correctly d(H), while the the leader based formalism accurately analyzes both ζ(p) and

d(H). Moreover, it is interesting to note that the wavelet based formalism follows for

negative ps the prediction derived from Eq. 26 in Proposition 3 (dashed black line).

5.4.2 Multiplicative Cascades

The second example is based on random multiplicative cascades (or martingales). Instead

of the celebrated cascades construction developed by Mandelbrot [45] and studied the-

oretically by Kahane and Peyrière [36] that produce multifractal measures, we chose to

illustrate the multifractal formalisms on multiplicative random wavelet cascades (RWC),

introduced by Arneodo et al., as they provide us with well defined synthetic multifractal

functions or processes (cf. [7]).

RWC are defined through their wavelet coefficient expansion on an orthonormal wavelet

basis as:

f(x) =
∑
j∈Z

∑
k∈Z

df (j, k)ψ(2jx− k).

Following original constructions, the wavelet coefficients df (j, k) entering the definition

of RWCs are obtained as a product of (positive) multipliers Wj,k, which consist of mean

one independent and identically distributed random variables:

drwc(j, k) = zj,k
∏

j′=1..j, k′/λ(j,k)⊂λ(j′,k′)

Wj′,k′ .
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Figure 3: Multiplicative Random Wavelet Cascades. From (an average of 500

realizations of) a log-normal RWC produced numerically (number of samples: 217), one

obtains: Left, solid (black) line: theoretical ζf (p), solid (blue) line with ’o’: ζ3
f (p), dashed

(red) line with ’+’: ζ1
f (p). Right, solid (black) line, theoretical d(H), solid (blue) line with

’o’: d3(H), dashed (red) line with ’+’: d1(H). While the wavelet based and leader based

formalisms both yield the correct ζf (p)s for positive ps, the leader based one only is able

to correctly measure the ζf (p)s for negative ps. The corresponding Legendre transforms

yield correct measure of d(H) for the lowest hs while only the leader based approach

accurately measures the largest hs.

The zj,k are random variables taking value +1 or −1 with equal probability and ensuring

that the wavelet coefficients are randomly chosen positive or negative.

It is known that such constructions yield multifractal processes whose ζ(p) and hence

df (H) are entirely determined from the function − log2 IEW p (see [7] for details). For in-

stance, one commonly chose log-normal multipliers, i.e., − log2 IEW p = mp−σ2 ln 2p2/2,

m and σ being two parameters to be chosen.

In Fig. 3, the wavelet based and leader based multifractal formalisms are compared

using 500 synthetic realizations of sample paths (number of samples: 217) of a log-

normal RWC. One clearly sees that the wavelet based multifractal formalism clearly fails

to measure ζ(p) for negative ps and d(H) for the largest Hs, while the leader based

multifractal formalism produces a correct analysis over the entire spectrum.
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Figure 4: Two-Dimensional Multiplicative Random Mandelbrot Cascades.

From (500 realizations of) a two-dimensional log-normal (fractionally integrated) Man-

delbrot’s binomial multiplicative cascade produced numerically (number of samples:

210 × 210), one obtains: Left, solid (black) line: theoretical ζf (p), solid (blue) line with

’o’: ζ3
f (p), dashed (red) line with ’+’: ζ1

f (p). Right, solid (black) line, theoretical d(H),

solid (blue) line with ’o’: d3(H), dashed (red) line with ’+’: d1(H). While the wavelet

based and leader based formalisms both yield the correct ζf (p)s for positive ps, the leader

based one only is able to correctly measure the ζf (p)s for negative ps. The corresponding

Legendre transforms yield correct measure of d(H) for the lowest hs while only the leader

based approach accurately measures the largest hs. This illustrates that the leader based

formalism works efficiently and easily in higher dimensions.

5.4.3 Two-Dimensional Multiplicative Mandelbrot’s Cascades

The third example aims at showing the leader based mutifractal formalism at work

in higher dimension. We chose to use here 2-dimensional (log normal) multiplicative

Mandelbrot’s cascades, whose standard definition not recalled here can be found in [45]

or e.g., [4, 7, 39]. The corresponding measure is then (fractionally) integrated to produce

a 2D function [4]. Fig. 4 compares the wavelet based and leader multifractal formalisms

applied to this 2D function. Fig. 4 is obtained from a log normal cascade, with fractional

integration of order 1/2, number of sampling points = 210×210, see [40] for details on the

synthesis procedure. Again, the wavelet based multifractal formalism yields an incorrect

determination of the scaling exponents for negative ps and of D(h) for its upper (or right)

part while the leader based one produces a relevant measure over the entire spectrum.
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This validates the theoretical and practical straightforward extension of the leader based

multifractal formalism to higher dimensions.

5.5 Further comments, analysis and synthesis routines

At this stage, a number of comments are in order:

In the numerical examples presented here, we have implemented the formalism cor-

responding to Definition 14, with Daubechies wavelets (i.e., with wavelets that do not

belong to the Schwartz class). The numerical results above show that this theoretical

requirement can probably be weakened. Moreover in the present numerical implemen-

tation, digitalization has two major practical impacts. It implies a finite number of

vanishing moments for the mother wavelet so that its belonging to the Schwartz class

remains at a theoretical level. The same holds for the theoretical possible choice of a C∞

mother wavelet. This is under further current investigations.

In numerous papers more focused on practical multifractal analysis (see for instance

[3, 39, 40]), the convention a = 2j is preferred to a = 2−j chosen in the present text.

This implies that the limit in the equations defining the ζf are taken for j → −∞.

All the procedures used in the present work to synthesize processes and signals and

to implement multifractal formalism analysis were developed by ourselves1 in Matlab

or C.

5.6 Practical and numerical multifractal analysis: Comparisons against

other multifractal formalisms and against the wavelet transform

modulus maxima approach

5.6.1 Practical and historical implementations of multifractal formalisms

Because multifractal analysis was first applied to characterize strange attractors in the

field of chaos (see e.g., [23]) and dissipation field in hydrodynamic turbulence (see e.g., [58,

48]), the earliest formalism actually used in applications was based on the computation

of structure functions based on measures:

p ∈ R, Σµ(p, j) = 2−dj
∑
λ∈Λj

µ(λ)p,

1The authors wish to thank Stéphane Roux, Physics Lab., ENS de Lyon, for having made available

to them his codes implementing the wavelet transform modulus maxima technique
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a formula that closely resembles that of Definition 6 proposed here.

In hydrodynamic turbulence, one is not only interested in dissipation fields, but also

in velocity ones, i.e., in functions. This is why Parisi and Frisch [55] proposed to define

a formalism based on the increments f((k + 1)/2j) − f(k/2j) of the function f under

analysis:

p > 0, Σ1
f (p, j) = 2−j

∑
k

∣∣∣∣f (k + 1
2j

)
− f

(
k

2j

)∣∣∣∣p
Immediately after they appear, wavelet were read as generalizations both for box-aggre-

gation and increments. For instance, the increments are commonly referred to as the poor

man’s wavelet and the historical Haar wavelet can be seen as a difference of averaged (or

aggregated) quantities (see e.g., [34, 50]). Therefore, wavelets act as increments of higher

orders and hence generalize the usual increments. Moreover, multiplicative cascades have

been used as a standard for the synthesis of multifractal measure [45]. Box aggregation

yield a correct multifractal spectrum only for the special class of conservative cascades

(see e.g., [37]). This is why both continuous and discrete wavelet transforms have been

involved in multifractal analysis since their earlier times, mainly to study turbulence ve-

locity and dissipation fields (see e.g., [47, 13, 4]).

However, it has immediately been observed that most of the early-proposed mul-

tifractal formalisms failed to work for negative values of p, a major drawback as the

analysis of the full multifractal spectrum theoretically involves the use of both positive

an negative ps. To overcome this difficulty, Arneodo and co-authors introduced the use

of the wavelet transform modulus maxima method (WTMM). To date, it remains one

of the most widely used tool for empirical multifractal analysis performed in actual ap-

plications. The wavelet leader multifractal formalism proposed here provides us with a

new, relevant and efficient multifractal analysis framework.

In the section below, we briefly describe the WTMM tool and propose elements of

comparisons between the two approaches with no aim to cover a full and detailed analysis

of the difference between them.
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Figure 5: leaders vs WTMM multifractal formalisms. On the same set of synthetic

data as the one used to obtain Fig. 3 (Multiplicative Random Wavelet Cascades), ones

obtains: Left, solid (black) line: theoretical ζf (p), solid (blue) line with ’o’: ζ3
f (p), mixed

(magenta) line with ’*’: ζf (p), produced by the WTMM approach. Right, solid (black)

line, theoretical d(H), solid (blue) line with ’o’: d3(H), mixed (magenta) line with ’*’:

d1(H), produced by the WTMM approach. Both formalisms are yielding very close and

equivalent results at the price, however, of a very different computational cost though.

5.6.2 Wavelet Transform Modulus Maxima

The use of dλ is reminiscent of the WTMM initially introduced by S. Mallat in [44]

and developed by A. Arneodo E. Bacry and J.-F. Muzy in the context of multifractal

analysis, see [4, 6] and references therein: Assume that ψ is a wavelet, i.e. a well localized

function with enough vanishing moments (in practice a derivative, or a second derivative

of a Gaussian is often used). One computes the continuous wavelet tranform of f

Cf (a, b) = a

∫
f(x)ψ

(
x− b

a

)
dx

which is a function defined in the upper half plane {(a, b) : a > 0, b ∈ R}. For each scale

a, one spots the local maxima of the functions b → Cf (a, b). These local maxima are

connected through scales, thus yielding the wavelet skeleton. At each local maximum

located at position (a, b) in the time scale plane, one associates the supremum of the

wavelet transform on the sub-skeleton issued from (a, b) (i.e. the maximum on the part

of the skeleton which is linked to (a, b) and corresponds to values of the scale parameter

smaller than a). The ζ(p) are then obtained using formulas such as those in Definitions
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13 and 14, the partition function being computed only with the supremum skeleton val-

ues (see, e.g., [4, 5, 6] for details).

Practical results obtained with the WTMM approach are illustrated in Fig. 5 (on

the same set of synthetic data as the one used to produce 3) and compared to those

produced with the leader based multifractal formalism. One sees that both approaches

yield equivalent results. Their merits are further compared below.

Historically, the WTMM has been the first and remained for a long time the only

multifractal formalism yielding correct results for negative ps. Also, it enabled the first

attempts to analyze chirp type singularities [5]. However, a number of important differ-

ences between the wavelet leaders and WTMM approaches can be pointed out.

From a mathematical point of view, the main differences are the following: The

wavelet leader based multifractal formalism now benefits of well established theoretical

mathematical results as described in previous sections. The situation is much different for

the case of the WTMM. In the wavelet maxima method, the spacing between the local

maxima need not be of the order of magnitude of the scale a or even be regularly spaced;

therefore, the scaling function thus obtained can be different from ζ3
f (p) (see [27] where

counterexamples are constructed). It follows that, up to now, no mathematical results

have been proved to hold for the wavelet maxima method. For instance, theoretical

results such as the independence of the scaling function with the analyzing wavelet, or

the fact that the Legendre transform of the scaling function yields an upper bound for

the spectrum of singularities, are not available so far. This is because, as seen before,

operators that map a wavelet basis on another one belong to classes of infinite matrices

which are easy to describe. On the opposite, a wavelet transform belongs to a specific

subspace of L2(dadb/a2): The so-called “Reproducing Kernel Hilbert Spaces”, which

depend on the wavelet, see [22]. Therefore describing specific classes of operators that

act on these spaces is much more difficult to handle.

On the computational side, an important drawback of the WTMM lies in its com-

putational cost. It is based on the computation of a full continuous wavelet transform

followed by the skeletization and maxima tracking procedures. The leaders approach is

based on the coefficients on an orthogonal wavelet decomposition and hence benefits from

fast decomposition algorithms (cf. [43]). It implies that the wavelet leaders approach

can be used for signals of arbitrary length while the WTMM is often restricted to much

shorter ones.
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Along the same line, while the wavelet leaders approach is straightforwardly and

without extra difficulties extended to arbitrary higher dimensions (cf. Fig. 4), th e

definition of the WTMM needs to be significantly modified to a more complex procedure

before extension to higher dimensions. Those further complications strongly impairs

the mathematical analysis of the method and substantially increase the corresponding

computational cost (see e.g., [37] for discussions).

The statistical performance of the estimators for the ζ(p) exponents based on these

two different approaches are being investigated and compared (see for instance [57]).

Numerical results regarding the leader based analysis of processes containing chirp-

type singularities are been proposed in [3, 40] and show that the wavelet leader based

formalism correctly measures the corresponding multifractal spectra. This will be further

developed in forthcoming works.

6 The weak-scaling exponent

In this section, we investigate whether we can expect (21) to yield the spectrum associated

with some alternative pointwise exponent. We will show that, though the scaling function

ζ1
f (p) may depend on the wavelet basis chosen if p < 0, nonetheless it is independent of

the wavelet basis for p > 0 and, when the infimum in (21) is reached for p > 0, then (21)

is expected to yield the spectrum of singularities based on the weak scaling exponent,

which was introduced by Y. Meyer in [50]. This weak scaling exponent coincides with

the Hölder exponent in the case of cusp-like singularities, and this will explain why the

multifractal formalism based on (21) yields the correct increasing part of the spectrum

for signals such as Brownian motion. This interpretation will thus allow us to give a new

interpretation to the computations done in previous papers which were based on (21).

6.1 Characterizations of the weak scaling exponent

Before giving a precise definition, let us first give a feeling on the nature of the information

supplied by the weak-scaling exponent. The weak-scaling exponent was introduced as a

substitute for the Hölder exponent, which displays a better behaviour under integration:

Let f : R −→ R be a function, and denote by f (−1) a primitive of f . It may happen

that hf (−1)(x0) 6= hf (x0)+1 as might be expected. A typical example where hf (−1)(x0) is

strictly larger than hf (x0) + 1 is supplied by the chirp Cα,β defined in (22), when β > 0;

indeed its Hölder exponent at x0 is α and its Hölder exponent is increased by 1 +β after
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one primitivation, as shown immediately by writing

C(−1)
α,β (x) =

∫ x

x0

(
|t− x0|α+β+1

β

)
β|t− x0|−β−1 sin

(
1

|t− x0|β

)
dt

and integrating by parts.

This phenomenon is the source of many difficulties and, in particular, it is one of

the causes of failure of the multifractal formalism based on wavelet coefficients, see [5].

Indeed, as already mentioned, counterexamples to the heuristic which led to (21) are

supplied by functions such as Cα,β. Therefore it is natural to wonder if there is an alter-

native exponent endowed with the additional property that the exponent of a primitive

is just the exponent of the function shifted by 1, and that would be “close” to the Hölder

exponent (for instance, they would coincide for cusps such as |x−x0|α). This is precisely

the weak-scaling exponent hwsf (x0) which has been discovered by Y. Meyer, see [50], and

can be characterized by the following properties:

• hwsf (x0) ≥ hf (x0).

• hws
f (−1)(x0) = hwsf (x0) + 1

• hwsf (x0) is the smallest exponent satisfying the two previous conditions.

These three requirements are not easy to use directly in order to compute the weak-

scaling exponent of a function; in practice, one uses a characterization on the wavelet

coefficients supplied by Theorem 1.2 of [50].

First, we have to introduce the Γs(x0) smoothness criterium.

Definition 17. Let f be a tempered distribution; f belongs to Γs(x0) if and only if there

exists s′ > 0 such that f belongs to the two-microlocal space Cs,−s
′
(x0), which means that

the wavelet coefficients of f (taken on a wavelet basis in the Schwartz class) satisfy

|cj,k| ≤ C2−sj(1 + |2jx0 − k|)s′ . (32)

Note that (18) already consisted of a two-microlocal condition.

Definition 18. Let f be a tempered distribution; the weak-scaling exponent of f is

hwsf (x0) = sup{s : f ∈ Γs(x0)}. (33)

This definition is independent of the wavelet basis chosen and that it coincides with

the informal definition given above, see [50].
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Definition 19. Weak scaling exponent spectrum: We denote by Ewsf (H) the set

of points where the weak-scaling exponent of a distribution f takes the value H. The

weak-scaling spectrum of f (denoted by dwsf (H)) is the Hausdorff dimension of Ewsf (H).

In order to derive the multifractal formalism for the weak scaling exponent, the

following alternative characterization will be useful (Note that it slightly differs from

the wavelet characterization obtained in [32]).

Definition 20. ε-leader: Let ε > 0. The ε-cone of scale j above x0 is

Cεj (x0) = {λ′ ⊂ 3λj(x0) such that j′ ≤ (1 + ε)j}.

The ε-leader of scale j above x0 is

dεj(x0) = sup
λ′∈Cε

j (x0)
|cλ′ |.

It is worth noting that the limit ε→ +∞ corresponds to the definition of the wavelet

leaders (cf. Definition 12) while in the limit ε → 0 one recovers the usual wavelet

coefficients.

Proposition 7. Let f be a tempered distribution. The weak scaling exponent of f at x0

is the supremum of the values of H satisfying

∀ε > 0, ∃J ∀j ≥ J dεj(x0) ≤ C2−(H−ε)j . (34)

Proof of Proposition 7: Suppose that there exists s′ > 0 such that (32) holds. Let

ε > 0; then

dεj(x0) ≤ sup
λ′∈Cε

j (x0)
2−sj

′
(1 + |2j′x0 − k′|)s′ ≤ 2−sj2(j′−j)s′ ≤ 2−sj2s

′εj .

Since ε can be chosen arbitrarily small, (34) holds for H = s.

Conversely, suppose that (34) holds. Since f is a finite order distribution, it follows

that

∃u ∈ R, ∃C > 0, ∀j, k |cj,k| ≤ C.2−uj . (35)

We can of course assume that u satisfies H − 1− u > 0.

First, if λ′ belongs to an ε-cone of scale j above x0, then

j ≥ j′/(1 + ε)
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so that

|cλ′ | ≤ C.2−j
′(H−ε)/(1+ε)

and (34) holds for an s arbitrarily close to H and s′ = 0.

Else, if λ′ does not belong to an ε-cone of scale j above x0 then, in particular, it is

outside the ε-cone of scale = j′/(1 + ε) above x0, so that

|2j′x0 − k′| ≥ 2j
′
2−j ≥ 2j

′ε/(1+ε).

It follows that

|cλ′ | ≤ C.2−uj
′ ≤ C.2−Hj

′
2−(u−H)j′ ≤ C.2−Hj

′ |2j′x0 − k′|(H−u)(1+ε)/ε,

and (34) holds for s = H and s′ = (H − u)(1 + ε)/ε.

6.2 Multifractal formalism for the weak scaling exponent

Proposition 7 states that the weak scaling exponent at x0 is given by the order of mag-

nitude of the the ε-leaders above x0. Therefore, the following structure and scaling

functions are naturally associated with the weak scaling exponent.

Definition 21. Weak scaling exponent Multifractal formalism: Let f be a

temperate distribution and assume that the wavelets used belong to the Schwartz class. If

p ∈ R, let

dελ = sup
λ′⊂3λ, j′≤(1+ε)j

|cλ′ |,

W 4
f (p, ε, j) = 2−dj

∑
λ∈Λj

(dελ)
p,

and

ζ4
f (p, ε) = lim inf

j→+∞

 log
(
W 4
f (p, ε, j)

)
log(2−j)

 . (36)

The weak scaling function of f is defined by

ζ4
f (p) = lim

ε→0
ζ4
f (p, ε). (37)

Note that, when ε → 0, the ε-leaders are defined by a supremum over a decreasing

set, and therefore, they decrease; it follows that, if p > 0, then W 4
f (p, ε, j) decreases when

ε→ 0, and, if p < 0, then W 4
f (p, ε, j) increases when ε→ 0, which implies that the limit

exists in (37) in all cases.
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The same arguments as for the derivation of the previous multifractal formalisms lead

to the following multifractal formalism for the weak scaling exponent:

dwsf (H) = inf
p∈R

(d− ζ4
f (p) +Hp) (38)

The following result shows that the Legendre transform of the scaling function yields

an upper bound for the weak-scaling spectrum without any uniform regularity assump-

tion, see [32].

Theorem 4. Let f be a tempered distribution. Then its weak scaling spectrum satisfies

dwsf (H) ≤ inf
p∈R

(
Hp− ζ4

f (p) + d
)
. (39)

Let us now study more precisely the scaling function ζ4
f (p).

Proposition 8. Let p > 0. If the wavelets are r-smooth with r > pζ1
f (p), then

ζ4
f (p) = ζ1

f (p).

This result implies that the increasing part of the Legendre transforms in (21) and

(39) coincide. This is important in practice since ζ1
f (p) is much easier to obtain numeri-

cally (because it is not defined as a double limit). Furthermore Proposition 8 shows that

the multifractal formalism given by (21) is expected to yield the increasing part of the

weak scaling spectrum, as announced.

Proof of Proposition 8: Let p > 0; since (dελ)
p ≥ |cλ′ |p, it follows that ζ4

f (p) ≤
ζ1
f (p). Conversely,

(dελ)
p ≤

∑
λ′⊂3λ, j′≤(1+ε)j

|cλ′ |p

so that

w4
f (p, ε, j) ≤ w1

f (p, ε, j) + 2dw1
f (p, ε, j + 1) + · · ·+ 2dεjw1

f (p, ε, (1 + ε)j);

therefore

ζ4
f (p, ε) ≥ (d+ 1)ε+ ζ1

f (p, ε).

Since this is true ∀ε > 0, it follows that ζ4
f (p) ≥ ζ1

f (p).
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Let us now give a function space interpretation to ζ1
f (p) (hence to ζ4

f (p)) when p > 0.

Recall that f belongs to the homogeneous Besov space Ḃs,∞
p (Rd) if

∃C, ∀j 2(sp−d)j
∑
λ∈Λj

|cλ|p ≤ C. (40)

It follows that

ζ1
f (p) = sup{s : f ∈ Ḃs/p,∞

p (Rd)}.

Since (40) holds as soon as the wavelets are r-smooth with s > r, it follows that ζ4
f (p) is

independent of the r-smooth wavelet basis as soon as r > pζ4
f (p).

If p < 0, then ζ4
f (p) cannot be given any more a function space interpretation; however,

one can prove that it is still independent of the wavelet basis (in the Schwartz class),

by using the same arguments as those developed in [29] in order to prove that ζ3
f (p) is

robust.

One may wonder if ζ1
f (p) and ζ4

f (p) still coincide for p < 0. The example of F.B.M.,

which we now consider, shows that it is not the case.

6.3 Examples: The weak scaling spectrum of fractional Brownian mo-

tions

First, let us determine the weak scaling exponent of F.B.M. at every point. We use

the characterization supplied by Proposition 7, which is independent of the wavelet ba-

sis chosen (because it is equivalent to the two-microlocal characterization (32), which

defines a robust condition, as shown in [26]). Furthermore, using again this robustness

property, we can use the decomposition (25) on biorthogonal wavelets adapted to F.B.M..

Therefore the wavelet coefficients are 2−βjχj,k where the χj,k are I.I.D. standard centered

Gaussians. Then, the proof of Theorem 3 shows that, for j large enough, the ε-leaders

are larger than j−4β2−βj (because, in the proof, the supremum in the definition of the

wavelet leaders is extracted only in the range of scales between j and j +
[

2 log j
log 2

]
+ 1,

which is smaller than j + εj for j large enough). Therefore, the Borel-Cantelli lemma

implies that a.s. for j large enough, all the dελ stand between j−4β2−βj and j2−βj . Thus,

the following theorem holds.

Theorem 5. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of order β.

Assume that the wavelet used is C2; then, with probability 1, the weak scaling exponent

of Bβ is everywhere β,

∀p ∈ R, ζ4
Bβ

(p) = βp (41)
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and the liminfs in the definitions of the scaling functions are true limits.

The multifractal formalism (29) yields the correct weak scaling spectrum of singular-

ities of F.B.M..

One can note that by inverting the two limits ε→ 0 and j → +∞ in Definition 21 and

(36) and (37), one recovers the wavelet coefficient based multifractal formalism, which

was shown in Section 4 to yield an incorrect measure of the multifractal spectrum of

F.B.M. Hence, F.B.M. provides us with a pedagogical example to emphasize how much

the order of the limits matters in multifractal analysis.

7 Conclusion

We conclude this paper by some comments concerning the comparison of the three

wavelet-based multifractal formalisms given by (21), (29) and (38), why they may co-

incide or differ, and how this is related to the presence of “oscillating singularities”, as

opposed to “cusp-singularities”.

Let us first discuss what is usually understood by these two types of singularities.

As mentioned already, a typical example of a cusp at x0 is supplied by the function

|x− x0|α (where α is positive and is not an even integer so that the function is not C∞

at x0). This is usually opposed to chirps such a the functions Cα,β defined in (22). These

particular examples do not supply us with a general mathematical definition; they can

only give some clues in this direction. Unfortunately, there is no general agreement as

to what should be the right definition of a chirp. Actually, several definitions have been

proposed (see [5, 14, 28, 33, 52]) and simple models of random wavelet series have been

shown to display such behaviors, see [9]. Furthermore, C. Melot and A. Fraysse showed

that such oscillatory behaviors are not exceptional but “generic” among the functions

which have a given scaling function ζ1
f (p), see [21, 46]. We won’t compare the merits

of these definitions here, but rather discuss the opposite point of view: When can one

say that a function displays cusps, since this is the case where we expect the different

multifractal formalisms to coincide. The clue for a possible answer lies again in the

comparison between the properties of the cusps |x−x0|α and the chirps Cα,β: Recall that

the Hölder exponent of both functions at x0 is α, but the weak scaling exponent of the

cusp is α whereas it is +∞ for the chirps; following this remark, Y. Meyer proposed in

[50] the following general definition for a cusp.
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Definition 22. Cusp singularity: Let f be a function which is bounded in a neigh-

bourhod of x0, and such that hf (x0) <∞; f has a cusp singularity at x0 if

hf (x0) = hwsf (x0).

Note that this definition does not involve the wavelet coefficients of f : however, in

order to understand its implications in multifractal analysis, it is necessary to check what

it implies for the wavelet leaders. The characterizations supplied by Propositions 4 and

7 show that, if f has a cusp singularity at x0, then we can expect that, for any ε > 0,

the supremum in the quantity sup
λ′⊂3λj(x0)

|cλ′ | is actually reached for a λ′ whose scale j′

satisfies j ≤ j′ ≤ (1 + ε)j (if j is large enough). A typical example of this behavior is

supplied by F.B.M.: Indeed, in Section 5.4, we estimated these suprema and actually

showed that a.s. every point is a cusp singularity (since everywhere the Hölder exponent

and the weak scaling exponent both take the value β). We can wonder why the first

multifractal formalism yields a different spectrum, see Proposition 3. A close inspection

of the proof of this proposition compared with the proof of Theorem 3 shows that, though

the suprema of wavelet coefficients on very small subtrees of the form

{λ′ ⊂ λ : j′ ≤ (1 + ε)j}

are of the order of magnitude of 2−βj with a probability extremely close to 1, nonetheless,

single wavelet coefficients have a Gaussian distribution and therefore can take very small

values with a much larger probability, which becomes non negligeable when one considers

simultaneously a large number of coefficients (2j in the present case).

Is it nonetheless possible that (21), (29) and (38) yield the same result? Since the

scaling function ζ1
f (p) is not robust, this can only be the consequence of a very particular

choice of the wavelet basis. In practice, this only happens if an algorithm is used to

define the coefficients of the function (or of the stochastic process) on a given wavelet

basis, and the same wavelet basis is used also in the analysis procedure. Such models

have been currently proposed, all of them verifying the following hierarchical property:

λ′ ⊂ λ =⇒ |cλ′ | ≤ |cλ|. (42)

Typical examples of wavelet series satisfying this property can be constructed starting

with a probability measure µ defined on Rd and picking, for an α ≥ 0 and q > 0,

cλ = 2−αj [µ(λ)]q,
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see [10, 7] and references therein. Because of (42), all wavelet multifractal formalisms

trivially yield the same result but again, under the very artificial assumption that one

picks the same synthesizing and analyzing wavelets, since (42) will not remain valid if the

wavelets are changed. Note that, if the synthesizing and analyzing wavelets differ, then

the last two multifractal formalisms will still coincide (because there exists a wavelet basis

for which it is the case, and the corresponding scaling functions are robust); by contrast,

numerical results show that the first multifractal formalism yields a different spectrum:

The decreasing part of the Legendre transform is artificially raised, as in the F.B.M.

case (see Proposition 3), because of very small wavelet coefficients whose influence in the

structure function is not eliminated by taking suprema of coefficients, as in the wavelet

leaders case. (Note that experimentalists are aware of this pitfall: Even if they study

“artificial signals” defined through their wavelet coefficients, they take only for granted

results which have been validated by using several different wavelet bases.)

8 Appendix: Proof of Theorem 1

Let us first prove (13). We start by two elementary remarks. If χ is a standard Gaussian,

then

IP(|χ| ≥ j) ≤ e−j
2/2;

it follows from the Borel-Cantelli Lemma that, with probability 1,

∃J, ∀j ≥ J, ∀k = 1, ..., 2j , |χj,k| ≤ j,

hence,

if p > 0, then A(p, j) ≤ 2−pj/2jp. (43)

On the other hand,

IP
(
|ξ| ≤ j−22−j

)
≤
√

2
π
j−22−j ;

it follows that, for a given j, one of the 2j Gaussians ξj,k will be smaller than j−22−j

with probability at most j−2. Thus, by the Borel-Cantelli lemma, with probability 1,

∃J, ∀j ≥ J, ∀k |ξj,k| ≥ j−22−j . (44)

In order to obtain precise estimates on A(j, p), we can use estimates for the distribu-

tion of the |ξj,k| in the neighbourhood of 0; up to a smooth change of variable, it is the
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same as the distribution of 2j I.I.D. random variables xk distributed with the Lebesgue

measure on [0, 1] and therefore the estimate of A(p, j) will be the same in both cases.

Recall that the empirical process is defined as follows: Points (xn)n∈N are drawn inde-

pendently with the Lebesgue measure on [0, 1]; therefore the estimates on A(j, p) will be

the same in both cases, up to a constant term. The empirical process is the collection of

random processes

PNt =
N∑
n=1

1[0,xn)(t).

Estimates on the joint distribution of the xn are usually expressed in terms of

αNt =
√
N

(
PNt
N

− t

)
which is the “correct” renormalization of the empirical process since it converges to a

non-trivial limit (a Brownian bridge), see [18, 59] and references therein. The increments

of the empirical process can be estimated using the following result which is a particular

case of Lemma 2.4 of [59].

Lemma 4. There exist two positive constants C ′1 and C ′2 such that, if 0 < l < 1/8,

Nl ≥ 1 and 8 ≤ A ≤ C ′1
√
Nl,

IP

(
sup

|t−s|≤l
|αNt − αNs | > A

√
l

)
≤ C ′2

l
e−A

2/64. (45)

Note that the condition

sup
|t−s|≤l

|αNt − αNs | ≤ A
√
l

implies that the number of points (xn)n≤N that fall in the interval [s, t] differs from

N |t− s| by at most A
√
NL.

In the following, we will use Lemma 4 repeatedly with intervals of different lengths

and positions; however, each time, we will pick N = 2j and A = j; this last choice will

allow use to obtain such small probabilities of the opposite events that we can apply the

Borel-Cantelli lemma to their complement at the end. First we estimate the number of

points that fall in the interval [9/10, 1], so that l = 1/10; it follows that, with probability

larger than 1 − Ce−j
2/64, this number differs from (1/10)2j by at most j2j/2

√
10. On

one hand, if p > 0, then A(p, j) ≥ C(p)2j and (13) for p > 0 follows from this estimate

together with (43). On the other hand it follows that

if p < 0, then A(p, j) ≥ C2j . (46)
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Let us now apply Lemma 4 on the interval [0, j32−j ], so that l = j32−j . With

probability larger than 1− Ce−j
2/642j/j3, the number of points in this interval is larger

than j3 − j
√
j32−j2j ≥ j3/2, so that

if p < 0, then A(p, j) ≥ 1
2
j3+3p2−pj . (47)

Let us now obtain upper bounds for A(p, j) when p < 0. Let m be a fixed, large

integer, and let

a0 = 0, and ak = 2−(1−k/m)j for k = 1, . . . ,m− 1, and lk = ak − ak−1.

We first apply Lemma 4 in the first interval [0, a1]. With probability larger than 1 −
C2je−j

2/64, the number of points in this interval is bounded by a12j + j2j/2
√
a1, taking

into account the value of a1 and (44), it follows that the contribution to A(p, j) of the

points that fall in this interval is bounded by

2 · 2j/mj−2p2−pj . (48)

We now apply Lemma 4 on the remaining intervals. We obtain that ∀k = 1, . . . ,m− 1,

with probability larger than C ′22
je−j

2/64 the number of points that fall in the interval

[ak−1, ak) differs from lk2j by at most j2j/2
√
lk. It follows that, if p > 0 then, with

probability at most C ′2m2je−j
2/64 the contribution of each interval [ak−1, ak) to A(p, j)

is bounded by

2−jlk2ja
p
k + j2j/2

√
lka

p
k−1

which is bounded by

2−pj
(
2(p+1)jk/m + 2(p+1/2)jk/m2−pj/m

)
.

If p < −1 then each of these terms is bounded by (48), and if −1 ≤ p < 0 then each is

bounded by C2j ; therefore (13) follows in all cases for p < 0.

We now prove the second part of Theorem 1, i.e. that, in the case of a sample path

of Brownian motion, a.s.

∀p ∈ R, η2
B = p/2, (49)

and that the lim inf in (10) is a true limit, which will imply the second assertion of

Theorem 1.
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Let Ij,k denote the interval [k2−j , (k + 1)2−j). The oscillations

OscB(Ij,k) = sup
s∈Ij,k

Bs − inf
x∈Ij,k

Bs (k = 0, . . . , 2j − 1)

are 2j i.i.d. random variables, and we have to estimate∑
k

(OscB(Ij,k))
p

Proposition 9. Let Ot = sup
s∈[0,t]

Bs − inf
x∈[0,t]

Bs. The law of Ot satisfies

if a ≤
√
t, IP{Ot ≤ a} ≤ 1

2π
exp

(
−π

2t

a2

)
and

if a ≥
√
t, IP{Ot ≥ a} ≤ 4a√

2πt
exp

(
−a

2

8t

)
.

Proof of Proposition 9: Let B∗
t = sup[0,t] |Bs|. We can reduce the problems of

estimations of the oscillation to estimations on B∗
t , since

B∗
t ≤ sup

[0,t]
Bs − inf

[0,t]
Bs ≤ 2B∗

t .

We will need two estimations for the law of the random variable B∗
t . We start by recalling

(see [16] Proposition 8.4.27) that

IP (B∗
t ≤ a) =

1√
2πt

∑
k∈Z

(−1)k
∫ (2k+1)a

(2k−1)a
exp

(
−u

2

2t

)
du (50)

so that the density of B∗
t is

gt(a) =
2√
2πt

∑
k∈Z

(−1)k(2k + 1) exp
(
−(2k + 1)2a2

2t

)
.

Let u = a/
√
t and f(x) = x exp(−x2/2), then

gt(a) =
2

a
√

2π

∑
k∈Z

(−1)kf ((2k + 1)u) .

Since f is in the Schwartz class, the Poisson summation formula yields∑
n∈Z

f(x+ an) =
∑
k∈Z

1
a
f̂

(
2πk
a

)
e−2iπkx/a.
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Applying this formula with 2a and substracting, we obtain∑
n∈Z

(−1)nf(x+ an) =
1
a

∑
k odd

f̂

(
πk

a

)
eiπkx/a.

We use this formula with x = u, a = 2u and f(x) = x exp(−x2/2), whose Fourier

transform is −iξ
√

2π exp(−ξ2/2); it follows that

gt(a) =
−π
2u2a

∑
k odd

ik+1k exp
(
−π

2k2

8u2

)

=
π

4u2a

∞∑
l=0

(−1)l(2l + 1) exp
(
−π

2(2l + 1)2

8u2

)
.

Therefore

IP (B∗
t ≤ a) =

∫ a

0
gt(x)dx =

∞∑
l=0

(−1)l

2π(2l + 1)
exp

(
−π

2(2l + 1)2t
a2

)
≤ 1

2π
exp

(
−π

2t

a2

)
,

so that

IP {Ot ≤ a} ≤ IP {B∗
t ≤ a} ≤ 1

2π
exp

(
−π

2t

a2

)
.

Separating the term k = 1 from the others in (50) it follows that

IP (B∗
t ≥ a) =

2√
2πt

∫ ∞

a
exp

(
−u

2

2t

)
du− 2√

2πt

∞∑
k=1

(−1)k
∫ (2k+1)a

(2k−1)a
exp

(
−u

2

2t

)
du

which is bounded by
8a√
2πt

exp
(
−a

2

2t

)
. Therefore

IP {Ot ≥ a} ≤ IP {B∗
t ≥ a/2} ≤ 4a√

2πt
exp

(
−a

2

8t

)
,

hence the second point of Proposition 9 holds.

Let j be fixed and N = 2j . It follows that the event

{One of the oscillations OscB(Ij,k) is smaller than 1/(
√
N logN)}

has probability less than Ne−π(logN)2 ; and similarly the event

{One of the oscillations OscB(Ij,k) is larger than logN/
√
N}

52



has probability less than 2N(logN)e−π(logN)2 . The structure function can be estimated

just as in the increments case, but the computations are much easier because the dis-

tribution of the suprema decays very strongly near 0, and a direct application of the

Borel-Cantelli Lemma shows that (49) holds, so that the multifractal formalism yields

now the correct spectrum for a.e. sample path of Brownian motion.
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