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Università di Padova, Via Marzolo 8, 35131 Padova, Italy

♭ Physics Department,
Theory Unit, CERN,

CH-1211, Geneva 23, Switzerland

⋆ Laboratoire de Physique, ENS-Lyon
46, allée d’Italie, F-69364 Lyon CEDEX07, France

♮ Dipartimento di Fisica & INFN, Sezione di Torino,
Politecnico di Torino , C. so Duca degli Abruzzi, 24, I-10129 Torino, Italy

ABSTRACT

We propose a universal geometric formulation of gauged supergravity in terms of a
twisted doubled torus. We focus on string theory/M-theory reductions with generalized
Scherk–Schwarz twists residing in the O(n, n)/E7(7) duality group. The set of doubled
geometric fluxes, associated with the duality twists and identified naturally with the em-
bedding tensor of gauged supergravity, captures all known fluxes, i.e. physical form fluxes,
ordinary geometric fluxes, as well as their non-geometric counterparts. Furthermore, we
propose a prescription for obtaining the effective geometry embedded in the string theory
twisted doubled torus or in the M-theory megatorus and apply it for several models of
geometric and non-geometrix flux compactifications.



1 Introduction

Supergravity theories are usually studied as low-energy effective models of String Theory.

Up to now, however, there are by far more possible supergravity realizations than those

explained by String Theory reductions. The higher-dimensional origin of 4-dimensional

supergravity models is especially important if we want to make contact between String

Theory and phenomenology. Understanding which theories can be embedded into String

Theory and which cannot, allows us to select consistent approaches for model building.

Massive deformations of supergravity theories have a prominent position in this analysis.

These theories allow for a stabilization of the moduli fields, which typically plague string

effective theories, and for a non-trivial cosmological constant.

There are known several ways of obtaining these supergravities from String Theory

reductions. Compactifications on group manifolds, or certain coset spaces, give effective

4-dimensional actions that not only reproduce the original vacuum around which one

expanded, but also take into account certain deformations of the geometry of the internal

space in a potential for the scalar fields. In these models, the gauge group of the effective

theory is related to the symmetry group of the internal manifold.

Other approaches leading to gauged supergravities are Scherk–Schwarz reductions

[1], which recently have received a new interpretation as compactifications on twisted

tori [2], and flux compactifications [3]. In these reductions the non-trivial structure

of the effective theory gauge group follows from the couplings of the vector fields to

the expectation values of the higher-dimensional form fields or to the torsion of the

twisted manifold. Despite the great activity in the field, which consists in identifying

and classifying effective supergravities arising from String Theory reductions that use the

above mentioned approaches, it is clear that these cover only a percentage of the possible

4-dimensional realisations.

As often in the past, the use of duality relations on these effective theories and on

the structure of the scalar potentials has revealed a structure larger than expected and

the possibility of deriving more and new supergravity models by employing additional

“non-geometric” fluxes [4]. Although the existence of these fluxes can be argued from

the effective theory data, we still cannot clearly explain their precise higher-dimensional

origin. As the name suggests, these fluxes are often associated with reductions of String

Theory on spaces that are not expected to have a global (or even local) geometric descrip-

tion. For this reason the task of verifying the validity regime of the resulting supergravities

has become extremely challenging. In some cases we don’t even know if there is a good

way to describe String Theory on such backgrounds.

A step forward in trying to understand the origin of these models is given by the

doubled formalism [5]– [9], where, by doubling the coordinates of the internal space,

one can obtain a description of String Theory and its effective models that allow for
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an explicit use of T-duality transformations. The basic idea underlying the doubled

formalism is that, for genuinely stringy backgrounds such as the “non-geometric” ones,

the winding modes of the string play an equally important role as the momentum modes

and one should double the number of coordinates in order to account properly for both.

In this paper we aim at fill the gap existing between gauged supergravity theories and

String Theory by providing a possible scheme for embedding any gauged supergravity

theory with arbitrary gauge group (compatible, of course, with its embedding in the

duality group) into a twisted version of the doubled formalism. This is a generalization

of the Scherk–Schwarz reduction, known also as twisted torus compactification, to the

case of doubled tori. The introduction of twist deformations to the ordinary reduction

on the double torus gives a realization of all possible geometric and non-geometric fluxes,

according to the type of coordinates and generators used in the twist matrices. The

interesting point of this approach is that not only one has information on the effective

theory but also on the compactifying space. We discuss how the ordinary geometric

data can be recovered from the twisted doubled geometry, by projections, and how the

monodromies of the full space affect the global description of the reduced space.

In this paper we mainly focus on the N = 4 models that can be derived by reduction

of heterotic theory on a twisted doubled T
6, models that give rise to effective theories with

gauge groups whose representation on the gauge field strengths is embedded in the O(6, 6)

T-duality group. However, a similar approach may be extended to more general models

that lead to larger gauge groups embedded in the full duality group. For this reason we

also discuss the extension of this approach to M-theory, proposing an embedding of all

possible N = 8 models into a “twisted megatorus” of dimension 56.

Note added: While this paper was in preparation we received the preprint [10] whose

discussion overlaps part of section 2.

2 Scherk–Schwarz on a doubled torus

2.1 Compactifications on twisted tori

In [1], Scherk and Schwarz proposed a reduction scheme to obtain massive deformations

of ordinary Kaluza–Klein reductions of gravity theories on tori by allowing a special

non-trivial dependence of the spacetime fields on the internal coordinates. Since this

dependence has eventually to disappear from the effective theory, it must be related to

some symmetry acting on the lower-dimensional fields.

When reducing a theory of gravity on a n-dimensional torus T
n, there is a natural

SL(n, R) symmetry acting on the fields of the effective action that can be used for such

a purpose. Ordinary Kaluza–Klein expansion around a T
n compactification selects as

2



4-dimensional moduli the fluctuations gij(x) around the flat torus metric1:

ds2 = gµν(x)dxµ ⊗ dxν + gij(x)
(
dyi + Ai

µdxµ
)
⊗
(
dyj + Aj

νdxν
)
. (2.1)

A Scherk–Schwarz reduction selects a different set of moduli, instead. Introducing a

dependence of the fluctuations on the internal coordinates by a twist matrix U i
j(y),

one obtains a new field expansion. For instance, for the metric field we have gkl(x, y) =

g′
ij(x)U i

k(y)U j
l(y). The reduction Ansatz is then realized by an expansion in fluctuations

around a non-trivial metric described by new vielbeins ηi = U i
j(y)dyj:

ds2 = gµν(x)dxµ ⊗ dxν + g′
ij(x)

(
ηi + Ai

µdxµ
)
⊗
(
ηj + Aj

νdxν
)
. (2.2)

These vielbeins describe a space that is a deformation of the original torus and for this

reason such a reduction is also known as “compactification on a twisted torus” [2, 11].

The word “twisted” refers to the twisting of the frames ηi with respect to the usual

coordinate differentials dyi by the matrix U i
j(y). An equivalent way of thinking about

this reduction is as a reduction on an ordinary torus but in the presence of a non-trivial

spin connection condensate, therefore justifying the term “geometric fluxes”.

The requirement that the y-dependance of the full Lagrangian is trivial upon inserting

the reduction Ansatz (2.2) implies an important consistency condition: the vielbeins ηi

describe a group manifold, i.e.

dηi = −1

2
τ i
jk ηj ∧ ηk (2.3)

for constant τ i
jk. As the reduction Ansatz (2.2) suggests, half of the isometry group of this

group manifold, in this case the group of right-translations2, becomes the gauge group of

the effective lower-dimensional theory. Consequently the τ -constants appearing in (2.3)

are the structure constants of the gauge group

[Zi, Zj] = τ k
ijZk. (2.4)

Moreover, twisting the torus induces a cubic potential for the Scherk–Schwarz moduli

fields g′
ij(x) given by [1]

V = 2 τ i
jk τ j

il g
′kl + τ i

jk τm
np g′

img′jng′kp. (2.5)

Formula (2.4) implies that there is a constructive way to define the twist matrices

and hence the reduction Ansatz for a given gauge group G ⊂ SL(n, R). One starts by

selecting a group representative g(y) = exp(yiZi) ∈ G, where Zi are the generators of

the algebra g (2.4). Then one extracts the vielbeins ηi by inspection of the left-invariant

1Zero fluctuation of the metric field means gij(x) = δij .
2Recall that the left-invariant vielbeins on a group manifold are dual to the left-invariant Killing

vectors that generate right translations.
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Maurer–Cartan form Ω = g−1dg = ηiZi. Finally, in order for the theory to be consistently

defined on a compact space, one considers only groups such that a left quotient Γ\G with

respect to the compact subgroup Γ = G(Z) is possible.

When reducing string theory in such a way, one has to take into account other space-

time fields besides the metric [1, 2, 11]. The same type of reduction can be extended to all

other string theory fields, like the universally present 2-form field B or other higher rank

form fields. The resulting supergravity theory is still going to be a gauged supergravity,

its gauge group, however, is not going to be just G due to the existence of extra vector

fields coming from the reduction of the form fields (for instance Bµi from the universal

2-form). Typically, the twisting induces a non-abelian action of the gauge symmetries

also on them and therefore the final gauge group will be generically different than G
[1, 2],[12]– [20],[11].

The previous remark explains why a collective description of the lower dimensional

moduli in a single generalized metric is desirable. A construction similar to the above

one for this generalized metric would give rise immediately to an effective supergravity

theory with the right gauge group described by the group manifold on which one reduces

the original theory. In the following section we make a proposal on how to obtain such a

description from twisting the doubled torus of [6].

2.2 Twisting the doubled torus

When reducing string theory to four dimensions one has several moduli fields coming

from different sources: the metric as well as the various form fields appearing in the

ten-dimensional theory. A collective description of them in a unique generalized metric

would be desirable, but for simplicity one can focus first only on the common sector of all

string theory models described by the metric and the B-field system. In the reduction of

the common sector to 4 dimensions one finds that the moduli fields describe the following

non-linear σ-model [21]:
SO(6, 6)

SO(6)× SO(6)
. (2.6)

The 36 degrees of freedom parametrizing the above coset consist of the fluctuations

of the metric gij and of the 2-form field Bij in the internal space. These can be collected

in a suggestive O(6, 6) matrix

HIJ =

(
gij −Bikg

klBlm Bikg
kl

−gjkBkl gij

)
. (2.7)

This matrix has the right properties to be interpreted as the generalized metric of a

doubled internal space with coordinates

Y
M = {yi, ỹi},
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so that SO(6, 6) has a natural action on them [5]. In the case of torus compactifications, a

generalized world-sheet action has been proposed for strings living in this doubled space

[6, 8].

In this doubled formalism, the SO(6, 6) group has a clear interpretation as T-duality

transformations on the background and the doubled coordinates have also an obvious

interpretation as coordinates on the original and the T-dual circles of the internal T
6.

Since H defined in (2.7) appears in this formalism as a metric for the doubled torus it is

somehow natural to interpret the effective 4-dimensional theories coming from this type

of compactifications as reductions on a doubled internal space:

dS2 = HMN(B(x), g(x))
(
dY

M + AM
µ dxµ

)
⊗
(
dY

N + AN
ν dxν

)
. (2.8)

The vector fields AM
µ are a collection of those coming from the metric and the B-field:

AM
µ = {gi

µ, Bµi} and there is a natural action of the duality group on them. The resulting

effective theory is an ordinary (i.e. non-gauged) supergravity with gauge group G =

U(1)12.

Now, if we draw a parallel to the previous discussion where a Scherk–Schwarz reduc-

tion led to a non-abelian gauge group G by introducing a twist matrix between the metric

moduli and the differential on the internal space, we are tempted to generalize (2.8) by

introducing a twisted doubled torus :

dS2 = HMN (B(x), g(x))
(
UM

P (Y)dY
P + AM

µ dxµ
)
⊗
(
UN

Q(Y)dY
Q + AN

ν dxν
)
. (2.9)

In general, these twist matrices U may depend on both the ordinary and the dual coordi-

nates and soon we will see how this may lead to deformations of the original torus which

may not have a global (or even a local) geometric description.

As before, we expect that this explicit dependence cancels in the effective theory

provided these twists define proper generalized vielbeins on T ∗(T12)

E
M = UM

N(Y) dY
N , (2.10)

such that

dE
M = −1

2
TNP

M
E

N ∧ E
P (2.11)

for constant T . These constants can be viewed as a sort of “generalized geometric fluxes”

and it is natural to expect that they will include geometric fluxes, ordinary physical form-

fluxes, but even the “non-geometric” fluxes proposed in [22, 23, 24, 25, 4]. Therefore,

it should be identified with the embedding tensor of gauged supergravity. One can also

motivate the twisting of the doubled torus by comparing the formula (2.5) for the potential

of a Scherk–Schwarz reduction on a standard twisted torus to the scalar potential of a

generic gauged supergravity, which schematically reads

V = 2 T I
JK T J

ILHKL + T I
JL T M

NP HIMHJNHKP . (2.12)
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We see that the generalized metric indeed plays the role of metric moduli for the twisted

doubled torus and the embedding tensor corresponds to geometric flux for the doubled

torus.

The 4-dimensional fields encoded in (2.7) can be interpreted as the fluctuations around

a generalized background metric

HMN(Y) = UP
M(Y)δPQUQ

N(Y), (2.13)

where δKL = diag{+ + . . . +} defines the SO(6)×SO(6) invariant metric. As in the case

of the ordinary Scherk–Schwarz reduction, the vielbeins (2.10) can be viewed as vielbeins

on a group manifold G, properly compactified by the action of a discrete group Γ = G(Z).

In this case, however, the group G is the full gauge group of the effective theory, since

the action on the vector fields contained in (2.9) includes all the vectors of the effective

theory.

At this point it is natural to ask ourselves what kind of groups can be used in this

reduction. By analogy with the ordinary Scherk–Schwarz reduction one would expect

G ⊂ GL(12, R). On the other hand, since the actual duality group is SO(6,6) one would

expect G ⊂ SO(6,6). The correct answer is in between. As we will explain in the next

section, the faithful representation of the gauge group realized on the vector fields of any

gauged supergravity may actually correspond to an algebra that is larger than the one

realized on the curvatures. Therefore, the structure of the gauge group read from the

commutators on the vector fields may be larger than the one that has to be embedded in

the O(6,6) duality group, as would naturally follow by the Gaillard–Zumino prescription

[26]. This interesting feature is actually true in full generality, even for ordinary Scherk–

Schwarz reductions, and therefore we discuss it in the next section without requiring at

first any link to the doubled formalism.

2.3 Fluxes and symplectic embedding

When performing Scherk–Schwarz compactifications there is often a mismatch between

what is called the gauge group of the effective theory and the group embedded in the du-

ality symmetries group. The gauge group obtained from Scherk–Schwarz reductions can

be read from the actions on the vector fields, which should form a faithful representation

of this group. If we call X̂M the generators of the corresponding algebra in the faithful

representation and XM those in the adjoint, the latter being embeddable in the duality

algebra, one sees that the group generated by XM is a contraction of that generated by

X̂M . More precisely, the abelian ideal I comprising of generators which act trivially on

the curvatures have been removed:

G̃ = G/I. (2.14)

To be more explicit, take the action of the gauge transformations on the vector fields
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and their covariant field strengths:

δǫA
Λ = dǫΛ − T Λ

ΣΓǫΣAΓ, (2.15)

δǫF
Λ = −T Λ

ΣΓǫΣF Γ. (2.16)

If one computes the commutator of two such transformations on the gauge vectors, form-

ing a faithful representation of the gauge group, gets

[δǫ1 , δǫ2 ] A
Λ = δ[ǫ1,ǫ2]A

Λ, (2.17)

and therefore one always obtains a non-zero result for non-commuting generators. On

the other hand, if one takes the same commutator on the field-strengths one gets a zero

on the right hand side any time the commutator closes on a generator of X̂ which is not

in X, i.e. any generator which has a trivial action on the curvatures.

Let us illustrate the above point by considering the case of the Heisenberg group

[
X̂1, X̂2

]
= X̂3. (2.18)

This can be realized on the gauge field strengths as

δA1 = dǫ1, (2.19)

δA2 = dǫ2, (2.20)

δA3 = dǫ3 + ǫ1A2 − ǫ2A1. (2.21)

It is trivial to show that the commutator (2.18) on A3 correctly gives the action of X̂3 on

the same vector. This action is faithful only because of the inhomogeneous term in the

transformation rules of the connections. On the field strengths one gets

δF 1 = 0, (2.22)

δF 2 = 0, (2.23)

δF 3 = ǫ1F 2 − ǫ2F 1. (2.24)

Despite the non-trivial action on F 3, the commutator of the X1 and X2 generators on F 3

closes to zero giving

[X1, X2] = 0. (2.25)

The action of X3 is trivial X3 = 0. This is the adjoint action and for this action the

generators commute and can be embedded in the duality group. This explains why often

the full gauge group G cannot be embedded in the duality group. Only a contraction,

where the generators of the ideal I have been set to zero, can be effectively embedded

in the duality group. The most extreme manifestation of this phenomenon is the case
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of an abelian gauge group U(1)12; obviously the faithful representation of that group

cannot be embedded in the fundamental of O(6,6) whereas the adjoint one, consisting

of trivial generators equal to zero, admits also a trivial embedding. More interesting

gauge algebras exhibiting this property were found in flux compactifications of String or

M-theory [12, 13, 15].

Coming back to the doubled formalism, all of the above applies also to the twisted

doubled torus which is a discrete quotient Γ\G of a group manifold G. The group G may

be non-semisimple and thus its adjoint representation may not be faithful (for instance,

as we saw above, if the corresponding Lie algebra g has central elements, the adjoint

representation of these would be trivial). This affects the construction of the vielbein

(2.10) on G as follows.

Let X̂M be generators of the Lie algebra g of G in a faithful representation, satisfying:

[X̂M , X̂N ] = TMN
P X̂P . (2.26)

XM denote a basis of generators of g in the adjoint representation:

(XM)N
P = TNM

P . (2.27)

The group G is the gauge group of the effective gauged supergravity and therefore the

adjoint representation of g has to be embedded in the fundamental representation of the

duality algebra o(6, 6). This means that the XM generators can be expressed as linear

combinations of the generators tα of the fundamental representation of the duality group:

XM = θM
α tα (2.28)

through the embedding tensor θM
α. This requirement implies that on the tangent space

of G one can define an O(6, 6) invariant metric I:

I =

(
0 16

16 0

)
(2.29)

The existence of this metric will be crucial when we will try to give an ordinary spacetime

interpretation to the internal manifold.

It can now be seen how the doubled vielbein follows from a generic element of G that

is constructed from the faithful representation (2.26):

g(Y) = eY
M bXM . (2.30)

The left-invariant one-form determines the vielbein E
M :

g−1dg = E
M X̂M = UN

M X̂N dY
M . (2.31)
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Moreover, from the same construction one can also determine explicitly this vielbein and

especially the “twist matrix” UN
M(Y). It is very interesting to notice that it can be

expressed in terms of the generators in the adjoint representation XM only:

UN
M =

(
1 +

∞∑

k=1

1

(k + 1)!
(YP XP )k

)N

M . (2.32)

2.4 Ordinary geometry from a doubled space

So far we mainly discussed how a twisted version of the doubled geometry may lead to

general gauged supergravities that include all known models. In this section we want to

address the problem of understanding the geometry described by the doubled vielbeins

E
M in terms of an ordinary 6-dimensional space.

Before the twisting, the doubled space is that of a torus T
12 that is a trivial fibration of

one T
6 over another T

6. When the twist is introduced, the new doubled space described

by the HMN metric is a (compact) group manifold of dimension 12. However, this total

space can still be described as a fibration of a 6-dimensional space on another, provided

we manage to describe properly the split into a base and fiber. The existence of an

O(6,6)-invariant metric IMN (2.29) on the tangent space of M12 = Γ\G comes to the

rescue3. As we saw in (2.28), the adjoint representation of the algebra generating the

group manifold G has to be embedded in the fundamental representation of the duality

group. This means that the vielbeins, which transform in the co-adjoint of G, transform

also in the (dual of the) fundamental of O(6, 6). Then, the O(6, 6) invariant metric can

be used to define an inner product on the cotangent space ofM12

〈EM , EN〉 = IMN , (2.33)

so that locally T ∗(M12) splits into the sum of a tangent and cotangent space on a 6-

dimensional space

T ∗(M12) = T ∗(M6) + T (M6).

The inner product (2.33) yields an almost product structure that for twists in O(6,6)

can be applied also to the basis of differentials dY. Using (2.10) we can see that the inner

product inherited by the basis of differentials is

〈dY, dY〉 = U−1I
(
U−1

)T ≡ γ−1(Y). (2.34)

If the twists U are in O(6,6) the metric γ is actually identical to I. This implies that one

can really consider the differentials of the dual coordinates dỹi as the basis of vectors on

3Notice that we are mostly interested in the case d = 6 but the discussion below is general and does
not depend on the actual value of d.
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∂
∂y

∂
∂ỹ

〈
∂
∂y

, dy ≡ ∂
∂ỹ

〉
= 1

T (T2)

Figure 1: The tangent space on a torus T (T2) = {λ ∂
∂y

+ µ ∂
∂ey

, λ, µ ∈ R} splits into the

tangent space on its base circle T (S1) = {λ ∂
∂y

, λ ∈ R} plus its cotangent space T ∗(S1) =

{λdy ≃ λ ∂
∂ey

, λ ∈ R} when there is a natural O(1,1) inner product pairing ∂
∂y

and ∂
∂ey

.

the tangent space of the manifoldM6 described by the yi coordinates:

〈dyi, dỹj〉 = δi
j ⇒ dỹi =

∂

∂yi
. (2.35)

Moreover, if U ∈O(6,6) the doubled vielbeins can be put in the triangular form

E =

(
dyiea

i

dỹi(e
−1)i

a + dyjBji(e
−1)i

a

)
(2.36)

by using an O(6)×O(6) local transformation. The doubled space can then be interpreted

as following from an “ordinary” background described by a metric and a B-field given

by (2.36). This does not yet imply that a well-defined global geometric picture exists,

because, as we will see later, global issues may spoil this description. Anyway, it is impor-

tant to understand for which group manifolds we have such a description and therefore

which gauged supergravities can be lifted to string theory using this type of backgrounds.

Upon inspecting (2.32), one realizes that for a generic choice of G, the matrix U is

not the exponential of generators of O(6, 6) and therefore it is not a group element of

O(6, 6). However, there are instances where the right hand side of (2.32) becomes an

O(6, 6) group element. For example, if the XM generators (in the adjoint representation)

are nilpotent of order 2, namely XM · XN = 0, then U can be trivially written as an

O(6, 6) group element

U = 1 +
1

2
Y

MXM = e
1

2
Y

MXM . (2.37)
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There may be other non-trivial solutions but it is clearly difficult to provide examples

just by analyzing (2.32). It is therefore better to have an intrinsic characterization of the

situations in which U ∈O(6,6), possibly after reparametrizations of Y. This is provided

by the following criterion: the twist matrix U can be brought to an O(n, n) matrix through

a reparametrization if and only if the Riemann tensor constructed out of the metric γMN

defined in (2.34) vanishes:

RMNP
Q(γ) = 0. (2.38)

First of all, it should be clear that this Riemann tensor is not related to the curvature

of the group manifold computed from the H metric, which follows from E
M ⊗ E

NδMN ,

instead. Then, whenever the Riemann tensor constructed from the metric γMN is vanish-

ing, the space defined by this metric is flat and therefore there is a change of coordinates

which brings γMN = IMN . The important ingredient is that for the doubled space de-

scribed by the discrete quotient of the group manifold G this computation can be done

without any explicit reference to the metric γ. Since a group manifold is homogeneous, its

Riemann tensor is constant in rigid indices and can be expressed in terms of the structure

constants of the group itself. If the structure constants are denoted by TMN
P = −XMN

P ,

the doubled vielbeins satisfy

dE
P +

1

2
TMN

P
E

M ∧ E
N = dE

P + ωN
P ∧ E

N = 0 . (2.39)

The spin connection then has the form

ωM,N
P =

1

2

(
TMN

P + IPP ′ IMM ′TP ′N
M ′

+ IPP ′ INM ′TP ′M
M ′

)
=

1

2
TMN

P , (2.40)

where the last equality follows from the adjoint representation being embedded in O(6,6),

and the Riemann tensor reads:

RM
N = dωM

N − ωM
P ∧ ωP

N = −1

2
RPQ,M

N
E

P ∧ E
Q ,

RPQ,M
N = ωPM

R ωQR
N − ωQM

R ωPR
N + TPQ

R ωRM
N (2.41)

=
1

4
TPQ

RTRM
N .

This allows a classification of the group manifolds that can be brought to the form of an

ordinary doubled torus geometry with twist matrices that can be deduced from a metric

and B-field, just by using the intrinsic characterization given by its structure constants.

It is actually striking that only nilpotent groups of order two satisfy the above relation

for any choice of the indices: TMN
PTPQ

R = −(XMXQ)N
R = 0.

In the remainder of this section we come back to the examples where the product of the

differentials (2.34) is not constant and therefore cannot be equal to I. When this happens,

we can still try to make sense of the resulting space by obtaining a vielbein representation
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of the form (2.36). When 〈dyi, dỹj〉 = δi
j, the identification of the differentials of the

dual coordinates as the dual basis to {dyi} gives a proper coordinate basis on the base

space for its tangent and cotangent space. If, on the other hand, the inner product

〈dY
M , dY

N〉 = γMN(Y) gives a coordinate dependent result, with a metric γ that cannot

be brought to a constant form by a coordinate transformation, the splitting of T ∗(M12)

into T ∗(M6) + T (M6) has to be done pointwise. This means that the definition of the

vector field basis {∂i} in terms of {dỹi} has to have a coordinate dependent form. If, for

instance, the metric γ is block-diagonal but non-trivial, i.e.

γ =

(
0 γi

j(Y)

γi
j(Y) 0

)
, (2.42)

one can define

∂i ≡ (γ−1)i
jdỹj, (2.43)

so that 〈
dyi,

∂

∂yj

〉
= δi

j. (2.44)

Defining E
M in terms of the {dyi, ∂i} basis gives an O(6,6) matrix which, therefore, can

be put in a triangular gauge as

E =




dyiea
i

(e−1)i
a

∂

∂yi
+ dyjBji(e

−1)i
a


 . (2.45)

We will see later one such example where we will double the twisted torus corresponding

to the flat group gauging on an ordinary T
6.

In order to complete the interpretation of the base space geometry, besides global

issues which will be discussed in the next section, one has still to make sense of the

dependence on the dual coordinates. The explicit presence of dual coordinates ỹi in

the resulting metric and B-field may be a signal that we are actually dealing with a

non-geometric space. From the point of view of the base space we expect these dual

coordinates to be interpreted as non-local loop coordinates. However, it may happen that

a gauge transformation allows us to get rid of them when going to the triangular gauge.

Also, as we will see in the next section, we can consider setting them to zero, provided we

take into account the effect of the monodromies involving them as an action on the fields

of the effective theory. After all, the ordinary space is obtained by a projection from

the global doubled torus to the 6-dimensional base parametrized by the yi coordinates

and whose cotangent space is spanned by the Ei vielbeins. Hence, the projection is also

performed by setting ỹi to zero. We refer the reader to the next section for a concrete

description of this mechanism, while we hope to return on this issue with more details

elsewhere.
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2.5 Global description

In the previous subsections we described how the doubled geometry can be interpreted

as an ordinary 6-dimensional background with a metric and a B-field, provided certain

conditions are met. In this section we want to discuss the effects of global constraints on

the simple description of the doubled space given in the previous subsections.

First of all, in order to have a globally well-defined vielbein on the full compact space

Γ\G, one needs to identify the coordinates as

Y ∼ σL(g, Y), (2.46)

where σL(g, Y) is the left action of an arbitrary group element g ∈ Γ (generated by right

invariant vector fields). Since E are left-invariant

E(σL(g, Y)) = E(Y). (2.47)

In full generality, such an identification will mix the coordinates yi with the dual ones ỹi.

Clearly, when trying to obtain a description in terms of an ordinary twisted torus metric

with a non-trivial B-field the dual coordinates should disappear and one should set them

to zero in the process of projecting to the base space. On the other hand, this procedure

may not be strictly compatible with the identifications obtained in (2.46). However we

can still obtain a consistent picture by considering the action of the monodromy group

for fixed dual coordinates and then take into account its effect on the base space by

translating the action on the coordinates into an action on the fields of the effective

theory.

The generalized vielbein E transforms in the co-adjoint representation of G and this

is what defines the monodromy of the compact manifold Γ\G. If we denote by σR(g, Y)

the right action of the group element g ∈ G on Y generated by the left-invariant vector

fields, the vielbein transforms as

E(σR(g, Y))M = gN
M

E(Y)N , (2.48)

where gN
M ∈ O(6, 6). We recall that the adjoint representation of G is embedded in

O(6, 6) as described in (2.28). For an infinitesimal transformation, parametrized by ǫM ,

the action on Y
M is described by the corresponding Killing vectors

Y
M → Y

′M = Y
M + δY

M = Y
M + ǫN (U−1)N

M . (2.49)

Its effect on E
M is the following:

E
M(Y′) = U(Y′)M

N dY
′N = E

M(Y)− ǫN TNP
M

E(Y)P , (2.50)

which is the infinitesimal expansion of (2.48). An easy way to check this is to contract

the Maurer-Cartan equation for E
M by ǫM X̂M and use ι bXM

E
N = δN

M :

δE
M = ιǫN bXN

dE
M = ιǫN bXN

(
−1

2
TIJ

M
E

I ∧ E
J

)
= −ǫI TIJ

M
E

J . (2.51)
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The monodromies following by completing the circle on the regular coordinates yi ∼
yi +1 can then be compensated by an action on the g and B fields. The twisted reduction

Ansatz (2.9)

dS2 = HMN(x)
(
E

M + AM
)
⊗
(
E

N + AN
)

shows that an action of a g ∈ Γ on the coordinates Y → σR(g, Y) can either be seen as

an action on the doubled vielbeins (2.48), or as an action on HMN

HMN (gij(x), Bij(x))→ gM
P HPQ (gij(x), Bij(x)) gN

Q, (2.52)

and hence on the 4-dimensional fields gij and Bij.

This also provides a criterion for characterizing a compactification as globally geo-

metric, locally geometric or non-geometric. We know that the generic action of these

monodromies is in O(6, 6) and we can split them in the three types of transformations

which can be interpreted as a vielbein redefinition (i.e. coordinate transformation), a B-

field gauge transformation or a so-called β transformation (which includes T-dualities):

g =

(
A β

Θ D

)
(2.53)

In order to recover the explicit form of the moduli transformations it is useful to rewrite

the action (2.52) as an action on the matrix

Mij = gij + Bij. (2.54)

This is realized as the fractional transformation

M → (AM + Θ)(βM + D)−1. (2.55)

It is then clear that a Θ action is simply a gauge transformation B → B + Θ, while

non-geometric transformations mixing g and B follow from any non-vanishing β. So,

the group G defines a geometric compactification if and only if g does not involve β-

transformations. This is certainly the case if the matrix ǫM TMN
P has this form, namely

if

ǫM TMN
P ∈ gl(n, R) ⋉ {tij} ⊂ o(6, 6) , (2.56)

where the generators tij are defined as follows

tij =

(
0 0

δij
kℓ 0

)
. (2.57)

From the coordinate point of view, we can see that a change of the dual coordinates by

a function of the base coordinates corresponds to a gauge transformation of the B-field:

δY
M = {0, λi(y)} ⇒ δBij = ∂[iλj](y). (2.58)

14



Diffeomorphisms in the base space must be related to similar transformations on the

dual space (non-trivial A matrices in (2.53) acting on both sectors). Finally, non-local β

transformations are related to coordinate changes where the base coordinates are changed

by functions of the dual ones

δyi = f i(ỹ). (2.59)

We will see in the next section various examples where these prescriptions are explicitly

realised.

In this framework we can also discuss T-duality. The most general global transfor-

mation of the vielbein basis E
M which leaves the inner product (2.33) has to belong to

O(6, 6):

∀ρ ∈ O(6, 6) : E
′M(Y′) = ρN

M
E

N(Y′) . (2.60)

The new vielbein will now satisfy a different Maurer-Cartan equation

dE
′M = X ′

NP
M

E
′N ∧ E

′P , (2.61)

where

X ′
NP

M = (ρ−1)N
I (ρ−1)P

J ρK
M XIJ

K . (2.62)

ρ represents the effect of a T-duality transformation and if it is not in G, the structure

of the gauge group will change and thus the properties of the compactification manifold.

In the next section we shall discuss four T-dual compactifications in detail.

3 String theory reductions

In this section we give several examples where we can apply the general theory described in

the previous section. First of all we consider one example satisfying the condition (2.38),

so that we have a clear description in terms of a metric and B-field, without introducing a

non-coordinate basis for the tangent space of the doubled manifold. This is the toy model

of a non-geometric compactification uncovered in [27] through T-dualities4. Then we will

discuss how a non-trivial geometric background, like the flat group compactification of

[1], can be described by a non-trivial twisted doubled torus.

3.1 Fluxes in a doubled 3-torus reduction

The first model is based on a 3-torus, so that its double is a 6-torus carrying a natural

action under the O(3,3) duality symmetry. We can always think of this as a special case

4An interesting alternative interpretation of this model in terms of generalised complex geometry was
given in [28]. Its possible relation with the T + T ∗ splitting was also discussed in [29].
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of a 6-torus where 3 directions are kept fixed. The starting point is a flat T
3 with a

non-trivial H-flux on the global 3-cycle of T
3. This has a clear geometric description and

can be constructed as a twisted doubled torus by the quotient of a group manifold G
corresponding to the generalized Heisenberg algebra:

[Ẑi, Ẑj] = hijkX̂
k, [Ẑi, X̂

j] = 0 = [X̂ i, X̂j]. (3.1)

Then we apply T-duality transformations along the various circles of the original 3-torus

showing that the chain of dualities

hxyz
ρz←→ τ z

xy

ρy←→ Qzy
x

ρz←→ Rxyz (3.2)

works at the level of the gauged supergravity algebra and the corresponding doubled

torus formulation.

Duality transformations have a non-trivial action on the vielbeins

E
′ = ρU(Y′)dY

′, for Y
′ = ρY. (3.3)

Obviously such an action may transform the vielbeins away from the triangular gauge.

However, for this example the metric γ in (2.34) is flat γ = I and therefore there is

always an action U ′ = kU by a local O(3) × O(3) transformation k that brings it back

to a triangular form. Therefore, the new generalized vielbein can always be interpreted

in terms of a 3-dimensional vielbein ea
i and a B-field Bij.

A strict application of Busher’s rules would require that the generalized metricH does

not depend on the coordinates corresponding to the directions on which one is acting.

Therefore, our application of these duality transformations is done at a formal level, but

the outcome gives a picture consistent with the expectations. The T-dualities along the

z, y and x directions of (3.2) are realized by the following matrices:

ρz =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0




, ρy =




1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1




, ρx =




0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,

(3.4)

which belong to the compact subgroup of the full T-duality group.

It is interesting to point out that from the gauged supergravity point of view the

compact subgroup of the full duality group is the group of duality transformation that

leaves any vacuum of the theory invariant. This means that the resulting gauged super-

gravities give rise to vacua with the same properties, for instance that of having a certain

number of moduli fixed. However, the higher dimensional interpretation changes. This

implies that starting from a vacuum with all moduli stabilized, one can generate other

vacua with all moduli stabilized in this way, therefore obtaining new higher-dimensional

backgrounds with this same property.
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3.1.1 NS-NS h-flux

As in [27] the starting point is a standard flat 3-torus endowed with constant NS-NS

flux5. If {x, y, z} are the coordinates on T
3 periodically identified with period R, the cor-

responding doubled torus has coordinates Y ≡ {x, y, z, x̃, ỹ, z̃} and {x̃, ỹ, z̃} are identified

with period 1/R. In the following we will take R = 1 for simplicity. The metric and

B-field read

ds2 = dx2 + dy2 + dz2 B = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy (3.5)

and from these data we can immediately write down the generalized vielbein Uh and the

corresponding generalized metric Hh = UT
h Uh on the doubled torus

Uh =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −z y 1 0 0
z 0 −x 0 1 0
−y x 0 0 0 1




, (3.6)

Hh =




1 + y2 + z2 −xy −xz 0 z −y
−xy 1 + x2 + y2 −yz −z 0 x
−xz −yz 1 + x2 + y2 y −x 0

0 −z y 1 0 0
z 0 −x 0 1 0
−y x 0 0 0 1




. (3.7)

The generalized coframe reads

E1 = dx, E2 = dy, E3 = dz,

Ẽ1 = dx̃− zdy + ydz, Ẽ2 = dỹ + zdx− xdz, Ẽ3 = dz̃ + xdy − ydx,
(3.8)

and we can verify that they satisfy the following Maurer–Cartan equations

dEi = 0, dẼi = −1

2
hijkE

jEk, (3.9)

with h123 = −2. These structure equations imply that the doubled torus is twisted and

that at least locally is a group manifold. The corresponding Lie algebra is spanned by a

set of generators {Ẑi, X̂
i} obeying the following commutation relations

[Ẑi, Ẑj] = hijkX̂
k, [Ẑi, X̂

j] = 0, [X̂ i, X̂j] = 0, (3.10)

which is exactly the gauge algebra of a string compactification on a 3-torus with constant

flux hijk. The gauge generators Ẑi that originate from the metric are associated with the

5We should mention that such a background is not a solution of the equations of motion, however it
can be promoted to a solution if a non-trivial dilaton is present or if we generalize it to six dimensions
and turn on appropriate fluxes.

17



vielbeins Ei while the dual vielbeins Ẽi correspond to the gauge generators X̂ i that come

from the reduction of the antisymmetric tensor. The X i generators are central charges

and hence they have zero action on the curvature field strengths (X i = 0).

The first observation here is that a different choice of gauge for the B-field, for in-

stance B = 3xdy ∧ dz, would lead to a generalized coframe that doesn’t satisfy the

expected Maurer–Cartan equations. In particular the structure constants are not fully

antisymmetric. However, consistency of the gauging implies that the metric I is an in-

variant metric of the gauge algebra and hence the structure constants are always fully

antisymmetric. The relation between the two choices of B is a gauge transformation

dΛ = d(xy) ∧ dz − d(xz) ∧ dy, which is also an element of O(3,3)

Θ =




1
1

1
z −y 1

−z −2x 1
y 2x 1




(3.11)

that can be applied to the right of (3.6) to recover the non-symmetric form of the B-field.

A second observation concerns the identifications that make the vielbeins (3.8) globally

well-defined. They are

(x, ỹ, z̃) ∼ (x + 1, ỹ + z, z̃ − y),

(y, x̃, z̃) ∼ (y + 1, x̃− z, z̃ + x),

(z, x̃, ỹ) ∼ (z + 1, x̃ + y, ỹ − x),

x̃ ∼ x̃ + 1,

ỹ ∼ ỹ + 1,

z̃ ∼ z̃ + 1,

(3.12)

and we see that the existence of the non-trivial B-field is encoded in the redefinition of the

dual coordinates by the actual coordinates, when the latter are shifted. In particular, we

can interpret the monodromies on the dual coordinates as actions on the effective theory

fields and check that this compactification is a well defined geometric compactification

according to the discussion of section 2.5. This follows from the fact that the embedding

of the gauge generators in O(3,3) is given by Zi = −hijk tjk and corresponds to a Θ

transformation. Actually, we can explicitly see that the action of the monodromy on the

x, y or z coordinate has to be related to a B-field gauge transformation, signalled by the

corresponding action on the dual coordinates. For instance

x ∼ x + 1, δẼ2 = E3, δẼ3 = −E2, (3.13)

can be interpreted as Byz → Byz − 1. In this way we recover that when going around

the S
1 parameterized by x one has to perform a gauge transformation of the B-field to
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compensate the change in (3.13)

x ∼ x + 1, B ∼ B − dy ∧ dz. (3.14)

Similar monodromy relations are obtained for the y and z coordinates.

3.1.2 Geometric τ flux

The first duality transformation is taken along the z direction. The new vielbein is

Uτ = ρzUhρz and it reads

Uτ =




1 0 0 0 0 0
0 1 0 0 0 0
−y x 1 0 0 0
0 −z̃ 0 1 0 y
z̃ 0 0 0 1 −x
0 0 0 0 0 1




. (3.15)

The corresponding doubled coframe is given by

E1 = dx, E2 = dy, E3 = dz + xdy − ydx,

Ẽ1 = dx̃− z̃dy + ydz̃, Ẽ2 = dỹ + z̃dx− xdz̃, Ẽ3 = dz̃,
(3.16)

and the associated Maurer–Cartan equations are, as expected,

dEi = −1

2
τ i
jkE

j ∧ Ek, dẼi = τ k
ijE

j ∧ Ẽk, (3.17)

with τ 3
12 = −2. Again the corresponding Lie algebra matches that obtained from a string

theory reduction with geometric flux τ 3
12:

[Ẑi, Ẑj] = τ k
ijẐk, [Ẑi, X̂

k] = −τ k
ijX̂

j, [X̂ i, X̂j] = 0. (3.18)

The coframe is well-defined if we impose the following global identifications

(x, ỹ, z) ∼ (x + 1, ỹ + z, z − y),

(y, x̃, z) ∼ (y + 1, x̃− z, z + x),

z ∼ z + 1,

x̃ ∼ x̃ + 1,

ỹ ∼ ỹ + 1,

(z̃, x̃, ỹ) ∼ (z̃ + 1, x̃ + ỹ, ỹ − x̃).

(3.19)

In this case the monodromies on the base “geometric” coordinates mix them, as expected

for an ordinary twisted torus. We can actually read from (3.16) the corresponding metric

and B field

ds2 = dx2 + dy2 + (dz − ydx + xdy)2, B = z̃dx ∧ dy. (3.20)
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When projecting to the base space at z̃ = 0, we see that we obtain a simple globally well

defined twisted torus. Once more this was expected to be geometric, by inspection of

the embedding of the generators in the duality group. The monodromies are obtained by

ǫiZi + ǫiX
i = ǫiτ k

ijt
j
k + ǫiτ

i
jkt

jk and they are of the form (2.56). The rotation on the dual

coordinate z̃ has to be done along with a gauge transformation B ∼ B− dx∧ dy. In any

case everything looks safely geometric.

Also, this background is obviously related to the original T-dual one, but with the

non-symmetric B-field gauge, by a transformation ρzΘρz. This new transformation is not

a pure gauge anymore. However it leads to the expected purely geometric background

without any dependence on the dual coordinates.

3.1.3 Locally geometric Q-flux

The application of a second T-duality along y gives a new generalized vielbein UQ =

ρyUτρy:

UQ =




1 0 0 0 0 0
z̃ 1 0 0 0 −x
−ỹ 0 1 0 x 0
0 0 0 1 −z̃ ỹ
0 0 0 0 1 0
0 0 0 0 0 1




(3.21)

and the associated coframes read

E1 = dx, E2 = dy + z̃dx− xdz̃, E3 = dz + xdỹ − ỹdx,

Ẽ1 = dx̃− z̃dỹ + ỹdz̃, Ẽ2 = dỹ, Ẽ3 = dz̃,
(3.22)

which satisfy the Maurer–Cartan

dEi = −Qij
k Ẽj ∧ Ek, dẼi =

1

2
Qjk

i Ẽj ∧ Ẽk, (3.23)

with Q23
1 = −2. This is indeed the correct gauge algebra in the presence of Q-flux:

[Ẑi, Ẑj] = 0, [Ẑi, X̂
j] = −Qjk

i Ẑk, [X̂ i, X̂j] = Qij
k X̂k. (3.24)

In this case, the doubled-vielbeins are not in the right triangular form, needed to read

the actual metric and B-field. This is achieved by acting on (3.21) from the left with the

following O(3) × O(3) matrix

k2 =




1 0 0 0 0 0
0 1√

1+x2
0 0 0 x√

1+x2

0 0 1√
1+x2

0 − x√
1+x2

0

0 0 0 1 0 0
0 0 x√

1+x2
0 1√

1+x2
0

0 − x√
1+x2

0 0 0 1√
1+x2




, (3.25)
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which leads to

k2UQ =




1 0 0 0 0 0
z̃√

1+x2

1√
1+x2

0 0 0 0

− ỹ√
1+x2

0 1√
1+x2

0 0 0

0 0 0 1 −z̃ ỹ

− xỹ√
1+x2

0 x√
1+x2

0
√

1 + x2 0

− xz̃√
1+x2

− x√
1+x2

0 0 0
√

1 + x2




. (3.26)

The identifications that make the space globally defined are

(x, y, z) ∼ (x + 1, y + z̃, z − ỹ),

y ∼ y + 1,

z ∼ z + 1,

x̃ ∼ x̃ + 1,

(ỹ, x̃, z) ∼ (ỹ + 1, x̃− z̃, z + x),

(z̃, x̃, y) ∼ (z̃ + 1, x̃ + ỹ, y − x).

(3.27)

We see here for the first time an identification that shifts the ordinary coordinates by a

dual one when identifying a base coordinate. This means that when identifying x ∼ x+1

one has to also identify properly the B-field and the metric. The action on the vielbeins

(3.22) is indeed

x ∼ x + 1, δE2 ∼ Ẽ3, δE3 ∼ −Ẽ2 (3.28)

and this is a β transformation of the form

β =




1
1

1
1

−1 1
1 1




. (3.29)

As explained in section 2.5 we can read the transformation required on the moduli fields
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by the action on the matrix M = g + B. The result is that

gxx → 1
∆

(gxx(1−Byz)
2 + 2Bxzgxy − 2BxzByzgxy − 2Bxygxz + 2BxyByzgxz

+B2
xzgyy − g2

xzgyy − 2BxyBxzgyz + 2gxygxzgyz − gxxg
2
yz + B2

xygzz

−g2
xygzz + gxxgyygzz

)
,

gxy →
gxy(1−Byz)−Bxygyz + Bxzgyy

∆
, Bxy →

Bxy(1−Byz)− gxygyz + gxzgyy

∆
,

gxz →
gxz(1−Byz) + Bxzgyz −Bxygzz

∆
, Bxz →

Bxz(1−Byz) + gxzgyz − gxygzz

∆
,

gyz →
gyz

∆
, Byz →

−Byz(1−Byz)− g2
yz + gyygzz

∆
,

gyy →
gyy

∆
, gzz →

gzz

∆
,

(3.30)

with ∆ = −g2
yz +(1−Byz)

2+gyygzz. This means that the metric and B-field give a proper

geometric description to the base space only if we act by (3.30) whenever x ∼ x+1. This

is also clear when looking at the metric and B-field after projecting to the base and

setting the dual coordinates to zero:

ds2 = dx2 +
1

1 + x2
(dy2 + dz2), B =

x

1 + x2
dy ∧ dz. (3.31)

Both the metric and B-field are not well defined functions of the x coordinate, which

is periodically identified. They give however a good global description upon using the

identification (3.30), which for this case reduces to [27, 30]:

gxx → gxx Byz →
−Byz(1−Byz) + gyygzz

∆
,

gyy →
gyy

∆
gzz →

gzz

∆

(3.32)

with ∆ = (1−Byz)
2 + gyygzz, because gxy = gxz = gyz = Bxy = Bxz = 0.

Once more, a different way to obtain (3.31) without any dependence on the dual

coordinates is by taking the action of the duality transformations directly on the non-

symmetric gauge for the original B-field. This is dual to the above background by a

ρyρzΘρzρy transformation.

3.1.4 Non-geometric R-flux

The third T-duality at our disposal yields the generalized metric

UR =




1 0 0 0 −z̃ ỹ
0 1 0 z̃ 0 −x̃
0 0 1 −ỹ x̃ 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(3.33)
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whose corresponding coframes are

E1 = dx + ỹdz̃ − z̃dỹ, E2 = dy + z̃dx̃− x̃dz̃, E3 = dz + x̃dỹ − ỹdx̃,

Ẽ1 = dx̃, Ẽ2 = dỹ, Ẽ3 = dz̃,
(3.34)

satisfying the Maurer–Cartan equations

dEi = −1

2
RijkẼj ∧ Ẽk, dẼi = 0. (3.35)

Therefore the doubled torus indeed realized the gauge algebra with R-flux:

[Ẑi, Ẑj] = 0, [Ẑi, X̂
j] = 0, [X̂ i, X̂j] = RijkẐk. (3.36)

A further action on the left with the following O(3) × O(3) transformation

k3 = χ




1 + x̃2 x̃ỹ + z̃ −ỹ + x̃z̃ −ỹ2 − z̃2 x̃ỹ + z̃ −ỹ + x̃z̃
x̃ỹ − z̃ 1 + ỹ2 x̃ + ỹz̃ x̃ỹ − z̃ −x̃2 − z̃2 x̃ + ỹz̃
ỹ + x̃z̃ −x̃ + ỹz̃ 1 + z̃2 ỹ + x̃z̃ −x̃ + ỹz̃ −x̃2 − ỹ2

−ỹ2 − z̃2 x̃ỹ + z̃ −ỹ + x̃z̃ 1 + x̃2 x̃ỹ + z̃ −ỹ + x̃z̃
x̃ỹ − z̃ −x̃2 − z̃2 x̃ + ỹz̃ x̃ỹ − z̃ 1 + ỹ2 x̃ + ỹz̃
ỹ + x̃z̃ −x̃ + ỹz̃ −x̃2 − ỹ2 ỹ + x̃z̃ −x̃ + ỹz̃ 1 + z̃2




(3.37)

where χ = 1
1+x̃2+ỹ2+z̃2 brings the vielbein in a triangular form:

k3gxgygzUR =




χ(1 + x̃2) χ(x̃ỹ + z̃) χ(−ỹ + x̃z̃) 0 0 0
χ(x̃ỹ − z̃) χ(1 + ỹ2) χ(x̃ + ỹz̃) 0 0 0
χ(ỹ + x̃z̃) χ(−x̃ + ỹz̃) χ(1 + z̃2) 0 0 0
−χ(ỹ2 + z̃2) χ(x̃ỹ + z̃) χ(−ỹ + x̃z̃) 1 z̃ −ỹ
χ(x̃ỹ − z̃) −χ(x̃2 + z̃2) χ(x̃ + ỹz̃) −z̃ 1 x̃
χ(ỹ + x̃z̃) χ(−x̃ + ỹz̃) −χ(x̃2 + ỹ2) ỹ −x̃ 1




. (3.38)

The global identifications of this space are

x ∼ x + 1,

y ∼ y + 1,

z ∼ z + 1,

(x̃, y, z) ∼ (x̃ + 1, y + z̃, z − ỹ),

(ỹ, x, z) ∼ (ỹ + 1, x− z̃, z + x̃),

(z̃, x, y) ∼ (z̃ + 1, x + ỹ, y − x̃).

(3.39)

Although the naive projection to the base space may seem to yield a flat torus with a

trivial B-field, the identifications required on the dual coordinates have an extreme effect

on the field content. These identifications involve β-transformations related to the shift

of a base coordinate by the dual ones. If we insist on interpreting these identifications
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as actions on the space-time fields we obtain a fully non-geometric background, because

one has to perform identifications that entangle the metric and the B-field, without any

relation to a geometric action on the base coordinates. It is actually known that this

space is isomorphic to a so-called non-associative torus [31, 32, 33], which does not admit

a classical geometric description even locally.

3.1.5 A summary

All previous examples can be grouped in a unique class of compactifications on a 3-

torus with general flux in which the gauge generators in the adjoint representation are

nilpotent of order two: XI ·XJ = 0. The doubled torus has vielbein satisfying eq. (2.11)

with TIJ
K = −XIJ

K . The previous four cases correspond to flux tensors XNM
P identified

with Hijk, τij
k, Qi

jk and Rijk related to one another by T-duality, respectively.

These vielbeins will follow from the left-invariant one form

g−1dg = UJ
I dY

I X̂J , (3.40)

but it is also useful to define the right-invariant ones:

dg g−1 = ŨJ
I dY

I X̂J . (3.41)

where, due to the nilpotency of XI , the matrices U and Ũ are G elements and have the

form

UJ
I = δJ

I +
1

2
yM XMI

J = exp

(
1

2
yM XM

)J

I ,

ŨJ
I = δJ

I −
1

2
yM XMI

J = exp

(
−1

2
yM XM

)J

I . (3.42)

In terms of the above matrices we can write the infinitesimal variations of Y
M under the

left and right action of G:

Left action: Y
′M = Y

M + ǫN
(L) Ũ−1

N
M = Y

M + ǫM
(L) +

1

2
ǫN
(L) Y

IXIN
M , (3.43)

Right action: Y
′M = Y

M + ǫN
(R) U−1

N
M = Y

M + ǫM
(R) −

1

2
ǫN
(R) Y

IXIN
M . (3.44)

In virtue of the nilpotency of XI , the above transformation rules hold also for finite ǫM .

Therefore we can use eq. (3.43) for integer ǫM
(L) = nM , to define the action of Γ:

Y
M ∼ Y

M + nM +
1

2
nN

Y
IXIN

M , (3.45)

which will define our left quotient Γ\G. If we perform now a simultaneous left and right

action with constant integer parameters n = ǫ(R)/2 = ǫ(L)/2, the effect is to independently

shift each coordinate:

Left/right diagonal action: Y
′M = Y

M + nM . (3.46)
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Howeveer, the vielbein E
M will feel only the right component of the transformation:

E(Y′)M = sN
M

E(Y)N = E(Y)N − 1

2
nN XNI

M
E(Y)I , (3.47)

The matrix s has the general form (3.45) and it can be absorbed in a corresponding

duality of the four dimensional gij and Bij moduli according to (2.55). This led to the

monodromies discussed above for the four cases in which XMN
P = hijk, τij

k, Qi
jk, Rijk.

From equation (3.47) we see that only in the two latter cases a shift (3.46) in the coor-

dinates may involve a β-transformations. In the presence of Q-flux the β transformation

may be induced by a shift yi → yi + ni in the yi coordinates and βij = nk Qk
ij, while

in the presence of R-flux a β-transformation may be induced by a shift ỹi → ỹi + ni:

βij = nk Rkij.

3.2 The flat group

Another interesting example is given by the so-called flat groups. These group manifolds

were introduced in [1] as means of generating a potential admitting a D-dimensional

Minkowski vacuum upon reducing a D + n-dimensional theory on a T
n torus. This

compactification is equivalent to performing first an ordinary reduction from D + n to

D+1 dimensions and then a Scherk–Schwarz reduction on the last compactification circle

with a twist that depends on its coordinate and on a matrix M ∈ so(n− 1, R). Splitting

the index running on the n extra coordinates i = 0, . . . , n − 1 into a = 1, . . . , n − 1 and

0, we can write the resulting gauge algebra as

[Z0, Za] = Ma
b Zb. (3.48)

When dealing with the full reduction of a supergravity theory and not just with the gravity

sector one has additional generators X i corresponding to the gauge vectors coming from

the reduction of tensor fields in higher dimensions. Altogether these generators describe

the gauge algebra

[Ẑ0, Ẑa] = Ma
b Ẑb ; [Ẑ0, X̂a] = −Mb

a X̂b ; [X̂a , Ẑb] = −Mb
a X̂0 , (3.49)

which is realized as a faithful representation on the gauge vector fields of the reduced

theory:
δA0

µ = ∂µΛ0,

δAa
µ = ∂µΛa + Mb

aΛ0Ab
µ −Mb

aΛbA0
µ,

δAµa = ∂µΛa + Ma
bΛ0Aµb −Ma

bΛbAµ0,

δAµ0 = ∂µΛ0 + Ma
bΛaAµb −Ma

bΛbA
a
µ.

(3.50)

The role of X̂0 is that of a central charge and therefore we see that in this example there

is an abelian ideal which should be removed when embedding (3.49) inside the algebra
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corresponding to the duality group. The algebra (3.49) is not a subalgebra of the duality

one, namely o(n, n). However, the adjoint action of X0 is trivial on all the curvatures

and therefore the adjoint representation can be embedded in o(n, n), whose generators

we name ti
j for the sl(n, R) part and tij, tij for the so-called B and β transformations

respectively. Writing the o(n, n) algebra as

[ti
j, tk

ℓ] = δj
k ti

ℓ − δℓ
i tk

j ,
[
ti

j, tkℓ
]

= 2 δ
[k
i tℓ]j , (3.51)

the gauge generators in the adjoint representation are obtained by

Z0 = Ma
b tb

a ; Za = Ma
b tb

0 ; Xa = Mb
a t0b . (3.52)

The resulting algebra is

[Z0, Za] = Ma
b Zb ; [Z0, Xa] = −Mb

a Xb ; [Xa , Zb] = 0 (3.53)

and it is a subalgebra of o(n, n) by construction.

To construct the corresponding doubled torus, one can start from a group represen-

tative

g = exp(ỹ0 X̂0) exp(ỹa X̂a) exp(ya Ẑa) exp(y0 Ẑ0) (3.54)

and obtain the left-invariant vielbeins from

g−1dg = (dỹ0 + ya dỹb Ma
b) X̂0 + dỹb [exp(y0 M)]a

b X̂b +

+dyb [exp(−y0 M)]b
a Ẑa + dy0 Ẑ0 = dY

M UM
N X̂N . (3.55)

The matrix U reads

U =




1 0 0 0
0 [exp(−y0 M)]a

b 0 0
0 0 1 0
0 0 yc Mc

a [exp(y0 M)]b
a


 . (3.56)

As expected from the previous general discussion, the matrix UN
M is not an O(n, n)

matrix and it cannot be put in the triangular form described in (2.36). However, as

noticed in section 2.4, one can define the dual basis to the cotangent space described by

{dy0, dya} by defining:

∂

∂y0
≡ dỹ0 + ycMc

adỹa,
∂

∂ya
≡ dỹa. (3.57)

By using the {dyi, ∂i} basis the vielbein E
M can be described in terms of an O(n, n)

matrix which in this case is already in triangular form. It describes the vielbeins of the
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twisted torus geometry for the flat group and a zero B-field. For instance, for a simple

3-torus one has 



E1 = cos y0 dy1 + sin y0 dy2,

E2 = − sin y0 dy1 + cos y0 dy2,

E0 = dy0,

Ẽ1 = cos y0 dỹ1 + sin y0 dỹ2,

Ẽ2 = − sin y0 dỹ1 + cos y0 dỹ2,

Ẽ3 = dỹ0 − y2dỹ1 + y1dỹ2

(3.58)

and, after identifying ∂1 = dỹ1, ∂2 = dỹ2 and ∂0 = dỹ0−y2dỹ1 +y1dỹ2, it reduces to a tri-

angular form. This background is definitely geometric and indeed, in the twisted doubled

torus description, if we transform Y
M by means of an infinitesimal G transformation

δy0 = ǫ0,

δya = ǫb (ey0 M)b
a,

δy0 = ǫ0 − ǫa yb (M e−y0 M)b
a,

δya = ǫb (e−y0 M)a
b,

the vielbein forms E
M transform according to

ǫM TMN
P =




0 0 0 0
−ǫc Mc

b ǫ0 Ma
b 0 0

0 −ǫc Mb
c 0 ǫc Mc

b

ǫc Mb
c 0 0 −ǫ0 Mb

a


 , (3.59)

which is in the geometric subgroup.

3.3 N = 4 gaugings and non-geometric fluxes

The set of fluxes considered in this section, namely the physical NS-NS h-flux, the geo-

metric τ -flux and their non-geometric counterparts Q and R, appear naturally when one

considers toroidal compactifications of the common sector consisting of the metric and

the B field. Therefore, it makes sense to focus on heterotic string theory whose massless

spectrum contains no other higher rank forms (it also includes gauge fields but we neglect

them for simplicity). A reduction of heterotic supergravity on a T
6 with any of the above

fluxes turned-on yields a four-dimensional theory with 16 supercharges and non-abelian

gauge fields, i.e. an N = 4 gauged supergravity.

These theories have been recently constructed in full generality [34]. They are char-

acterized by two types of embedding tensors: fαIJK and ξαI , where the index α denotes a

doublet under the SL(2, R) factor of the duality group and I, J, K are in the fundamental

of O(6,6) and completely antisymmetrized. Notice that we consider a reduction only

of the gravity sector, therefore we obtain 12 gauge fields rotated by the O(6,6) duality
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group. Reducing the gauge fields already present in 10 dimensions would result in more

four-dimensional gauge fields and an appropriate enlargement of the duality group.

It is convenient to set the embedding tensors f−IJK and ξ−I to zero, because one usu-

ally is interested in electric gaugings, i.e. gaugings where only the electric gauge potentials

have non-abelian interactions. Splitting the fundamental indices of O(6,6) as I = i, i with

i = 1, 2, . . . , 6 and so that the metric (2.29) takes the form Iij = I ij = 0, Iij = Ij
i = δj

i ,

enables us to separate the embedding tensor f+IJK into four types:

f+ijk ∼ Hijk, f+ij
k ∼ f k

ij , f+
ij

k ∼ Qij
k, f+

ijk ∼ Rijk. (3.60)

We have already indicated the way the different types of gauging parameters correspond

to the set of fluxes under consideration6. This correspondence can be easily checked by

matching the potentials of N = 4 gauged supergravity with those obtained from direct

reductions of heterotic supergravity in the case of physical and/or geometric fluxes and

with their extensions, motivated by duality arguments, in the case of non-geometric fluxes

[22, 23].

4 M-theory reductions

In the following we shall try to extend our analysis to M-theory reductions to four di-

mensions. It is known that the effective theory describing the low-energy dynamics of

M-theory (eleven dimensional supergravity [36]) on a seven-torus T
7 is an ungauged

N = 8, D = 4 supergravity. It was shown in [37] that the manifest GL(7, R) global

symmetry of the four dimensional theory, associated with the T
7-compactification, is en-

hanced to an E7(7) global symmetry of the equations of motion and Bianchi identities once

the seven 2-forms, arising from the reduction of the 3-form, are dualized to scalar fields.

In this framework the duality group E7(7) plays the role of the group SL(2, R) × O(6, 6)

in the heterotic case (or of the group O(1, 1)× O(6, 6) if the 2-form is not dualized to a

scalar). In contrast to this case, in which the duality action of the O(6, 6) group on the

vector field strengths and their magnetic duals is block-diagonal, namely it does not mix

electric with magnetic charges, the duality action of E7(7) is non-perturbative. In fact the

electric and magnetic charges transform all together in the representation 56 of E7(7).

The eleven dimensional origin of the various four-dimensional fields can be recovered

by branching the corresponding E7(7) representations with respect to GL(7, R) ⊂ E7(7).

For instance, the branching

56 → 7′
−3 + 21−1 + 7+3 + 21′

+1 , (4.1)

allows us to identify the 7′
−3 with the Kaluza-Klein (KK) vectors Ai

µ, (i = 1, . . . , 7),

the 21−1 with the vectors Aijµ originating from the eleven dimensional 3-form, and the

6The higher-dimensional origin of the other embedding tensor ξ+I was elucidated in [35] and corre-
sponds to a reduction with a duality twist inside the O(1,1) ⊂ SL(2, R) part of the full duality group.
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remaining representations with the corresponding magnetic dual vector potentials. The

electric and magnetic charges also split according to (4.1) into {pi, pij, qi, qij}, where qi

are the quantized momenta, pi are the KK monopole charges while qij and ǫi1...i5 ij pij are

the charges of M2 and M5-branes wrapped along the cycles (i, j) and (i1 . . . i5) of T
7,

respectively.

In this setup, the presence of fluxes induces local symmetries in the four-dimensional

theory, which can thus be constructed from the ungauged D = 4, N = 8 theory by

gauging a suitable Lie group G. The most general gauging in the maximal four dimen-

sional theory was discussed in [38, 39]. It was shown that the gauged field equations and

Bianchi identities can be written formally in a E7(7) invariant way. This was done by

gauging 56 gauge generators XM , M = 1, . . . , 56, in e7(7) by means of all the 56 vector

fields AM
µ = (AΛ

µ , AΛµ), Λ = 1, . . . , 28, (which include the magnetic potentials AΛµ). The

adjoint representation of the XM generators is required to be in the 56 of e7(7) and can

be expanded in a basis {tα} of e7(7) generators, through an embedding tensor

XM = θM
α tα . (4.2)

It is useful to define the tensor XMN
P as the matrix representation of XM in the 56:

XMN
P = θM

α tα N
P . Since the representation 56 is symplectic, one can use the symplectic

invariant matrix ΩMN (ΩMN) to raise (lower) indices. Thus if we denote by dα MN =

tα M
P ΩPN , the invariance of Ω under tα implies dα MN = dα NM . The gauge generators

close a 56 dimensional gauge algebra with structure:

[XM , XN ] = TMN
P XP = −XMN

P XP . (4.3)

The most general deformation of the N = 8, D = 4 theory is then encoded in the E7(7)

covariant tensor θM
α. Consistency of the gauging with N = 8 supersymmetry requires

θM
α (or equivalently XMN

P ) to transform in the representation 912 of E7(7). This linear

condition can be expressed in the form X(MNP ) = 0. Besides the linear one, θM
α is

also subject to the quadratic constraint (4.3), which expresses the closure of the gauge

algebra inside e7(7) or, equivalently, the gauge invariance of the embedding tensor itself,

and which can be recast in the following form:

XMN
P XRP

Q −XRN
P XMP

Q + XMR
P XPN

Q = 0 , (4.4)

or equivalently, using the linear constraint, as

ΩMN θα
M θβ

N = 0 . (4.5)

The above condition guarantees that no more than 28 vector fields take part into the

minimal couplings and thus prevents the theory, which involves magnetic couplings as

well as electric ones, to suffer from locality problems. It is important to notice that the
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tensor XMN
P is not antisymmetric in the first two indices and thus it is not proportional

to the structure constants. Group theoretical arguments show that the tensors X and

T are proportional only when contracted with a gauge generator, as in eq. (4.3). As a

consequence, eq. (4.4) does not imply the Jacobi identity for XMN
P . The closest we can

get to it is through the following identity, which can be derived using (4.4):

X[MN ]
P X[RP ]

Q + X[NR]
P X[MP ]

Q + X[RM ]
P X[NP ]

Q =
1

2
XQ

P [R XMN ]
P . (4.6)

In virtue of eq. (4.5), the right hand side of the above identity vanishes upon contraction

with XQ and thus that the Jacobi identity holds for the commutation relation (4.3).

The construction in [39] also requires the introduction of 133 tensor fields Bµνα trans-

forming in the adjoint representation of E7(7). The resulting gauged field equations and

Bianchi identities are globally E7(7)-invariant provided the constant tensor θM
α is trans-

formed under E7(7) as well.

At this point we wish to employ the same bottom-up approach followed in the previous

sections and try to interpret the most general gauged D = 4, N = 8 supergravity as

descending from an M-theory compactification on some generalized geometry manifold

M. Following [9] it is natural to characterize this generalized M56 as a 56-dimensional

space, dubbed the “megatorus”, whose tangent bundle has structure group E7(7). We

assume we are compactifying on a M7, whose tangent and cotangent spaces are well

defined. From (4.1) it follows that the tangent space ofM56 should have the form [9]

T ⊕ Λ2T ∗ ⊕ Λ6T ∗ ⊕ Λ5T , (4.7)

T , T ∗ denoting the tangent and cotangent space of M7. The vielbein basis for M56

has the form: E
M = {Ei, Eij, Ẽi, Ẽij}. Similarly we define local coordinates on M56:

Y
M = {yi, Yij, ỹi, Ỹ ij}, where yi are local coordinates on M7. The scalar and vector

fields in the low energy D = 4, N = 8 theory should then arise from the following

generalized reduction ansatz

dS2 = HMN(x) (EM + AM)(EN + AN) , (4.8)

whereH = UT U is a symmetric symplectic matrix built out of the vielbein U of the scalar

manifold E7(7)/SU8, which depends on the 70 scalars of the four dimensional theory. Now

we wish to define a consistent deformation of the cohomology ofM56 which accommodates

the tensor XMN
P and which reproduces the corresponding gauged supergravity in four

dimensions. We could naively try to write a Maurer-Cartan equation of the form:

dE
M = −1

2
TNP

M
E

N ∧ E
P =

1

2
XNP

M
E

N ∧ E
P . (4.9)

From equation (4.6) it follows that the above equation is not be integrable and thus

it is inconsistent. This means that the one forms E
M are not enough for describing
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the cohomology of M56. In order to write a consistent generalization of the Maurer-

Cartan equations involving the most general embedding tensor, we can introduce in the

cohomology ofM56 a basis of 133 2-forms bα transforming in the adjoint representation

of E7(7) and write

dE
M =

1

2
XNP

M
E

N ∧ E
P − 1

2
θM α bα , (4.10)

θM α dbα = −1

2
θM α dα NP E

N ∧
(

1

3
XRS

P
E

R ∧ E
S + θP β bβ

)
. (4.11)

The above system of equations is indeed integrable and manifestly E7(7)-covariant.

Equation (4.5) guarantees that a symplectic rotation always exists, which can rotate

the magnetic components θΛα of θM
α to zero. In this electric frame the 2-forms disappear

in the derivative of E
Λ which reads

dE
Λ =

1

2
XΣΓ

Λ
E

Σ ∧ E
Γ , (4.12)

where we have used the property XΣ
ΓΛ = 0, following from the condition X(MNP ) = 0.

The 2-forms therefore enter only into the expression of dEΛ. We postpone to future work

a more detailed analysis of the geometry ofM56 and of the local embeddingM7 →֒ M56.

The known form and geometric fluxes can be identified with different components

of the most general embedding tensor under the branching of the 912 with respect to

GL(7, R):

912 → 1−7 + 1+7 + 35−5 + 35′
+5 + (140′ + 7′)−3 + (140 + 7)+3 + 21−1 + 21′

+1 +

28−1 + 28′
+1 + 224−1 + 224′

+1 . (4.13)

Each representation in the above branching is arranged in the table below together with

the corresponding tensor representation.

1+7 g7 (140 + 7)+3 τ i
jk + δi

jτk 28−1 θ(ij)

1−7 g̃7 (140′ + 7′)−3 Qjk
i + δj

i Q
k 28′

+1 ξ(ij)

35−5 hijkl 224−1 f i
jkl 21−1 θ[ij]

35′
+5 gijkl 224′

+1 Rjkl
i 21′

+1 ξ[ij]

Table I: flux representations under the GL(7, R) decomposition of E7(7).

The component g7 if the flux of the 7-form field strength across T
7, while g̃7 represents the

four dimensional space-time components of the 4-form field strength. The internal flux of

the 4-form field strength is gijkl while τij
k is the twist of the torus. All the components in

Table I are part of a single irreducible representation of E7(7) and therefore are mapped

into one another by string/M-theory dualities. We can also see that many new “non-

geometric” fluxes may appear.
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Let us end this section by illustrating how the above scheme naturally includes the

known SO(8)-gauging [40] arising from the M-theory compactification on a seven-sphere

S7 and the CSO(p, q, r)-gaugings (p + q + r = 8) conjectured to originate from the non-

compactification on a hyperboloid [41, 42]. We notice [20] that the tensors θ(ij) (28−1), τk

(7+3) and g7 ( 1+7) in Table I can be viewed as components of a symmetric 8× 8 matrix

θAB = θBA, A, B = 1, . . . , 8, in the 36 of SL(8, R) ⊂ E7(7), according to the branching

36 → 1+7 + 7+3 + 28−1 . (4.14)

We can rotate the magnetic components of the embedding tensor to zero through the

symplectic rotation which derives from the dualization Aij µ ↔ Aij
µ . In the resulting

electric frame the gauge generators have the form XAB = {Xi, Xij} and are gauged by

the electric vector potentials AAB
µ in the 28′ of SL(8, R). Using eq. (4.12) we find that the

electric components E
AB of the vielbein E

M close the following Maurer-Cartan equation

dE
AB = θCD E

AC ∧ E
DB . (4.15)

These are the Maurer-Cartan equations of the CSO(p, q, r) group, where p, q, r define the

SL(8, R) conjugacy classes of θAB. Indeed the matrix θAB, through an SL(8, R) rotation,

can be brought to the following diagonal form:

θAB = diag(

p︷ ︸︸ ︷
+1, . . . , +1,

q︷ ︸︸ ︷
−1, . . . ,−1,

r︷ ︸︸ ︷
0, . . . , 0) . (4.16)

The case q = r = 0, p = 8 corresponds to the SO(8) gauging in which θAB = δAB.
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