N

N

Dynamic Logic of Common Knowledge in a Proof
Assistant

Pierre Lescanne, Jérome Puisségur

» To cite this version:

Pierre Lescanne, Jérome Puisségur. Dynamic Logic of Common Knowledge in a Proof Assistant. 2007.
ensl-00198782

HAL Id: ensl-00198782
https://ens-lyon.hal.science/ensl-00198782

Preprint submitted on 18 Dec 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://ens-lyon.hal.science/ensl-00198782
https://hal.archives-ouvertes.fr

ensl-00198782, version 1 - 18 Dec 2007

LIP Research Report RR2007-50

Dynamic Logic of Common Knowledge
in a Proof Assistant

Pierre Lescanrfe Jérdme Puisségur

Université de Lyon, Ecole Normale Supérieure de Lyon, GNRIP),
46, allee d'ltalie, 69364 Lyon 07, FRANCE

Abstract

Common Knowledge Logic is meant to describe situations efréral world
where a group of agents is involved. These agents share &dga/land make
strong statements on the knowledge of the other agents ¢tlvalked common
knowledgg But as we know, the real world changes and overall infoimnabn
what is known about the world changes as well. The changedea@ibed by dy-
namic logic. To describe knowledge changes, dynamic Idgiull be combined
with logic of common knowledge. In this paper we describeegxpents which
we have made about the integration in a unique frameworkmfeon knowledge
logic and dynamic logic in the proof assistandb@ This results in a set of fully
checked proofs for readable statements. We describe thedvark and how a
proof can be conducted.

keywords: Common Knowledge, Dynamic Logic, Proof Assistant

1 Introduction

Common knowledge logis about the knowledge of the world, wheremamic logic
is about the changes of the world. Both are presentedctal logic In this paper we
propose to analyze reasoning in a combination of thoseddbrough a mechanization
by a proof assistant.

By experience, we know that the knowledge we have of the wenht perennial,
but is meant to evolve. Therefore, any faithful and compégiproach of reasoning
of agents about their surrounding world requires to také ¢halution into account
and to combine a logic that describes the state of the kn@eledl a given time and
a logic that accounts the changes due to external events.kirtd of work is known
asbelief revision(or knowledge revision in our case) and is advocated by Johan
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Benthem [[5]. In this paper, following the work of] [E, ,, e combine two
logics: the first logic is common knowledge Iog@ ] 2nd the second one is
dynamic logic EBE1|4] The combination of both is calldghamic logic of common
knowledge The idea is not new but the novelty is that we do that comiwnah a
proof assistant.

As we are neither designers of modal logic, nor philosoptmensonly proof assis-
tant users, what is presented in this paper is not a gene@lgtiion on the interest or
the advantage of combining logics or how this can be made aypeopriately. What
we present is a record of experiments done on a mechanizaitidynamic logic of
common knowledge in 6Q, one of the proof assistants available on the market. By the
use of higher logic and mechanization this activity sheglstlon the reality of reason-
ing in dynamic logic of common knowledge and on how the two ponents, namely
epistemic and dynamic fit together. This paper does not addrry comparison on
using one proof assistant or another in that kind of impletat@n exercise. We feel
that actually higher order proof assistants like ACL-2| [18DL [Rg], Isabelle [2}],
LEGO [23], PHoX [2h] or PVS|[B], are not so deeply different.tv.modal logic and
that such a comparison would not be informative for the readle prefer to focus on
the experience itself, hoping that what has been learnddelpp designers of logics.
We have taken 6Q, because we practiced 18] and we have an expert envirohme
around us. This paper is essentially a careful examinafiarhat is necessary to make
an actual proof of correctness. We have chosemthédy children puzzig@gain not a
very original choice) and we introduce the reader to tlo®Gcript.

Why experiences on a proof assistant?

We noticed that most of the presentations about logic of comkmowledge or dy-
namic logic or a combination of both were made either throaghodel approach
where no specific care is given to actual deductions, witasraind axionm’s When
proofs are given they are done at an intermediary level dfattson, whereas we ad-
vocate a deep level, where no detail is left over. We are aliyiat a proof theory
level. With a proof theoretic background, we feel that psoahd deductions are of
main importance as it has been shown with most of experiefitbeproof assistants.
To summarize, this paper is about the actual integratioroafronon knowledge and
dynamic logic in a unique framework in a proof assistanteliess on a previous work
by the first author|E8] and is associated with two scripts:
http://perso.ens-Iyon.fr/pierre.Iescanne/COQ/Episte micLogic.v8 |

and
http://perso.ens—Iyon.fr/pierre.Iescanne/COQ/Episte micAndDynamicLogic.v |

1A notable exception related to our approach is the formradif linear temporal logic in COQ done by
Solange Coupet-Grimdl|[7]. Her development is a shallowesiding when ours is a deep one.


http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicAndDynamicLogic.v

2 Dynamic logic of common knowledge

Common knowledge logic

Common knowledge logic is a modal logic with two main modedit One modality;,
which is associated with each agens theknowledge modalityit is meant to express
the knowledge an agent has on statements, facts and piopssifor instance;()
reads as knows. The modalityCg, which is associated with a group of agents is
thecommon knowledge modaligs() translates the fact that a knowledge is common
to a groupG of agents, not only each agent in the grdsignows , but also he knows
that the others know and he knows that the others know thatttiers know , and this
recursively.Cg() reads asis a common knowledge of the group IBis formalized as

a fixed point by an axiom and a rule:

PO —p— O AEcp L
FixPointc "
H—Ce¢d — ¢ AEcCad o v GreatestFixPoirg

Dynamic logic

Dynamic logic makes events modalities. There are as manyalitied as there are
events. Ifa is an event, thera] is a modality and one writeft] the proposition
modified by an event. If an universe satisfies , after the evenhas been performed
on it, the transformed universe satisfia$

Hilbert-style

Hilbert-style is what has been chosen in the COQ implemiemtalt is convenient both
from the point of view of its presentation and from the poifiview of its mechaniza-
tion in a proof assistant. Therefore the forthcoming ruled @xioms will be presented
in that framework.

The reason why one cannot use a natural deduction of a setplenlus approach
is essentially due to the Generalization Rule. If one ascepth a rule in natural
deduction, one gets

M—
Ki(r)l—Ki()

This requires to extend the operat§rto contexts likel". If instead ofK; one uses
a modality, one says thati(I") is a“boxed context” Actually linear logic [@] is
perhaps the archetypal modal logic and the equivalei @f the modalityof course
written “I". The equivalent of Generalization Rule is a rudelled alsoof course
Without that rule the proof net presentation is somewhapklé]. Its introduction
requires a machinery of boxes which increases its comple&ée [P] for a discussion.

The axioms

The axioms of modal logic are those dhssical logicplus two axioms and one rule
for each modalityM:



e Normalization axiom Ig: — M¢ — M(¢ — @) — My

¢ Necessitation axiomp: — M¢ — ¢

—¢
e Generalization rule Gep: ———
—Méd
These axioms of modal logic have to be duplicated for dynadmgic and common
knowledge logic.

2.1 Epistemic and dynamic modalities: purely epistemic prposi-
tions

The central issue of this paper is to show how to integratencomknowledge and
dynamic logics in a unique framework for using in a proof stssit. First we define a

logic that we calrr; o (see Figurg]1). An interesting featurecogf[“] is axiomKT1:
v : propositionva : eventvi € G, —Kj[a] — [a]K;

It is well known in epistemic-temporal IogiﬁllO] and is appriate for dynamic logic
of common knowledge. It readf agent i knows that, after everd, ¢ holds, then
one can infer that, after evemt, agent i knows tha$ holds”. This axiom allows
commuting epistemic and dynamic modalities in one directiote that the converse
is quite dubious in natural language and would certainlydjected by philosophers.
Indeed ifafter a, | know that holdsbecause evert is precisely to let me know
proposition , then there no reason to infer thithow that has to hold aftem. But
looking carefully at axionKT1, one notices that eventis transforming not actually
the world in its physical reality, but the knowledge the adgeas of it. Therefore to
avoid troubles and paradoxes, we consider only everktat are“purely epistemic”
This means that in our approach of dynamic logic of commom#tedge, we consider
only actions or events that change the perception of thedwanich agents have, not
the world itself. We borrowed this concept of purely episieevent from A. Baltag[[4,

Al

2.2 The axiomatization of dynamic logic of common knowledge

For the common knowledge modaliBg we have chosen the axiomatization proposed
and implemented in Coq by the first of [18]. The whole dyriiogic of common
knowledge is made of the following ingredients:

e the logicT for K and for[a],

the definition ofshared knowledged;

the definition ofcommon knowledgedby a fixpoint axiom and a rule that says
that it is the greatest fixpoint,

knowledge logic.

the axiomKT1 that makes the connection between dynamic logic and common
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Figure 1: The dynamic logic of common knowledgé[a]

3 Arunning example: the muddy children puzzle

Themuddy children puzzleill serve as an example to show how dynamic and knowl-
edge logic have been integrated i@ This problem is presented by several au-
thors [10[L[2]1] as an illustration of common knowledgedogihe problem considers
amazing children who are be able to carry perfectly logieakpning.

3.1 The statement

First, let us recall the puzzle. The reader who knows the lpuzn skip this part and
jump to Sectior[|4, collecting the axioms. We follow more @sl¢he presentation of
Meyer and van der Hoek [R1].

n+ 1 children are standing in a circle around their father. €smem+ 1 (m €
{0,...,c}) children with mud on their face. The children can see eahkrobut they
cannot see themselves. In particular, they do not know if teee mud on their face.
Father says aloud: “There is at least one child with mud ofeite.” Then he asks:
“Will all children who know they have mud on their face pleatep forward?” This
procedure is repeated until, after tie- 1-th time Father has asked the same question,
all muddy children miraculously step forward.

The conclusion which happens eventually is the result ofacéd reasoning made
by the children, especially the muddy ones, about what tmeiinitially and what
they know about the changes on what they know. It is a perfeatele of an common
knowledge and dynamic reasoning which fits with our framéwor



3.2 The formalization

In this section, we try to say what justified our statementse@der interested only by
the formal rules and the mechanized reasoning can jump ledext and go directly to
the formal statements. This discussion is interesting tetstand why we have chosen
this system of axioms.

Two events

In this puzzle, the action are not very elaborated, sincer &father’s first statement,
he keeps repeating the same sentence. Therefore we cotwierents, one that
starts the scenario and that we writg"; it is also called theinitial event and one
that corresponds to the sentence Father repeats and thaillweite “*”, it is also
called theprogression eventln our dynamic logic of common knowledge, we will
have two types of propositiongz] and[«]. We will also write[+]X for [+]...[x] where
[¥] is repeatedh times. Clearly{«]° means . In ©Q, we will use the identifierBoint
(abbreviated i ] in CoQ) andStar (abbreviated irf*] in CoQ).

Definitions

To study this puzzle, we must describe formally the situatind so define basic prop-
erties with axioms.

Letc € Nandm € {0,...,c}, so that+ 1 is the number of children (there is at least
one of them) andh + 1 the number of muddy ones (there is also at least one of them).
Let G be the group of all children, of cardinality+ 1: we identify it with{1,...,c+1}.

Lety (i € {1,...,c+ 1}) be the proposition “child has mud on his face”.

LetA;j (j € N) be the proposition “at leagtchildren have mud on their face”.

Lete; (j € N) be the proposition “exactljchildren have mud on their face”, which
is defined as follows:

EQj¢: VjeN, I—Ej<—>)\j/\ﬁ}\j+l

what one can read “there are exadtijmuddy children if and only if there are at legst
and at the mosjtones”. Two trivial properties can be proved from this axidhe(proof

is made in the ©Qfile): first, “if there are at least but not exactiymuddy children,

then there are at leagt 1 ones”, which is:

IMP ¢ VieN, —AjA-Ej—Aj11

secondly, a principle of exclusion, “there cannot be eyajctind at leasf + 1 muddy
children”, which is:

EXCLU )¢ VieN, —-(Ajt1AEg)

These propositions describe ttghysical world”, i.e., the physical state of the
children, whether they are muddy or not. They form the tppgsical proposition
As we only take into accoumpistemic eventphysical propositions arpersistent”,



which means they are not modified bpistemic eventsThis property is axiomatized
as follows:

PERSIST Vp: physical propositionva : epistemic event — p — [a]p

The initial eventand its consequences

First, Father says loudly that there is at least one muddy chilerefore this propo-
sition becomes common knowledge.TRUEis the logical constant, we notice that it
is the only “true” proposition available to the childrentially. The effect of the first
statement is as follows:

MC1;  +— [0]TRUE— Cgh1

this is the first axiom of our formalization.

The children are not blindthey see each other and they get pieces of information
from it. Theinitial eventrecords what they ge&very child counts the number of muddy
children in front of him/herIn particular, the muddy ones seemuddy children, thus
they get a knowledge about the total number of muddy childramelym orm + 1:

MC1, VieG, —[dTRUE— p — Ki(€m Vem+1)

Defined that way, thénitial eventis an epistemic eventNo further action will
change the world, only the knowledge the agents own on thilwolt evolve. There-
fore the muddy children problem is a paradigmatic example.

We said that physical propositions are persistent, but #reynot the only ones.
Indeed, the muddy children are able to remember what they $wen initially, in other
words, the parnt; — Ki(em V €m41) of axiomMC1; is also persistent:

PERSuc1, Vo :eventvi € G— (li — Ki(em VeEm+1)) — [a]( — Ki(Em VeEm41))

The final statement

The problem gets to its end when the muddy children step fatwéhis happens when
muddy children know they are muddsormally this is

VieG, w—Kiy

Muddy children are able to infer this statement when theykiieere are exactlyn + 1
muddy children: as every muddy child seenes (a persistent property), he knows
that he is muddy when he knows there are exactly 1 muddy children, i.e. then
ones he sees plus him/herself.a child is muddy and if he knows there are exactly
m + 1 muddy children, then he knows he is muddis leads to the following axiom.

MC3 VieG, —W—Kéemer— Kl



The progression everand the increase of knowledge

The core of the work consists in clarifying formally what iduced by Father’s in-
junction and how this makes the muddy children’s knowledggrow.

In this scenario, a tempo is given by Father: time is madeelisand is divided
into time intervals which every agents (here the childrea) distinguish by counting
Father’s statements. Therefore, these intervals can béenat as follows:

e Firstinterval starts at Father’s declaration and ends thgfa first injunction
e (i+1)"interval goes froni'" to (i + 1)t injunction.

After m+ 1 injunctions, every muddy child steps forward, as we withy it in
our system for dynamic logic of common knowledge. To do sonesd to understand
better what happens from an interval to another with eachefatinjunction. These
injunctions do not carry much semantics, but they are ingmdifrom a dynamic logic
point of view: indeed, each injunction gives a tempo and $ielgery child in his quest
of knowledge as it ends the previous interval. Then everidatan deduce that no
child has stepped forward during the previous interval Whieeans that none has been
able to conclude about his state, these increases the awfanfdarmation the children
have..

Indeed, let us consider the first injunction. In the first iméd, CcA; holds and two
cases occur:

If m =0, the only muddy child can say at once, that he is muddy becagise the
only one to see no other muddy child and after Father’s fijghiction, he steps
forward.

If m > 0, every child sees at least another muddy child, and so, nhoameanclude
whether he is muddy or not. Worst, Father’s initial statetradr\, did not tell
them anything they do not know, but the fact that this statérhecame common
knowledge and when no one steps forward at Father’s firstatijon, every child
can infer that no one sees no muddy child, this means thag emersees at least
one muddy child. This can only happen if there are at leasthtwddy children.
By an easy reasoning they exclude the case 0.

To be more formalevery child knows that every child knows there is at least one
muddy child which leads the children to the followinghere are at least two
muddy children

Father’s first injunction translates formally into
— EcEgA1 — [x|Ec—€1
which generalizes for any injunction:
MC2 Vje{l,..,k}, +—EgEcA;— [*x|Ec—gj

which isif every child knows that every child knows there are at I¢astiddy children,
then after Father's injunction, every child knows there wanbe exactly j ones



4 A knowledge gain lemma

One can deduce a knowledge gain lemma which saysiftleatry child knows that
every child knows there are at least j muddy children, theerdather’s injunction,
every child knows there are at least-jL ones Formally

Lemma 1. GainConn vjed{l,.,k}, +— EGEG)\j — [*]EG}\j+l
Proof. Letje{1,... k}.

PERS
—Aj— [*]A]
Te EPers
— EGEGAj — EGAj —EgAj — [*]EGA|
MC2 Cut
— EcEcAj — [*]Eg—g;j —EGEGAj — [+]EGA]j

Alntro
—EGEGAj — [+]EGAj A [*]Eg—g|

«/ A\ Dist
= EGEG)\j — [*](EG)\J A EG_‘sj)

E/ A Dist
—EGEGAj — [*|Ec(Aj A —gj)

Ae
— EGEg)\j — [*]EG)\j+l

Summary of the proof of the muddy children puzzlgheorem

A common knowledge induces a nested shared knowledge atagly theGainConn
lemma deduced fromMC2 axiom allows us to get a picture of the proof of timeiddy
children puzzleheorem, which we calle@oncl and which states as:

Concl  +—VYmeN VieG, [Q]TRUE— [+]™ (4 — Kip)

Indeed, initially,A1 is a common knowledg®{C1,), soitis as an arbitrarily nested
shared knowledge. With each Father’s injunction, childrem able to make precise
their knowledge about the total number of muddy children yp@ing one level of
their shared knowledge. Therefore, affeinjunctions, they know\; 1 by dropping
j depths of their shared knowledge. But since initially thiowledge is arbitrarily
deeply nested in shared knowledge, after the fir§tather’s injunctions, every child
effectively knows\m-1.

At this point, the muddy children know there are at least 1 muddy children; so,
as they seen ones, they deduce there are exaetly- 1 muddy childreniC15) and
they know they are muddy themselvé4@3). At the (m+ 1)St injunction, they will
step forward miraculously, as Meyer and van der Hoek say lwithor. After our ©Q
experiments, we would say perfectly logically!

One can notice thatoncl holds also form = 0. This theorem describes all the
scene: “if Father makes its initial statement, then aftemt’ injunction, the agents
who satisfy propertyt know they do.”.



5 The proof of the muddy children puzzldgeorem

In this section, we describe the mechanized proof prewaishmed up in more detail.
Letce Nandm € {0,...,c+1}.

Lemma 2 (MultGainConn). Vc € N* Vj € {0,....m}, —ES™\j — [+]ESNj+1
Proof. By induction onc € N* :

e Initialization:c =1,

GainConn
— EGEG}\J' — [*]EGAJ+1

e Heredity : Letc € N*,

HYP-REC
— Engl)\j — [*]Eg)\j+1 KT1
— E6E8+l)\j — Eg [*]Eg}\jJrl — Eg[*]Eg}\Hl — [*]Engl}\Hl
— EGEngl)\j — [*]Eg+l)\j+1
O
Lemma 3 (ComimpPartit). VceN, +—Cgp— ESp
Proof. By induction onc € N :
e Initialization:c =0,
PointFixe:
—=Cep— PAECep
AEIlim
—Cep—p
e Heredity : Letc € N,
PointFixe: — HYP-REC
—Cep— PAECep _ —Cep— Egp :
AElim o1 EDist
—Cgp — EcCep —EcCep — E¢" pCut
—Cep—Egp
O
Lemma 4 (PointimpPartlt). Vc € N*, — [0]TRUE— ESAq
Proof. Letc e N*,
MCl; ———— ComlmpPartit
— [] TRUE— CAq —CoA1 — EEM cut
u
— [ TRUE— E&A1
O

10



Lemma 5 (PointimpProgr). Ve > kVj € {1,... . k+1},
— [ TRUE— [I72ES T+,

Proof. Letc > k. By inductiononj € {1,....k+1}:

e Initialization: j =1,

c PointimpPartlt
e Heredity : Letj € {1,...,m},

- I HYP-REC oy o MultGainConn
— [ TRUE— [x]I1EGTI M\, . —EGEg 'Aj — [HEg 'Ajs1
[

- - - . - - (j—1)«Dist
[ TRUE— [+ *EGEG 'Aj [ BB N — MBS A
Cut

— () TRUE— [+ ESTAj 14

From those lemma we get the following ones
With j=m—+1
Lemma 6 (ResInter). Ve >m, +— []TRUE— [+]MES MAm;1
Withc=m+1
Lemma 7 (ResInter). — [ TRUE— [*]MEcAm1
And themuddy children puzzldheorem comes out (almost) easily.
Theorem 8 (Concl).—Vm e N Vi € G, []TRUE— [«]M (i — Kip)
Proof.
ReslIntes&MC1,
PERSc1,
/ A\ Dist
(Ecp— Kip)
(an(b—c) — (b—aAc))
K/ A Dist
A/ V Dist

— [ TRUE— [*]"EcAms1 A (i — Ki(em VEm41))
[ TRUE— [+]MEcAm 1A [¥]™ (b — Ki(em VEm.1))
[ TRUE— [+]™ (EcAm:+1 A (i — Ki(em Vem1)))
[ TRUE— [+]™ (KiAm+1 A (i — Ki(Em Vem.1)))
[ TRUE— [+]M (1 — Kidmi1 AKi(Em VeEmi1))
— [TRUE= [+]™ (i — Ki(Am+1A (Em V €m+1)))
— [)TRUE= [+]™ (b — Ki((Am+1A€m) V (Am+1/A8m+1)))
— [TRUE= [+]™ (1 — Ki((Am+1/&m) V em+1))
— [ TRUE— []™ (1 — Ki(LVeEm41))
— [ TRUE— [+]™ (1 — Kiem:1)
— [TRUE— [+]™ (i — Kim)

T

T

T

T

(AmAEm — €m+1)
(EXCLUy¢)
(LVp—p)

MC2

11



6 The dynamic logic of common knowledge in ©Q

6.1 Implementation offg[“] in Coo

See the appendix for few words oroQ. The implementation presented in this paper
is based on another implementation, namely this of the Loh€ommon Knowledge
done by the first authof [18] who implemented all the epistemilti-agent logic with
common knowledge (systeﬂg), of which a @®q file is available on the wehhttp:

Ilperso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLo gic.v8
This paper comes out with its ownd® file:
http://perso.ens-lyon.fripierre.lescanne/COQ/Episte micAndDynamicLogic.v |

which implements the whole systeI[,},CmJ and a complete proof of theuddy children
puzzletheoremConcl.

6.2 Why this implementation?

The first aim of this implementation was to ensure a readdrthigaproof is totally
checkable. This lead to a proof of nearly 1100 lines of@@ode, where every lemma
is the direct translation of the hand-made proof for a makiegibility. We do not
claim that proof are readable as they would be in an Englipkepa certain technicality
is required for giving all the detail of the proof; however wlaim that the statements
of the lemmas are easily readable.

As an added value, this implementation allows any futureeiggpment by adding
axioms or new modalities. This makes our work flexible ancatle.

7 Conclusion

The proof theoretic approach we have used in this paper cesliasily epistemic and
dynamic logics together, thanks to a general epistemiaahyo axiom KT1). (KT1)
involves a commutativity between epistemic modality angmaaginic modality. In the
current implementation dKT1), type is not used to check whether the axiom is only
invoked on purely epistemic propositions. In a future innpéatation, we will create a
new typeepistemic propositioon which(KT1) can only be invoked.

After manipulating the logical system presented in thisguagith the proof assis-
tant GoQ, we feel that it is quite simple and intuitive. It only usesam®s and rules
from classical logic plus a few additional axioms and rulgstements can be made in
a language close to this of the hand proof.

The dynamic logic of common knowledge is based on knowledgkexents. In
a formal statement, an event becomes a dynamic modalitywtransforms a propo-
sition that describes the world before the event into a psitiom that describes the
world after that event. Said otherwise a dynamic modalaps$forms properties into
others. Here we have limited our work to epistemic eventeiwbily transform agent
knowledge, but this is not a big restriction, as this is whagifiens most of the time.

We notice that we had to adapt the system for the specifidigitugenerated by the
muddy children puzzleBut this is no so different from situation where classicajit

12
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or another system is used. However, conceptual tools otipahtools (for instance
implemented in ©Q) could be built to ease the task of the person who mechanizes a
proof.
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What is CoQ?

CoqQis a proof assistant, i.e., a program which verifies step &y #te validity of a
mathematical proof given by the user. In logic, it is gerlgnabt obvious to follow a
hand-made proof and to determine whether it is right or Wf[@ A proof assistant,
such as ©Q, becomes a necessary tool if one chooses to be absolutelpiaresult.
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Moreover, @Q is a very good means to build proofs. Indeed, managing a proof
step by step, as required by a proof assistant, allows usderstand in a very precise
way what is done and what has to be done to complete a proof) i€ also a way
to reach a good formalism as it requires from the user to defiaetly all what he
manipulates.

Excerpts of the Coq script

Here is the statement of the main lemmas and of the last theGocl.

Lemma GainConn :
forall (G: list nat) (i j : nat),
|- E (i=G) (E (i=G) (lambda j)) ==>
[* (E (izG) (lambda (j+1))).

Lemma MultGainConn :
forall (G: list nat) (m i j : nat),
|- F ((m+1)+1) (i=G) (lambda j) ==>
[ (F (m+1) (i=G) (lambda (j+1))).

Lemma ComimpPartlt :
forall (p:proposition) (n:nat) (G: list nat),
FCGp==>FnGnp.

Lemma PointimpPartlt :
forall (G:list nat) (m:nat),
|- ] TRUE ==> F m G (lambda 1).

Lemma PointimpProgr :
forall (G:list nat) (i j n:nat),
|- I TRUE ==> [*]<;j> (F (n+1) (i=G) (lambda (j+1) ) ).

Lemma Concl :

forall (G:list nat) (i j m : nat), In i (j:G) ->
|- ] TRUE ==> [¥<m:> (muddy i ==> (K i (muddy i) ) ).
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