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École Normale Supérieure de Lyon

46, Allée d’Italie, 69364 Lyon 07, FRANCE

Pierre.Lescanne@ens-lyon.fr

December 19, 2007

Abstract

This paper presents experiments on common knowledge logic, conducted with the help of the proof
assistant Coq. The main feature of common knowledge logic is the eponymous modality that says that
a group of agents shares a knowledge about a certain proposition in a inductive way. This modality is
specified by using a fixpoint approach. Furthermore, from these experiments, we discuss and compare the
structure of theorems that can be proved in specific theories that use common knowledge logic. Those
structures manifests the interplay between the theory (as implemented in the proof assistant Coq) and
the metatheory.

1 Introduction

In a previous paper [13], I have presented an implementation of the common knowledge logic in Coq. There
I have shown how this applies to prove mechanically popular (and less popular) puzzles as prolegomenon
of other potential applications. In these experiments I have shown in particular that in the literature
(mostly devoted to study model theory of common knowledge logic) some concepts of proof theory are not
clearly brought out and statements made at the meta-level, i.e., in the meta-theory, are not sorted out from
statements made at the level of the language, i.e., in the theory. In the deep embedding in a proof assistant
(where the logic is fully implemented into the meta-language) the distinction between meta-theory and theory
is made explicit, by construction. The proof assistant cannot accept ill-formed expressions and forces the
user to specify the level of statements he makes, namely inside the theory or outside the theory. Thus the
kind of implication or quantification or even statement, e.g., axiom or premise of a logical implication, has
to be made precise. On the opposite, in the handwritten treatments of the puzzles, it is not clear whether
a statement is made an axiom stated as such in the meta-theory or a proposition stated as the premise of a
logical implication. This confusion is especially present in the literature on economic games [21, 8]. Using a
quantification in the meta-theory vs a quantification in the theory can change dramatically the strength of
a statement and its scope.

In this paper, my approach is this of a proof theorist with inclination to experiments. My goal is
twofold. First I present a new axiomatization of common knowledge logic (axiom FB and rule LFB).
Second I discuss a specific problem of common knowledge logic, namely the dilemma between internalizing
or externalizing implication. Here one needs some explanation. In a proof theoretic approach there are two
kinds of implications: an internal implication (the implication of the object theory) written here ? ⇒? , and
the external implication (the implication of the meta-theory) written

�

?
�

? . Here , � means “ is a theorem”.
This discussion about the two views of the same problem in common knowledge logic will be made first
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Figure 1: The basic rules of epistemic logic: the system T

through examples and at this exploratory state no meta-theorem is proved. There are two approaches when
solving a puzzle. In the first approach, a statement is made an axiom, say

�

, this axiom leads to the
proof of �

ψ, proving the meta implication
�

�

ψ
. In the second approach, one proves �

CG() ⇒ ψ, where
CG is the common knowledge modality. From experiments, I have drawn the following statements. These
two approaches seem to be equivalent and show the interplay between the theory and the meta-theory. An
interesting meta-theorem could be to prove that equivalence (see Section 5). I call external vs internal the
equivalence of

�

�

ψ
with

�

CG() ⇒ ψ. In this paper all the discussion is based on experiments made in the

proof assistant Coq and the paper can be seen as the description of those experiments. I discovered in [5] that
the correspondence between

�

�

ψ
and

�

CG() ⇒ CG(ψ) is known, but it is not the one I am looking for. In
what follows, the typewriter font is for code taken from the Coq implementation. Most of the development in
Coq is available on the WEB at http://perso.ens-lyon.fr/pierre.lescanne/COQ/epistemic_logic.v8
(see [13] or a presentation). The rest can be found in [19].

2 Presentation of common knowledge logic

Historical facts

The concept of common knowledge has been introduced by the philosopher Lewis [14] and since is used in
several context namely distributed systems [12, 18], artifical intelligence [16] and game theory [1].

Epistemic logic

The basis of common knowledge logic is epistemic logic. In my experiments in Coq [4], epistemic logic is
presented by a Hilbert-style system of rules and axioms. Since I use second order logic, I define only the
(internal) implication and I derive the other connectors. There are only two rules namely MP, i.e., the
Modus Ponens and KG also known as Knowledge Generalization and three axioms Taut, K and T. Actually
Taut is an axiom scheme as it says that every classical tautology is a theorem in common knowledge logic.
Such an approach requires a “deep embedding” (see annex A). The main reason is that modal logic cannot be
easily implemented with natural deduction without changing its basic philosophy (see annex B). Epistemic
logic is based on modal logic and in this paper only the system T (see Figure 1) is considered. Since there is
much flexibility in the terminology, I decided to stick to the terminology of [5]. Epistemic logic introduces
one modality for each agent: it expresses that that agent “knows” the proposition that follows the modality.
More specifically, if is a proposition, Ki() is the proposition modified by the modality Ki which means
“Agent i knows ”. In Figure 1, the statement �

K means that is a theorem in classical propositional logic
(this time, K stands for the German adjective “klassisch” [9]). Knowing whether classical logic is relevant
is a topics of research with René Vestergaard.

Common knowledge logic

Now let us suppose that we have a group G of agents. The knowledge of a fact can be shared by the
group G, i. e., “each agent in G knows ”. We write EG() and the meaning of EG is easily axiomatized by the
equivalence given in Figure 2 which can also be seen as the definition of EG; it is called shared knowledge.
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E
�

EG() ⇔
∧

i∈G

Ki

Figure 2: Shared knowledge

In common knowledge logic, there is another modality, called common knowledge which is much stronger
than shared knowledge. It is also associated with a group G of agents and is written CG. Given , CG() is
the least solution of the equation

x ⇔ ∧EG(x).

“Least” should be taken w.r.t. the order induced by ⇒. A proposition ψ is less than a proposition ρ if
ρ ⇒ ψ. As well known in the fixed point theory, the least solution of the above equation is also the least
solution of the inequation:

x ⇒ ∧EG(x).

The axiomatization of Figure 3 characterizes CG() by two properties. Together with the system T and the
definition of EG it forms the system CKG. It asserts two things.

1. CG() is a solution of the inequation x⇒ ∧EG(x), axiom FB,

2. If ρ is another solution of the inequation, then ρ implies CG(), which means that ρ is greater than
CG()). This is rule LFB.

One can prove that CG satisfies axioms and rules of T, where Ki is replaced by CG even when G = ∅. Thus
we prove

KC
�

(CG ∧ CG(⇒ ψ)) ⇒ CGψ
TC

�

CG ⇒

�

KGC
�

CG

KGC stands for Common Knowledge Generalization. Notice that TC and
�

� on one side and
�

CG ⇒ CG
and KGC on the other side form the two first instances of external vs internal. Actually one can prove more,
namely that CG satisfies axiom 4C , namely

�

CG() ⇒ CG(CG()). It is a variant for common knowledge
logic of the axiom �

Ki() ⇒ Ki(Ki()) of epistemic logic known as Positive Introspection or 4K . The proof
of 4C does not requires this of 4K

1.
Notice that the presentation of common knowledge given in Figure 3 is new. It is more robust than this

of Fagin et al. [5] which itself formalizes this of Aumann [1]. Our axiomatization works even for an empty
set of agents and this is crucial, as starting with an empty set of agents is the key of a recursive definition
of EG and CG;

Two presentations of common knowledge logic

This presentation should be compared with this given by Meyer and van der Hoek on page 46 of [17] (see
Figure 4). The system T ∪ {A7, A8, A9, A10, R3}, together with the definition of EG, is called TECG. One
notices that axioms (A7) and (A8) are just a splitting of axiom Fixpoint, i.e., one splits the conclusion
∧EG(CG()). Axiom (A9) is axiom KC mentioned above and (R3) is KGC also mentioned above. As said,
both (A9) and (R3) can be proved as theorems in CKG. (A10) is more interesting and requires specific
consideration. Figure 5 sketches a proof of (A10) as a theorem in CKG. Therefore CKG implies TECG.

1This seems to show that 4, which is a controverted axiom in general, should be stated more appropriately for the common

knowledge of a group of agents rather than for the knowledge of an individual agent.
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FB
�

CG() ⇒ ∧EG(CG())

�

ρ⇒ ∧EG(ρ)
LFB

�

ρ⇒ CG()

Figure 3: The rules for common knowledge

(A7 ) CG() ⇒

(A8 ) CG() ⇒ EG(CG())

(A9 ) CG() ∧ CG(⇒ ψ) ⇒ CG(ψ)

(A10 ) CG(⇒ EG()) ⇒ ⇒ CG()

(R3 )
CG()

Figure 4: Meyer and van der Hoek axioms TECG

TECG implies CKG.

Indeed axiom FB is an obvious consequence of TECG and we prove that rule LFB is a consequence of TECG

as follows.

ρ⇒ ∧EG(ρ)

ρ⇒ EG(ρ)
(R3)

CG(ρ ⇒ EG(ρ))
(A10 + MP)

ρ⇒ CG(ρ)

ρ⇒ ∧EG(ρ)

ρ⇒
(R3)

CG(ρ⇒))
(A9 + MP)

CG(ρ) ⇒ CG()
(Transitivityof ⇒)

ρ⇒ CG()

(R10) implies (A10).

In the above proof, we should notice that instead of axiom (A10), we use rule

CG(⇒ EG())
(R10)

⇒ CG()

which is a direct consequence of (A10) by MP. By analogy with (A10), we call that rule (R10). A closer
look shows that we use the derived rule

⇒ EG()
(R10′)

⇒ CG()

which is the above rule combined with (R3). See section Discussion below to understand why we are
interested in that rule. Let us come back to (R10) and let us call TEC

′

G the system T∪{A7, A8, A9, R10, R3}.
Since we have a proof of CKG in TEC

′

G and a proof of TECG, in particular of (A10), in CKG, we have an
indirect proof of TECG in TEC

′

G or, in short, of (R10) implies (A10). Here is a direct proof.
Let us state A ≡ CG(⇒ EG()) in this proof. First, let us prove A∧ ⇒ CG(A∧).
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CG(⇒ EG())∧ ⇒

CG(⇒ EG()) ⇒ EG(CG(⇒ EG()))
�

�

�

�
A8

CG(⇒ EG()) ⇒ (⇒ EG())
�

�

�

�
A7

CG(⇒ EG())∧ ⇒ EG()

CG(⇒ EG())∧ ⇒ EG(CG(⇒ EG())) ∧ EG()

CG(⇒ EG())∧ ⇒ EG(CG(⇒ EG())∧)
Transitivity of ⇒

CG(⇒ EG()) ∧ ⇒ ∧ EG(CG(⇒ EG())∧)
LFB

CG(⇒ EG())∧ ⇒ CG()

CG(⇒ EG()) ⇒⇒ CG()

Figure 5: A proof of Meyer and van der Hoek’s axiom (A10)

CG(⇒ EG()) ⇒ EG(CG(⇒ EG()))
�

�

�

�
(A8)

A∧ ⇒ EG(A)

CG(⇒ EG()) ⇒ (⇒ EG())
�

�

�

�
(A7)

CG(⇒ EG())∧ ⇒ (⇒ EG())∧ (⇒ EG())∧ ⇒ EG()

CG(⇒ EG())∧ ⇒ EG()

A∧ ⇒ EG(A∧)
(R10)

A∧ ⇒ CG(A∧)

The rest is easy. First, we notice that we have CG(A∧) ⇒ CG().

A∧ ⇒
(R3)

CG(A∧ ⇒)
(A9) + MP

CG(A∧) ⇒ CG()

By transitivity of ⇒, we get A∧ ⇒ CG(). But clearly A∧ ⇒ CG() is equivalent to A⇒⇒ CG() which is
CG(⇒ EG()) ⇒⇒ CG(), e.g., (A10).

Discussion

The equivalence between (A10) and (R10′) is a third instance of external vs internal. Indeed, we have shown
that a proposition of the form

�

CG(ρ) ⇒ ψ is equivalent to a rule of the form
�

ρ
�

ψ
.

3 The three wise men

The first example we address is the well-known example of the three wise men. See [13] for a more detailed
presentation. It is stated usually as follows ([5], Exercise 1.3): “There are three wise men. It is common
knowledge that there are three red hats and two white hats. The king puts a hat on the head of each of the
three wise men and asks them (sequentially) if they know the color of the hat on their head. The first wise
man says that he does not know; the second wise man says that he does not know; then the third man says
that he knows”. Let us call the three wise persons Alice, Bob and Carol. Let us write white Alice for “Alice
wears a white hat” and red Alice for “Alice wears a red hat”. The puzzle is based on a function which says
whether an agent knows the color of her (his) hat:

Definition Kh := fun i => (K i (white i)) V (K i (red i)).

Clearly one has to prove that Kh Carol holds under some assumptions. To make clear theses assumptions,
we define in addition a few propositions namely

Definition One_hat := \-/(fun i:nat => white i | red i).
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which says that every agent wears a red hat or a white hat. If P is a predicate, \-/P is the logical quantifi-
cation, i.e., the quantification in the theory not this in the meta-theory.

Definition Two_white_hats := white Bob & white Carol ==> red Alice.

which says that there are two white hats. Notice that this is stated in a weak form, indeed it is only when
Bob and Carol wear white hats that one can deduce that Alice wears a red hat. Moreover there are three
concepts which say that each agent sees the hat of the other agents and therefore knows the color of the hat.

Definition K_Alice_white_Bob := white Bob ==> K Alice (white Bob).

Definition K_Alice_white_Carol := white Carol ==> K Alice (white Carol).

Definition K_Bob_white_Carol := white Carol ==> K Bob (white Carol).

A first result

In a first attempt [13], the five above propositions were stated as axioms and I was able to prove:

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)

==> K Carol (red Carol).

In Coq this would give a statement like

|- One_hat &

K_Alice_white_Bob &

K_Alice_white_Carol &

K_Bob_white_Carol &

Two_white_hats ->

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)

==> K Carol (red Carol).

where -> is the meta-implication, i.e., this of Coq and as usual |− says that proposition is a theorem.

A second result

In the second attempt one proves:

|- K Carol (K Bob (One_hat &

K_Bob_white_Carol &

K_Alice_white_Bob &

K_Alice_white_Carol &

(K Alice Two_white_hats) &

¬ Kh Alice) &

¬ Kh Bob)

==> Kh Carol.

This tells exactly the amount of knowledge which Carol requires to deduce that she knows the color of her
hat, actually red. Let us call Alice Bob Carol the group made of Alice, Bob and Carol. From the above
statement, one derives the corollary:

|- C Alice_Bob_Carol (Two_white_hats &

One_hat &

K_Bob_white_Carol &

K_Alice_white_Bob &

K_Alice_white_Carol)

==> K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol.
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which is weaker. But if we state

ϕ ≡ Two_white_hats &

One_hat &

K_Bob_white_Carol &

K_Alice_white_Bob &

K_Alice_white_Carol

and

ψ ≡ K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol

we notice that we have exhibited a fourth instance of external vs internal since
�

CG() ⇒ ψ and
�

�

ψ
are

equivalent.

4 The muddy children

This problem had many variants [15, 7, 6, 8]. It is a typical example of how a community of agents acquires
knowledge. In its politically correct version [5, 17], a group of children have mud on their head after playing
during a birthday party. The kids do not know they have mud on their head. The father of the kid who
organized the party asked the children to come around him in a circle for the kids to see each other and he
tells them that there is at least one child who has mud on his face so that they clearly all hear him. Then
Father asks the kids who have mud to step forward. He repeats this last sentence until all the kids step
forward.

Philosophers have been puzzled by the fact that the first sentence of Father namely “There is at least
one child with mud on his face” is absolutely necessary. This fact is known by the children, but by doing so,
Father makes it a common knowledge. In [13], we have identified that the key lemma is

Lemma Progress :

forall n p : nat,

|- C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p)

==> C ([:n+1:]) (At_least (n+1) (p+1)).

In other words, if the fact that there is at least p muddy children is a common knowledge and all the children
know that there is not exactly p muddy children, then the fact that there is at least p + 1 muddy children
is a common knowledge. Together with the first statement of Father:

Axiom First_Father_Statement :

|- C ([:nb_children:]) (At_least n 1).

we are able to prove after n steps C ([:n:]) (At least n n) which means that the fact that there is at
least n muddy children is common knowledge. This is the final result. Common knowledge is important here
because one can “progress” in common knowledge and not in shared knowledge. Thus the first statement
that provides a first common knowledge allows initialization. The proof of Progress relies on a statement

Knowledge_Diffusion :

forall n p i : nat,

|- E ([:n:]) (At_least n p) ==>

E ([:n:]) (¬ Exactly n p) ==>

K i (E ([:n:]) (¬ Exactly n p)).

This statement is here to translate what children see after Father has asked the muddy ones to step forward
and none did. They all know that there is at least p muddy children and they all know that there is not
exactly p muddy children otherwise those with muddy face would have stepped forward, but now each one
knows that all the others know that there is not exactly p muddy children.

7



Knowledge Diffusion as an axiom

In a first experiment, we made Knowledge Diffusion an axiom and we were able to prove Progress in its
above form.

Knowledge Diffusion as a common knowledge

In the second experiment, we consider that proposition Knowledge Diffusion should not be made an axiom,
i.e., an immutable principle, but it should be made just a rule of a game upon everyone agrees. Therefore
the rules of the game are common knowledge that everyone accepts; agreeing on these rules makes everyone
to act and reason according to them, i.e., “rationally”. In this version Progress becomes:

Lemma Progress :

forall n p : nat,

|- C ([:n+1:])(Knowledge_Diffusion) ==>

(C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p))

==> C ([:n+1:]) (At_least (n+1) (p+1)).

Discussion

Again we show that we can change an statement of the form
�

�

ψ
into a statement of the form �

CG() ⇒ ψ.
Here

ϕ ≡ C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p))

and

ψ ≡ C ([:n+1:]) (At_least (n+1) (p+1)).

This is a fifth instance of external vs internal.

5 The equivalence between internal and external implication

Fagin et al [5] in exercise 3.29 notice, with no reference, that
�

�

ψ
and

�

CG() ⇒ CG(ψ) are equivalent. One

notice by TC , i.e., �

CG(ρ) ⇒ ρ, that this statement is stronger than external vs internal, which states
the equivalence between

�

�

ψ
and

�

CG() ⇒ ψ. The proof of that result cannot be readily implemented in
Coq in our current implementation of common knowledge logic since this requires a deeper embedding of
the theory. In short, in order to mechanize that proof, one needs not only internalize the object implication,
which we called internal implication, but also what we called the external implication, since a meta-proof
of the equivalence requires an induction on the proof of

�

�

ψ
. In a first step, one can prove in Coq that

all the rules of common knowledge logic, namely MP, KG and LFB have their equivalent in the form
�

CG() ⇒ CG(ψ), namely:

�

CG((⇒ ψ)∧) ⇒ CG(ψ)
�

CG() ⇒ CG(Ki())

�

CG(ρ⇒ ∧EG(ρ)) ⇒ CG(ρ⇒ CG())

The first one is a variant, by the means of �

CG(χ ∧ ρ) ⇔ CG(χ) ∧ CG(ρ), of KC or (A9). The second one
is a basic result of common knowledge logic. The third theorem has no equivalent in the literature and has
been proved in Coq for that purpose. Then we get the following interesting result:

⊢ CG(ϕ) ⇒ CG(ψ) // ⊢ CG(ϕ) ⇒ ψ // ⊢ϕ
⊢ψ

dd
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The back arrow is proved by induction of the length of the deduction �

->
�

ψ. Therefore, one notices
three levels of implications: the implication ⇒ in the theory, the implication

�

?
�

? in the metatheory and the
implication // in the meta-metatheory. From the above diagram one gets

⊢ CG(ϕ) ⇒ ψ // ⊢ CG(ϕ) ⇒ CG(ψ) .

Actually we have
⊢ CG(ϕ) ⇒ ψ

⊢ CG(ϕ) ⇒ CG(ψ)

as follows
⊢ CG(ϕ) ⇒ ψ

�

CG() ⇒ EG(CG())
�

CG() ⇒ ψ ∧ EG(CG())
LFB

⊢ CG(ϕ) ⇒ CG(ψ)

since
�

CG() ⇒ EG(CG()) is a theorem of common knowledge logic.

6 Conclusion

On another hand, it is worth to mention the study on combining common knowledge logic and dynamic
logic we have done with Jérôme Puisségur [20]. The dynamic logic is used to describe changes in the world,
but those changes are purely epistemic (an idea we borrow from Baltag, Moss and Solecki [3, 2]). This
means that they affect only knowledge of the agents and nothing else. The muddy children puzzle has been
axiomatized in this framework and a proof of its results has been fully mechanized in Coq. We can draw
already two lessons form those experiences. First when merging two modal logics it seems that internalizing
common knowledge is more appropriate. In other words, an approach like

�

CG() ⇒ ψ should be preferred
to setting the axiom � to prove �

ψ, as one does not know which metatheory a specific statement belongs
to: dynamic logic or common knowledge logic? Second a formalization of predicate logic, allows expressing
easily arbitrary depth of shared logic according to the number of agents. More precisely, common knowledge
is not a priori necessary in the muddy children example and just a specific number of imbricated shared
knowledge modalities corresponding to the number of children. This fact was already noticed by authors [8].

Acknowledgment
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A Deep embedding

A logic L, the object logic or the object theory, is said to be deeply embedded in another logic M, the
meta-theory, or in a proof assistant if one considers the logic M to be this of the proof assistant, if all the
constituents of the logic L are made objects of the logic M and all the connectors and the rules of L are
defined inside the logic M. This is opposed to shallow embedding where L and M may share connectors
and rules. A shallow embedding is usually more concise, but in a deep embedding a clear distinction is made
between the connectors of the object theory and those of the meta-theory. In a deep embedding the connector

10

http://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/common_knowledge


and the corresponding meta-connector can be somewhat connected, but they cannot match completely. For
instance, it could happen that the meta-disjunctions of two propositions meta-implies the proposition made
as the conjunction of the two propositions and not vice-versa, in a sense made precise in formalizing the
object theory.

Moreover not all the logics can be shallowly embedded. This is the case for common knowledge logic
which cannot be formalized easily in a natural deduction framework (see next section).

B Why an Hilbert approach?

The reason why one cannot use a natural deduction of a sequent calculus approach is essentially due to the
rule KG. If one accepts such a rule in natural deduction, one gets

Γ �

Ki(Γ) �

Ki()

This requires to extend the operator Ki to contexts like Γ. If instead of Ki one uses a modality �, one says
that �(Γ) is a “boxed context”. Actually linear logic [10] is perhaps the archetypical modal logic and the
equivalent of Ki is the modality of course written “!”. The equivalent of KG is a rule called also of course.
Without that rule the proof net presentation is somewhat simple [11]. Its introduction requires a machinery
of boxes which increases its complexity.
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