
en
sl

-0
01

98
78

2,
 v

er
si

on
 1

 -
 1

8
D

ec
 2

00
7

LIP Research Report RR2007-50

Dynamic Logic of Common Knowledge
in a Proof Assistant

Pierre Lescanne∗, Jérôme Puisségur

Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS (LIP),
46, allée d’Italie, 69364 Lyon 07, FRANCE

Abstract

Common Knowledge Logic is meant to describe situations of the real world
where a group of agents is involved. These agents share knowledge and make
strong statements on the knowledge of the other agents (the so calledcommon
knowledge). But as we know, the real world changes and overall information on
what is known about the world changes as well. The changes aredescribed by dy-
namic logic. To describe knowledge changes, dynamic logic should be combined
with logic of common knowledge. In this paper we describe experiments which
we have made about the integration in a unique framework of common knowledge
logic and dynamic logic in the proof assistant COQ. This results in a set of fully
checked proofs for readable statements. We describe the framework and how a
proof can be conducted.

keywords: Common Knowledge, Dynamic Logic, Proof Assistant

1 Introduction

Common knowledge logicis about the knowledge of the world, whereasdynamic logic
is about the changes of the world. Both are presented asmodal logic. In this paper we
propose to analyze reasoning in a combination of those logics through a mechanization
by a proof assistant.

By experience, we know that the knowledge we have of the worldis not perennial,
but is meant to evolve. Therefore, any faithful and completeapproach of reasoning
of agents about their surrounding world requires to take that evolution into account
and to combine a logic that describes the state of the knowledge at a given time and
a logic that accounts the changes due to external events. This kind of work is known
asbelief revision(or knowledge revision in our case) and is advocated by Johanvan

∗Corresponding author.email: Pierre.Lescanne@ens-lyon.fr

1

Benthem [6]. In this paper, following the work of [3, 4, 5, 6, 9], we combine two
logics: the first logic is common knowledge logic [1, 12, 17, 20] and the second one is
dynamic logic [13, 14]. The combination of both is calleddynamic logic of common
knowledge. The idea is not new but the novelty is that we do that combination in a
proof assistant.

As we are neither designers of modal logic, nor philosophers, but only proof assis-
tant users, what is presented in this paper is not a general discussion on the interest or
the advantage of combining logics or how this can be made moreappropriately. What
we present is a record of experiments done on a mechanizationof dynamic logic of
common knowledge in COQ, one of the proof assistants available on the market. By the
use of higher logic and mechanization this activity sheds light on the reality of reason-
ing in dynamic logic of common knowledge and on how the two components, namely
epistemic and dynamic fit together. This paper does not address any comparison on
using one proof assistant or another in that kind of implementation exercise. We feel
that actually higher order proof assistants like ACL-2 [15], HOL [25], Isabelle [22],
LEGO [23], PHoX [24] or PVS [8], are not so deeply different w.r.t. modal logic and
that such a comparison would not be informative for the reader. We prefer to focus on
the experience itself, hoping that what has been learned will help designers of logics.
We have taken COQ, because we practiced it [18] and we have an expert environment
around us. This paper is essentially a careful examination of what is necessary to make
an actual proof of correctness. We have chosen themuddy children puzzle(again not a
very original choice) and we introduce the reader to the COQ script.

Why experiences on a proof assistant?

We noticed that most of the presentations about logic of common knowledge or dy-
namic logic or a combination of both were made either througha model approach
where no specific care is given to actual deductions, with rules and axioms1. When
proofs are given they are done at an intermediary level of abstraction, whereas we ad-
vocate a deep level, where no detail is left over. We are typically at aproof theory
level. With a proof theoretic background, we feel that proofs and deductions are of
main importance as it has been shown with most of experience with proof assistants.
To summarize, this paper is about the actual integration of common knowledge and
dynamic logic in a unique framework in a proof assistant. It relies on a previous work
by the first author [18] and is associated with two scripts:

http://perso.ens-lyon.fr/pierre.lescanne/COQ/Episte micLogic.v8

and
http://perso.ens-lyon.fr/pierre.lescanne/COQ/Episte micAndDynamicLogic.v .

1A notable exception related to our approach is the formulation of linear temporal logic in COQ done by
Solange Coupet-Grimal [7]. Her development is a shallow embedding when ours is a deep one.

2

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicAndDynamicLogic.v

2 Dynamic logic of common knowledge

Common knowledge logic

Common knowledge logic is a modal logic with two main modalities. One modalityKi ,
which is associated with each agenti, is theknowledge modality. It is meant to express
the knowledge an agent has on statements, facts and propositions. For instance,Ki()
reads asi knows. The modalityCG, which is associated with a groupG of agents is
thecommon knowledge modality. CG() translates the fact that a knowledge is common
to a groupG of agents, not only each agent in the groupG knows , but also he knows
that the others know and he knows that the others know that theothers know , and this
recursively.CG() reads asis a common knowledge of the group G. It is formalized as
a fixed point by an axiom and a rule:

FixPointC
� CGϕ → ϕ∧EGCGϕ

� ρ → ϕ∧EGρ
GreatestFixPointC

� ρ →CGϕ

Dynamic logic

Dynamic logic makes events modalities. There are as many modalities as there are
events. Ifα is an event, then[α] is a modality and one writes[α] the proposition
modified by an eventα. If an universe satisfies , after the eventα has been performed
on it, the transformed universe satisfies[α].

Hilbert-style

Hilbert-style is what has been chosen in the COQ implementation. It is convenient both
from the point of view of its presentation and from the point of view of its mechaniza-
tion in a proof assistant. Therefore the forthcoming rules and axioms will be presented
in that framework.

The reason why one cannot use a natural deduction of a sequentcalculus approach
is essentially due to the Generalization Rule. If one accepts such a rule in natural
deduction, one gets

Γ �

Ki(Γ) � Ki()

This requires to extend the operatorKi to contexts likeΓ. If instead ofKi one uses
a modality2, one says that2(Γ) is a “boxed context”. Actually linear logic [11] is
perhaps the archetypal modal logic and the equivalent ofKi is the modalityof course
written “!”. The equivalent of Generalization Rule is a rulecalled alsoof course.
Without that rule the proof net presentation is somewhat simple [16]. Its introduction
requires a machinery of boxes which increases its complexity. See [2] for a discussion.

The axioms

The axioms of modal logic are those ofclassical logicplus two axioms and one rule
for each modalityM:

3

• Normalization axiom KM : � Mϕ → M(ϕ → ψ) → Mψ

• Necessitation axiom TM: � Mϕ → ϕ

• Generalization rule GenM:

� ϕ
� Mϕ

These axioms of modal logic have to be duplicated for dynamiclogic and common
knowledge logic.

2.1 Epistemic and dynamic modalities: purely epistemic proposi-
tions

The central issue of this paper is to show how to integrate common knowledge and
dynamic logics in a unique framework for using in a proof assistant. First we define a

logic that we callT C [α]
G (see Figure 1). An interesting feature ofT C [α]

G is axiomKT1 :

∀ : proposition∀α : event∀i ∈ G,
� Ki [α] → [α]Ki

It is well known in epistemic-temporal logic [10] and is appropriate for dynamic logic
of common knowledge. It reads“if agent i knows that, after eventα, ϕ holds, then
one can infer that, after eventα, agent i knows thatϕ holds”. This axiom allows
commuting epistemic and dynamic modalities in one direction. Note that the converse
is quite dubious in natural language and would certainly be rejected by philosophers.
Indeed if after α, I know that holds, because eventα is precisely to let me know
proposition , then there no reason to infer thatI know that has to hold afterα. But
looking carefully at axiomKT1 , one notices that eventα is transforming not actually
the world in its physical reality, but the knowledge the agent has of it. Therefore to
avoid troubles and paradoxes, we consider only eventsα that are“purely epistemic”.
This means that in our approach of dynamic logic of common knowledge, we consider
only actions or events that change the perception of the world which agents have, not
the world itself. We borrowed this concept of purely epistemic event from A. Baltag [4,
3].

2.2 The axiomatization of dynamic logic of common knowledge

For the common knowledge modalityCG we have chosen the axiomatization proposed
and implemented in Coq by the first of us [18]. The whole dynamic logic of common
knowledge is made of the following ingredients:

• the logicT for K and for[α],

• the definition ofshared knowledge EG,

• the definition ofcommon knowledge CG by a fixpoint axiom and a rule that says
that it is the greatest fixpoint,

• the axiomKT1 that makes the connection between dynamic logic and common
knowledge logic.

4

�

K ϕ
Classical

� ϕ

� ϕ � ϕ → ψ
MP

� ψ

KK
� Kiϕ → Ki(ϕ → ψ) → Kiψ

TK
� Kiϕ → ϕ

� ϕ
GenK

� Kiϕ

De fE
� EGϕ ↔

∧

i∈G

Kiϕ

FixPointC
� CGϕ → ϕ∧EGCGϕ

� ρ → ϕ∧EGρ
GreatestFixPointC

� ρ →CGϕ

K[α]
�

[α]ϕ → [α](ϕ → ψ) → [α]ψ
T[α]

�

[α]ϕ → ϕ

� ϕ
Gen[α]

� [α]ϕ

KT1
� Ki [α]ϕ → [α]Kiϕ

Figure 1: The dynamic logic of common knowledgeT C[α]
G

3 A running example: themuddy children puzzle

Themuddy children puzzlewill serve as an example to show how dynamic and knowl-
edge logic have been integrated in COQ. This problem is presented by several au-
thors [10, 1, 21] as an illustration of common knowledge logic. The problem considers
amazing children who are be able to carry perfectly logical reasoning.

3.1 The statement

First, let us recall the puzzle. The reader who knows the puzzle can skip this part and
jump to Section 4, collecting the axioms. We follow more or less the presentation of
Meyer and van der Hoek [21].

n+ 1 children are standing in a circle around their father. There arem + 1 (m ∈
{0, ...,c}) children with mud on their face. The children can see each other, but they
cannot see themselves. In particular, they do not know if they have mud on their face.
Father says aloud: “There is at least one child with mud on itsface.” Then he asks:
“Will all children who know they have mud on their face pleasestep forward?” This
procedure is repeated until, after them+1-th time Father has asked the same question,
all muddy children miraculously step forward.

The conclusion which happens eventually is the result of a logical reasoning made
by the children, especially the muddy ones, about what they know initially and what
they know about the changes on what they know. It is a perfect example of an common
knowledge and dynamic reasoning which fits with our frameworks.

5

3.2 The formalization

In this section, we try to say what justified our statements. Areader interested only by
the formal rules and the mechanized reasoning can jump over the text and go directly to
the formal statements. This discussion is interesting to understand why we have chosen
this system of axioms.

Two events

In this puzzle, the action are not very elaborated, since after Father’s first statement,
he keeps repeating the same sentence. Therefore we considertwo events, one that
starts the scenario and that we write “¤”, it is also called theinitial event, and one
that corresponds to the sentence Father repeats and that we will write “*”, it is also
called theprogression event. In our dynamic logic of common knowledge, we will
have two types of propositions:[¤] and[∗]. We will also write[∗]k for [∗]...[∗] where
[∗] is repeatedm times. Clearly[∗]0 means . In COQ, we will use the identifiersPoint
(abbreviated in[¤] in COQ) andStar (abbreviated in[*] in COQ).

Definitions

To study this puzzle, we must describe formally the situation and so define basic prop-
erties with axioms.

Let c ∈ N andm ∈ {0, ...,c}, so thatc+1 is the number of children (there is at least
one of them) andm+1 the number of muddy ones (there is also at least one of them).
Let G be the group of all children, of cardinalityc+1: we identify it with{1, ...,c+1}.

Let µi (i ∈ {1, ...,c+1}) be the proposition “childi has mud on his face”.
Let λ j (j ∈ N) be the proposition “at leastj children have mud on their face”.
Let ε j (j ∈N) be the proposition “exactlyj children have mud on their face”, which

is defined as follows:

EQλε : ∀ j ∈ N, � ε j ↔ λ j ∧¬λ j+1

what one can read “there are exactlyj muddy children if and only if there are at leastj
and at the mostj ones”. Two trivial properties can be proved from this axiom (the proof
is made in the COQ file): first, “if there are at least but not exactlyj muddy children,
then there are at leastj +1 ones”, which is:

IMP λε ∀ j ∈ N, � λ j ∧¬ε j → λ j+1

secondly, a principle of exclusion, “there cannot be exactly j and at leastj +1 muddy
children”, which is:

EXCLU λε ∀ j ∈ N, � ¬(λ j+1∧ ε j)

These propositions describe the“physical world” , i.e., the physical state of the
children, whether they are muddy or not. They form the typephysical proposition.
As we only take into accountepistemic events, physical propositions are“persistent”,

6

which means they are not modified byepistemic events. This property is axiomatized
as follows:

PERSIST ∀p : physical proposition∀α : epistemic event, � p→ [α]p

The initial eventand its consequences

First, Father says loudly that there is at least one muddy child: therefore this propo-
sition becomes common knowledge. IfTRUEis the logical constant, we notice that it
is the only “true” proposition available to the children initially. The effect of the first
statement is as follows:

MC11
�

[¤]TRUE→CGλ1

this is the first axiom of our formalization.
The children are not blind, they see each other and they get pieces of information

from it. Theinitial eventrecords what they get:every child counts the number of muddy
children in front of him/her. In particular, the muddy ones seem muddy children, thus
they get a knowledge about the total number of muddy children, namelym or m+1:

MC12 ∀i ∈ G, � [¤]TRUE→ µi → Ki(εm ∨ εm+1)

Defined that way, theinitial event is an epistemic event: No further action will
change the world, only the knowledge the agents own on the world will evolve. There-
fore the muddy children problem is a paradigmatic example.

We said that physical propositions are persistent, but theyare not the only ones.
Indeed, the muddy children are able to remember what they have seen initially, in other
words, the partµi → Ki(εm ∨ εm+1) of axiomMC12 is also persistent:

PERSMC12 ∀α : event∀i ∈ G, � (µi → Ki(εm ∨ εm+1)) → [α](µi → Ki(εm ∨ εm+1))

The final statement

The problem gets to its end when the muddy children step forward. This happens when
muddy children know they are muddy. Formally this is

∀i ∈ G, µi → Kiµi

Muddy children are able to infer this statement when they know there are exactlym+1
muddy children: as every muddy child seesm ones (a persistent property), he knows
that he is muddy when he knows there are exactlym + 1 muddy children, i.e. them
ones he sees plus him/herself.If a child is muddy and if he knows there are exactly
m+1 muddy children, then he knows he is muddy.This leads to the following axiom.

MC3 ∀i ∈ G,
� µi → Kiεm+1 → Kiµi

7

The progression eventand the increase of knowledge

The core of the work consists in clarifying formally what is produced by Father’s in-
junction and how this makes the muddy children’s knowledge to grow.

In this scenario, a tempo is given by Father: time is made discrete and is divided
into time intervals which every agents (here the children) can distinguish by counting
Father’s statements. Therefore, these intervals can be numbered as follows:

• First interval starts at Father’s declaration and ends at Father’s first injunction

• (i +1)th interval goes fromith to (i +1)st injunction.

After m + 1 injunctions, every muddy child steps forward, as we will prove it in
our system for dynamic logic of common knowledge. To do so, weneed to understand
better what happens from an interval to another with each Father’s injunction. These
injunctions do not carry much semantics, but they are important from a dynamic logic
point of view: indeed, each injunction gives a tempo and helps every child in his quest
of knowledge as it ends the previous interval. Then every child can deduce that no
child has stepped forward during the previous interval which means that none has been
able to conclude about his state, these increases the amountof information the children
have..

Indeed, let us consider the first injunction. In the first interval,CGλ1 holds and two
cases occur:

If m = 0, the only muddy child can say at once, that he is muddy because he is the
only one to see no other muddy child and after Father’s first injunction, he steps
forward.

If m > 0, every child sees at least another muddy child, and so, no one can conclude
whether he is muddy or not. Worst, Father’s initial statement of λ1 did not tell
them anything they do not know, but the fact that this statement became common
knowledge and when no one steps forward at Father’s first injunction, every child
can infer that no one sees no muddy child, this means that every one sees at least
one muddy child. This can only happen if there are at least twomuddy children.
By an easy reasoning they exclude the casem = 0.

To be more formal,every child knows that every child knows there is at least one
muddy child, which leads the children to the following:there are at least two
muddy children.

Father’s first injunction translates formally into

� EGEGλ1 → [∗]EG¬ε1

which generalizes for any injunction:

MC2 ∀ j ∈ {1, ...,k}, � EGEGλ j → [∗]EG¬ε j

which isif every child knows that every child knows there are at leastj muddy children,
then after Father’s injunction, every child knows there cannot be exactly j ones.

8

4 A knowledge gain lemma

One can deduce a knowledge gain lemma which says thatif every child knows that
every child knows there are at least j muddy children, then after Father’s injunction,
every child knows there are at least j+1 ones. Formally

Lemma 1. GainConn ∀ j ∈ {1, ...,k}, � EGEGλ j → [∗]EGλ j+1

Proof. Let j ∈ {1, ...,k}.

MC2
� EGEGλ j → [∗]EG¬ε j

TE
� EGEGλ j → EGλ j

PERS
� λ j → [∗]λ j

EPers
� EGλ j → [∗]EGλ j

Cut
� EGEGλ j → [∗]EGλ j

∧Intro
� EGEGλ j → [∗]EGλ j ∧ [∗]EG¬ε j

∗/∧Dist
� EGEGλ j → [∗](EGλ j ∧EG¬ε j)

E/∧Dist
� EGEGλ j → [∗]EG(λ j ∧¬ε j)

IMPλε
� EGEGλ j → [∗]EGλ j+1

Summary of the proof of themuddy children puzzletheorem

A common knowledge induces a nested shared knowledge at any level, theGainConn
lemma deduced fromMC2 axiom allows us to get a picture of the proof of themuddy
children puzzletheorem, which we calledConcl and which states as:

Concl � ∀m ∈ N ∀i ∈ G, [¤]TRUE→ [∗]m(µi → Kiµi)

Indeed, initially,λ1 is a common knowledge (MC11), so it is as an arbitrarily nested
shared knowledge. With each Father’s injunction, childrenare able to make precise
their knowledge about the total number of muddy children by dropping one level of
their shared knowledge. Therefore, afterj injunctions, they knowλ j+1 by dropping
j depths of their shared knowledge. But since initially this knowledge is arbitrarily
deeply nested in shared knowledge, after the firstm Father’s injunctions, every child
effectively knowsλm+1.

At this point, the muddy children know there are at leastm+1 muddy children; so,
as they seem ones, they deduce there are exactlym + 1 muddy children (MC12) and
they know they are muddy themselves (MC3). At the (m + 1)st injunction, they will
step forward miraculously, as Meyer and van der Hoek say withhumor. After our COQ

experiments, we would say perfectly logically!
One can notice thatConcl holds also form = 0. This theorem describes all the

scene: “if Father makes its initial statement, then after the mth injunction, the agents
who satisfy propertyµ know they do.”.

9

5 The proof of the muddy children puzzletheorem

In this section, we describe the mechanized proof previously summed up in more detail.
Let c ∈ N andm ∈ {0, ...,c+1}.

Lemma 2 (MultGainConn). ∀c ∈ N
∗ ∀ j ∈ {0, ...,m},

� Ec+1
G λ j → [∗]Ec

Gλ j+1

Proof. By induction onc ∈ N
∗ :

• Initialization : c = 1,

GainConn
� EGEGλ j → [∗]EGλ j+1

• Heredity : Letc ∈ N
∗,

HYP-REC
� Ec+1

G λ j → [∗]En
Gλ j+1

EDist
� EGEc+1

G λ j → EG[∗]En
Gλ j+1

KT1
� EG[∗]En

Gλ j+1 → [∗]Ec+1
G λ j+1

Cut
� EGEc+1

G λ j → [∗]Ec+1
G λ j+1

Lemma 3 (ComImpPartIt). ∀c ∈ N, � CGp→ Ec
Gp

Proof. By induction onc ∈ N :

• Initialization : c = 0,

PointFixeC
� CGp→ p∧EGCGp

∧Elim
� CGp→ p

• Heredity : Letc ∈ N,

PointFixeC
� CGp→ p∧EGCGp

∧Elim
� CGp→ EGCGp

HYP-REC
� CGp→ En

Gp
EDist

� EGCGp→ Ec+1
G p

Cut
� CGp→ Ec+1

G p

Lemma 4 (PointImpPartIt). ∀c ∈ N
∗,

�

[¤]TRUE→ Ec
Gλ1

Proof. Let c ∈ N
∗.

MC11
� [¤]TRUE→Cλ1

ComImpPartIt
� CGλ1 → Ec

Gλ1
Cut

� [¤]TRUE→ Ec
Gλ1

10

Lemma 5 (PointImpProgr). ∀c ≥ k ∀ j ∈ {1, ...,k+1},
� [¤]TRUE→ [∗] j−1Ec− j+1

G λ j

Proof. Let c ≥ k. By induction onj ∈ {1, ...,k+1} :

• Initialization : j = 1,

PointImpPartIt
�

[¤]TRUE→ Ec
Gλ1

• Heredity : Let j ∈ {1, ...,m},

HYP-REC
�

[¤]TRUE→ [∗] j−1Ec− j+1
G λ j

Id
�

[¤]TRUE→ [∗] j−1EGEc− j
G λ j

MultGainConn
�

EGEc− j
G λ j → [∗]Ec− j

G λ j+1
(j −1)∗Dist

�

[∗] j−1EGEc− j
G λ j → [∗] j Ec− j

G λ j+1
Cut

�

[¤]TRUE→ [∗] j Ec− j
G λ j+1

From those lemma we get the following ones
With j = m+1

Lemma 6 (ResInter1). ∀c ≥ m,
�

[¤]TRUE→ [∗]mEc−m
G λm+1

With c = m+1

Lemma 7 (ResInter2). �

[¤]TRUE→ [∗]mEGλm+1

And themuddy children puzzletheorem comes out (almost) easily.

Theorem 8 (Concl). �

∀m ∈ N ∀i ∈ G, [¤]TRUE→ [∗]m(µi → Kiµi)

Proof.

ResInter2&MC12
� [¤]TRUE→ [∗]mEGλm+1∧ (µi → Ki(εm ∨ εm+1))

PERSMC12
� [¤]TRUE→ [∗]mEGλm+1∧ [∗]m(µi → Ki(εm ∨ εm+1))

∗/∧Dist
� [¤]TRUE→ [∗]m(EGλm+1∧ (µi → Ki(εm ∨ εm+1)))

(EGp→ Ki p)
� [¤]TRUE→ [∗]m(Kiλm+1∧ (µi → Ki(εm ∨ εm+1)))

(a∧ (b→ c) → (b→ a∧c))
� [¤]TRUE→ [∗]m(µi → Kiλm+1∧Ki(εm ∨ εm+1))

K/∧Dist
� [¤]TRUE→ [∗]m(µi → Ki(λm+1∧ (εm ∨ εm+1)))

∧/∨Dist
� [¤]TRUE→ [∗]m(µi → Ki((λm+1∧ εm)∨ (λm+1∧ εm+1)))

(λm ∧ εm → εm+1)
� [¤]TRUE→ [∗]m(µi → Ki((λm+1∧ εm)∨ εm+1))

(EXCLUλε)
� [¤]TRUE→ [∗]m(µi → Ki(⊥∨ εm+1))

(⊥∨ p→ p)
� [¤]TRUE→ [∗]m(µi → Kiεm+1)

MC2
� [¤]TRUE→ [∗]m(µi → Kiµi)

11

6 The dynamic logic of common knowledge in COQ

6.1 Implementation ofT C[α]
G in COQ

See the appendix for few words on COQ. The implementation presented in this paper
is based on another implementation, namely this of the Logicof Common Knowledge
done by the first author [18] who implemented all the epistemic multi-agent logic with
common knowledge (systemT C

G), of which a COQ file is available on the web:http:
//perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLo gic.v8

This paper comes out with its own COQ file:
http://perso.ens-lyon.fr/pierre.lescanne/COQ/Episte micAndDynamicLogic.v

which implements the whole systemT C[α]
G and a complete proof of themuddy children

puzzletheoremConcl.

6.2 Why this implementation?

The first aim of this implementation was to ensure a reader that the proof is totally
checkable. This lead to a proof of nearly 1100 lines of COQ code, where every lemma
is the direct translation of the hand-made proof for a maximal legibility. We do not
claim that proof are readable as they would be in an English paper, a certain technicality
is required for giving all the detail of the proof; however weclaim that the statements
of the lemmas are easily readable.

As an added value, this implementation allows any future development by adding
axioms or new modalities. This makes our work flexible and reusable.

7 Conclusion

The proof theoretic approach we have used in this paper combines easily epistemic and
dynamic logics together, thanks to a general epistemic-dynamic axiom (KT1). (KT1)
involves a commutativity between epistemic modality and a dynamic modality. In the
current implementation of(KT1) , type is not used to check whether the axiom is only
invoked on purely epistemic propositions. In a future implementation, we will create a
new typeepistemic propositionon which(KT1) can only be invoked.

After manipulating the logical system presented in this paper with the proof assis-
tant COQ, we feel that it is quite simple and intuitive. It only uses axioms and rules
from classical logic plus a few additional axioms and rules.Statements can be made in
a language close to this of the hand proof.

The dynamic logic of common knowledge is based on knowledge and events. In
a formal statement, an event becomes a dynamic modality which transforms a propo-
sition that describes the world before the event into a proposition that describes the
world after that event. Said otherwise a dynamic modality transforms properties into
others. Here we have limited our work to epistemic events which only transform agent
knowledge, but this is not a big restriction, as this is what happens most of the time.

We notice that we had to adapt the system for the specific situation generated by the
muddy children puzzle. But this is no so different from situation where classical logic

12

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicAndDynamicLogic.v

or another system is used. However, conceptual tools or practical tools (for instance
implemented in COQ) could be built to ease the task of the person who mechanizes a
proof.

Acknowledgments We would like to thank Stéphane Le Roux, for discussion and
advice about COQ.

References

[1] Aumann, R., Hart, S., Eds.:Handbook of Game Theory, vol. 2, chapter Common
knowledge, Elsevier, Amsterdam, 1994, 1437–1496.

[2] Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding Modal Logics in
Logical Frameworks.,Studia Logica, 60(1), 1998, 161–208.

[3] Baltag, A.: A logic of epistemic actions,Proceedings of the ESSLLI 1999
workshop on Foundations and Applications of Collective Agent-Based Systems
(W. van der Hoek, J.-J. Meyer, C. Witteveen, Eds.), Utrecht University, 1999.

[4] Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge and private suspicion,Proc. of TARK, Morgan Kaufmann Publishers,
1998.

[5] van Benthem, J.:Exploring Logical Dynamics, CLSI Publications, 1996.

[6] van Benthem, J.: Games in Dynamic Epistemic Logic,Bulletin of Economic
Research, 53(4), 2001, 219–248.

[7] Coupet-Grimal, S.: An Axiomatization of Linear Logic,J Logic Computation,
13(6), 2003, 801–813.

[8] Crow, J., Owre, S., Rushby, J., Shankar, N., , Srivas, M.:A Tutorial Introduction
to PVS, April 1995.

[9] van Ditmarsch, H. P., van der Hoek, W., Kooi, B. P.: Dynamic epistemic logic
with assignment.,AAMAS, 2005.

[10] Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M. Y.:Reasoning about Knowledge,
The MIT Press, 1995.

[11] Girard, J.-Y.: Linear Logic,Theoretical Computer Science, 50, 1987, 1–102.

[12] Halpern, J. Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment,PODC ’84: Proceedings of the third annual ACM symposium on
Principles of distributed computing, ACM Press, New York, NY, USA, 1984,
ISBN 0-89791-143-1.

[13] Harel, D.: First-Order Dynamic Logic, vol. 68 of Lecture Notes in Computer
Science, Springer-Verlag, 1979.

13

[14] Harel, D., Tiuryn, J., Kozen, D.:Dynamic Logic, MIT Press, Cambridge, MA,
USA, 2000, ISBN 0262082896.

[15] Kaufmann, M., Moore, J. S., Manolios, P.:Computer-Aided Reasoning: An
Approach, Kluwer Academic Publishers, Norwell, MA, USA, 2000, ISBN
0792377443.

[16] Lafont, Y.: From proof nets to interaction nets,Advances in Linear Logic(J.-Y.
Girard, Y. Lafont, L. Regnier, Eds.), Cambridge UniversityPress, 1995.

[17] Lehmann, D.: Knowledge, common knowledge and related puzzles (Extended
Summary), PODC ’84: Proceedings of the third annual ACM symposium on
Principles of distributed computing, ACM Press, New York, NY, USA, 1984,
ISBN 0-89791-143-1.

[18] Lescanne, P.: Mechanizing common knowledge logic using COQ, Annals of
Mathematics and Artificial Intelligence, 48(1-2), 2006, 15–43.

[19] Levesque, H. J., Lakemeyer, G.:The Logic of Knowledge Bases, MIT Press,
2001.

[20] McCarthy, J., Sato, M., Hayashi, T., Igarashi, S.:On the Model Theory of Knowl-
edge, Technical Report AIM-312, Stanford University, 1977.

[21] Meyer, J.-J. C., van der Hoek, W.:Epistemic Logic for Computer Science and
Artificial Intelligence, vol. 41 ofCambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press, 1995.

[22] Nipkow, T., Paulson, L. C., Wenzel, M.:Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, vol. 2283 ofLNCS, Springer, 2002.

[23] Pollacket.al., A.: The LEGO Proof Assistant, 2001.

[24] Raffalli, C.: The PhoX Proof Assistant,http://www.lama.univ-savoie.fr/
˜RAFFALLI/phox.html , 2005.

[25] Team, H.: The HOL System DESCRIPTION, September 2005, Kananaskis re-
lease.

[26] Weisstein, E. W.: Kepler Conjecture, From MathWorld–AWolfram Web Re-
source,
http://mathworld.wolfram.com/KeplerConjecture.html .

What is COQ?

COQ is a proof assistant, i.e., a program which verifies step by step the validity of a
mathematical proof given by the user. In logic, it is generally not obvious to follow a
hand-made proof and to determine whether it is right or wrong[26]. A proof assistant,
such as COQ, becomes a necessary tool if one chooses to be absolutely sure of a result.

14

http://www.lama.univ-savoie.fr/~RAFFALLI/phox.html
http://mathworld.wolfram.com/KeplerConjecture.html

Moreover, COQ is a very good means to build proofs. Indeed, managing a proof
step by step, as required by a proof assistant, allows us to understand in a very precise
way what is done and what has to be done to complete a proof. COQ is also a way
to reach a good formalism as it requires from the user to defineexactly all what he
manipulates.

Excerpts of the Coq script

Here is the statement of the main lemmas and of the last theorem Concl.

Lemma GainConn :
forall (G: list nat) (i j : nat),

|- E (i::G) (E (i::G) (lambda j)) ==>
[*] (E (i::G) (lambda (j+1))).

Lemma MultGainConn :
forall (G: list nat) (m i j : nat),

|- F ((m+1)+1) (i::G) (lambda j) ==>
[*] (F (m+1) (i::G) (lambda (j+1))).

Lemma ComImpPartIt :
forall (p:proposition) (n:nat) (G: list nat),

|- C G p ==> F n G p.

Lemma PointImpPartIt :
forall (G:list nat) (m:nat),

|- [] TRUE ==> F m G (lambda 1).

Lemma PointImpProgr :
forall (G:list nat) (i j n:nat),

|- [] TRUE ==> [*]<:j:> (F (n+1) (i::G) (lambda (j+1))).

Lemma Concl :
forall (G:list nat) (i j m : nat), In i (j::G) ->

|- [] TRUE ==> [*]<:m:> (muddy i ==> (K i (muddy i))).

15

