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Abstract

High confidence in floating-point programs requires proviogierical properties of final and intermediate values.
One may need to guarantee that a value stays within some, @it the error relative to some ideal value is well
bounded. Such work may require several lines of proof fohdae of code, and will usually be broken by the
smallest change to the code (e.g. for maintenance or ogtiioiz purpose). Certifying these programs by hand is
therefore very tedious and error-prone. This article dises the use of the Gappa proof assistant in this context.
Gappa has two main advantages over previous approachesputsformat is very close to the actual C code to
validate, and it automates error evaluation and propagatfing interval arithmetic. Besides, it can be used to
incrementally prove complex mathematical propertiesgeirig to the C code. Yet it does not require any specific
knowledge about automatic theorem proving, and thus issadde to a wide community. Moreover, Gappa may
generate a formal proof of the results that can be checkezpberttlently by a lower-level proof assistant like Coq,
hence providing an even higher confidence in the certifinaifdhe numerical code. The article demonstrates the use
of this tool on a real-size example, an elementary functi@h worrectly rounded output.

1 Introduction

Floating-point (FP) arithmetic was designed to help depielg software handling real numbers. However, FP numbers
are only an approximation to the real numbers. A novice @ogner may incorrectly assume that FP numbers
possess all the basic properties of the real numbers, ftarios associativity of the addition, and waste time fighting

the associated subtle bugs. Having been bitten once, he aneyef stay wary of FP computing as something that

cannot be trusted. As many safety-critical systems rely @atifig-point arithmetic, the question of the confidence

that one can have in such systems is of paramount importaltiee more as floating-point hardware, long available

in mainstream processors, is now also increasingly degignie embedded systems.

This question was addressed in 1985 by the IEEE-754 staridaftbating-point arithmetic|]1]. This standard
defines common floating-point formats (single and doubleipi@n), but it also precisely specifies the behavior of the
basic operators-, —, x, +, and, /~. In the rounding mode to the nearest, these operators gtathrthecorrectly
roundedresult, uniquely defined as the floating-point number closethe exact mathematical value (in case of a
tie, the number returned is the one with the even mantisde.sfandard also defines thigieected roundingnodes
(towards+oo, towards—oo, and toward$) with similar correct rounding requirements on the opeato

The adoption and widespread use of this standard have sextdhe numerical quality and portability of floating-
point code. It has improved confidence in such code and atflawastruction of proofs of numerical behaviﬂr [2].
Directed rounding modes are also the key to enable effigigatval arithmetic[d], a general technique to obtain
validated numerical results.

This article is related to the IEEE-754 standard in two walyisstly, it discusses the issue of proving properties
of numerical code, building upon the properties specifiethiyystandard. Secondly, one of our case studies will be
the proof of the implementation of an elementary functidre (fogarithm) returning correctly-rounded results. Such
correctly-rounded implementations will contribute to ateefloating-point standard, where the numerical qualfty o
elementary functions matches that of the basic operators.

Elementary functions were left out of the IEEE-754 standiatP85 in part because the correct rounding property
is much more difficult to guarantee than for the basic aritfimmgerators. The problem will be exposed in detail in the
sequel. In short, the correctness of the implementatiorcofigctly rounded function requires thgriori knowledge



of a bound on the overall error of evaluatifigr). Moreover, this bound should be tight, as a loose bound ivedyat
impacts performancg][4] 5].

This article describes an approach to machine-checkabtéof such tight bounds, which is both interactive and
easy to manage, yet much safer than a hand-written prooppltes to error bounds as well as range bounds. Our
approach is not restricted to the validation of elementancfions. It currently applies to any straight-line flogtin
point program of reasonable size (up to several hundredgeritions).

The novelty here is the use of a tool that transforms a higékgescription of the proof into a machine-checkable
version, in contrast to previous work by Harrisc[h |[f5 7] whicedtly described the proof of the implementation of
some functions in all the low-level details. The Gappa apphas more concise and more flexible in the case of a
subsequent change to the code. More importantly, it is addlego people outside the formal proof community.

This article is organized as follows. Next section desaibaletail the challenges posed by automatic computation
of tight bounds on ranges and errors. Seon 3 describ&dhpa tool. Sectioﬂ 4 gives an overview on the techniques
for proving an elementary function using Gappa and give daenstve example of the interactive construction of the
proof.

2 Proving properties of floating-point code

2.1 Floating-point numbers are not real numbers

We have already mentioned that floating-point (FP) numbersat possess basic properties of real numbers. The
following FP code sequence, due to Dekl@r [8], illustraktess: t

Listing 1: The Fast2Sum algorithm.

+b;

s = a
r = b-(s-a);

This sequence consists only of three operations. The fisstomputes the FP sum of the two numbeendb.

The second one would always retusrand the third ond, if this FP sum was exact. As the numbers here are FP
numbers, however, the sum is often inexact, because of thliog. In IEEE-754 arithmetic with round-to-nearest,
under certain conditions, this algorithm computes ithe error committed by this first rounding. In other words, it
ensures that + s = a + b in addition to the fact tha¢ is the FP number closest ¢é0+ b. The Fast2Sum algorithm
provides us with an exact representation of the sum of twourRhers as a pair of FP numbers, a very useful operation.

This example illustrates an important point, which pengaléof this article: FP numbers may be an approxima-
tion of the reals that fails to ensure basic properties offglads, but they are also a very well-defined set of rational
numbers, which have other well-defined properties, upomhviiis possible to build mathematical proofs such as the
proof of the Fast2Sum algorithm.

Let us come back to the condition under which the Fast2Suarittign works. This condition is that the exponent
of a is larger than or equal to that of which will be true for instance ifa] > |b|. If one is to use this algorithm,
one has first to prove that this condition is true. Note thirahtives to the Fast2Sum exist for the case when one is
unable to prove this condition. The version by Kmﬁh [9] reesic operations instead & Here, being able to prove
the condition, which is a property on values of the code, rgult in better performance.

The proof of the properties of the Fast2Sum sequence (tHPeepErations) requires several pa@s [8], and is
indeed currently out of reach of the Gappa tool, basicallyabse it can not be reduced to manipulating ranges and
errors. This is not a problem, since this algorithm has dlydseen proven using machine check@; [10]. We consider
it as a generic building-block of larger floating-point prags, and the focus of our approach is to automate the proof
of such larger programs. In the case of the Fast2Sum, thiasy@aving the condition.

Let us now introduce the class of larger FP programs that we tergeted in this work: implementations of
elementary functions



2.2 Elementary functions

Current floating-point implementations of elementary fioves [I3,[1R[18] 14, }5] have several features that make
their proof challenging:

e The code size is too large to be safely proven by hand. In tsteviérsions of th€Rlibm project, the complete
paper proof of a single function required tens of pages.diffcult to trust such proofs.

e The code is optimized for performance, making extensiveaidéating-point tricks such as the Fast2Sum
above. As a consequence, classical tools of real analysisotde straightforwardly applied. Very often,
considering the same operations on real numbers would h@ysimeaningless.

e The code is bound to evolve for optimization purpose, bezaetter algorithms may be found, but also because
the processor technology evolves. Such changes will impmsewrite the proof, which is both tedious and
error-prone.

e Much of the knowledge required to prove error bounds on thegeds implicit or hidden, be it behind the
semantics of the programming language (which defines implérenthesing, for examples), or in the various
approximations made. Therefore, the mere translation aéeepf code into a set of mathematical variables
that represent the values manipulated by this code is tedind error-prone if done by hand.

Fortunately, FP elementary function implementations b pleasant features that make their proof tractable:

e There is a clear and simple definition of the mathematicadaibihat the floating-point code is supposed to
approximate. This will not always be the case of e.g. sdiergimulation code.

e The code size is small enough to be tractable, typicallytleass a hundred floating-point operations.

e The control flow is simple, consisting mostly of straighteicode with a few tests but no loops.

The following elaborates on these features.

2.2.1 A primer on elementary function evaluation

The evaluation of an elementary function is classicelﬂ performed by a polynomial approximation valid on a
small interval only. Arange reductiorstep brings the input numberinto this small interval, and geconstruction
step builds the final result out of the results of both presisteps. For example, the logarithm may use as a range
reduction the errorless decompositioruointo its mantissan and exponenfs: = = m - 2F. It may then evaluate
the logarithm of the mantissa, and the reconstruction stssi evaluatindog(z) = log(m) + E - log(2). Note that
current implementations typically involve several laykesteps of range reduction and reconstruction. With current
processor technology, efficient implementatidng [1}L[8prély on large tables of precomputed values. See the books
by Muller ] or Markstein ] for recent surveys on the mdb.

In the previous logarithm example, the range reduction wastebut the reconstruction involved a multiplication
by the irrationallog(2), and was therefore necessarily approximate. This is natyeswthe case. For example, for
trigonometric functions, the range reduction involvestsautiing multiples of the irrationat /2, and will be inexact,
whereas the reconstruction step consists in changing gimedgipending on the quadrant, which is exact in floating-
point arithmetic.

It should not come as a surprise that either range reductiogconstruction are inexact. Indeed, FP numbers are
rational numbers, but for most elementary functions, it barproven that, with the exception of a few values, the
image of a rational is irrational. Therefore, in an impletagion, one is bound, at some point, to manipulate numbers
which are approximations of irrational numbers.

This introduces another issue which is especially relet@etementary function implementation. One wants to
obtain a double-precision FP result which is a good appration to the mathematical result, the latter being an
irrational most of the times. For this purpose, one needsdtuate an approximation of this irrational to a precision
better than that of the FP format.



2.2.2 Reaching better-than-double precision

Better-than-double precision is typically attained thatkdouble-extendedrithmetic on processors that support it,
or double-doublarithmetic, where a number is held as the unevaluated suwoaddubles, just as the 8-digit decimal
number3.8541942 - 10" may be represented by the unevaluated sum of two 4-digit eusBI854 - 10! +1.942- 1073,
Well-known and well-proven algorithms exist for manipidgtdouble-double numberﬂ [E, 9], the simplest of which
is the Fast2Sum already introduced.

However these algorithms are costly, as each operation wblelalouble numbers requires several FP operations.
In this article, we will consider implementations based onlale-double arithmetic, because they are more challeng-
ing, but Gappa handles double-extended arithmetic equellly

2.3 Floating-point errors, but not only
The evaluation of any mathematical function entails twomsaiurces of errors.

e Approximation errors (also called methodical errors),hsas the error of approximating a function with a
polynomial. One may have a mathematical bound for them igdyea Taylor formula for instance), or one may
have to compute such a bound using nume [18], for exaifithe polynomial has been computed using
Remez algorithm.

e Rounding errors, produced by most floating-point operatimfithe code.

The distinction between both types of errors is sometimb#rary: for example, the error due to rounding the
polynomial coefficients to floating point numbers is usuatigluded in the approximation error of the polynomial.
The same holds for the rounding of table values, which isactEm for more accurately as approximation error than as
rounding error. This pointis mentioned here because a lbakauracy in the definition of the various errors involved
in a given code may lead to one of them being forgotten.

2.4 The point with efficient code

Efficient code is especially difficult to analyze and provedese of all the techniques and tricks used by expert
programmers.

For instance, many floating-point operations are exacttl@@xperienced developer of floating-point code will
try to use them. Examples include multiplication by a powketwn, subtraction of numbers of similar magnitude
thanks to Sterbenz’ Lemmﬂlg], exact addition and exactiplichtion algorithms (returning a double-double),
multiplication of a small integer by a floating-point numlvgtose mantissa ends with enough zeroes, etc.

The expert programmer will also do his best to avoid computitore accurately than strictly needed. He will re-
move from the computation some operations that are expactdad improve the accuracy of the result by much. This
can be expressed as an additional approximation. Howégenn becomes difficult to know what is an approximation
to what, especially as the computations are re-parengetgizmaximize floating-point accuracy.

To illustrate the resulting code obfuscation, let us introglthe piece of code that will serve as a running example
along this article.

2.5 Example: A double-double polynomial evaluation

Listing E is an extract of the code of a sine function in @Rlibm library. These three lines compute the value of an
odd polynomialp(y) = y + s3 x > + s5 x y° + s7 x y” close to the Taylor approximation of the sine (its degree-1
coefficient is equal td). In our algorithm, the reduced argumerit ideally obtained by subtracting to the FP input
an integer multiple ofr/256. As a consequengge [—7 /512, 7/512] C [-277,277].

However, ag) is irrational, the implementation of this range reducti@s o return a number more accurate than
a double, otherwise there is no hope of achieving an accufatye sine that matches floating-point double precision.
In our implementation, range reduction therefore returdswble-doubleh + y1.



To minimise the number of operations, Horner rule is usedtfempolynomial evaluatiom(y) = y + 33 x (s3 +
y? x (s5 +y? x s7)). For a double-double inpyt= yh + y1, the expression to compute is thigg + y1) + (yh +
y1)% x (s34 (yh+ y1)? x (85 + (yh + y1)? X s7)).

The actual code uses an approximation to this expressi@cdmputation will be accurate enough if all the
Horner steps except the last one are computed in doublésfmec Thus,y; will be neglected for these iterations,
and coefficientss to sz will be stored as double-precision numbers nat8ds5 ands7. The previous expression
becomes:

(yh + y1) + yh® x (83 + yh? x (s5 + yh? x s7)).

However, if this expression is computed as parenthesizedealit will not be very accurate. Specifically, the
floating-point additioryh 4+ y1 will (by definition of a double-double) returyh, so the information held byl will
be completely lost. Fortunately, the rest of the Hornerwatidn also has much smaller magnitude thar(this is
deduced fromy € [-277,277], thereforey® € [-2721,2721]). The following parenthesing is therefore much more
accurate:
yh+ (y1 + yh x yh? x (s34 yh? x (s5 + yh? x s7))) .

In this last version of the expression, only the leftmostitaid must be accurate: we will use a Fast2Sum (which
as we saw is an exact addition of two doubles returning a @éedbuble). The other operations use the native — and
therefore fast — double-precision arithmetic. We obtaaehde of Listing .

Listing 2: Three lines of C

yh2 = yh*yh;
ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
Fast2Sum(sh,sl, yh, yl + yh*s);

To sum up, this code implements the evaluation of a polynbnith many layers of approximation. For instance,
variableyh2 approximateg? through the following layers:

e y was approximated byh + y1 with the relative accuracy,grea
e yh + yl is approximated byh in most of the computation,
e yh? is approximated byh2=yh*yh , with a floating-point rounding error.

In addition, the polynomial is an approximation to the sinedtion, with a relative error bound ef,..x Which
is supposed known (how it was obtained it is out of the scoyikisfoaper[[18]).

Thus, the difficulty of evaluating a tight bound on an eleragpfunction implementation is to combine all these
errors without forgetting any of them, and without using y@essimistic bounds when combining several sources
of errors. The typical trade-off here will be that a tight bduequires considerable more work than a loose bound
(and its proof might inspire considerably less confiden8@me readers may get an idea of this trade-off by relating
each intermediate value with its error to confidence intspand propagating these errors using interval arithmetic
In many cases, a tighter error will be obtained by splittiogfaddence intervals into several cases, and treating them
separately, at the expense of an explosion of the numbersekca his is one of the tasks that Gappa will helpfully
automate.

2.6 Previous and related work

We have not yet explained why a tight error bound is requineatder to obtain a correctly rounded implementation.
This question is surveyed iE|[5]. To sum it up, an error bownadeded to guarantee correct rounding, and the tighter
the bound, the more efficient the implementation. A relatezblem is that of proving the behaviour afterval
elementary function@O]. In this case, a bound is requimemhsure that the interval returned by the function costain
the image of the input interval. A loose bound here meansnigtg a larger interval than possible, and hence useless
interval bloat. In both case, the tighter the bound, theséitte implementation.

As a summary, proofs written for version of te&&libm project up to versions 0.@1] are typically composed of
several pages of paper proof and several pages of suppbftéipke for a few lines of code. This provides an excellent



documentation and helps maintaining the code, but expaikas consistently shown that such proofs are extremely
error-prone. Implementing the error computation in Mapés\a first step towards the automation of this process, but
if it helps avoiding computation mistakes, it does not preveethodological mistakes. Gappa was designed, among
other objectives, in order to fill this void.

There has been other attempts of assisted proofs of elemdutetions or similar floating-point code. The pure
formal proof approach of Harrisoﬂ [ﬂ, DZZ] goes deeper tharGappa approach, as it accounts for approximation
errors. However it is accessible only to experts of formalofis, and fragile in case of a change to the code. The
approach of Krameet al [@, ] relies on operator overloading and does not pro&ittemal proof.

3 The Gappa tool

Gappa extends the interval arithmetic paradigm to the field of ntioaé code certification|EE|E6]. Given the de-
scription of a logical property involving the bounds of mettinatical expressions, the tool tries to prove the validity o
this property. When the property contains unbounded exfmes, the tool computes bounding ranges such that the
property holds. For instance, the incomplete property-“1 € [2,3] = « € [?,7]” can be input to Gappa. The tool
answers thall, 2] is a range of the expressiarsuch that the whole property holds.

Once Gappa has reached the stage where it considers thetprogee valid, it generates a formal proof that can
be checked by an independent proof assistant. This proofipletely independent of Gappa and its validity does not
depend on Gappa’s own validity. It can be mechanically \etifly an external proof checker and included in bigger
formal developments.

3.1 Floating-point considerations

Sectiorﬂ4 will give examples of Gappa’s syntax and show tlegiga can be applied to mathematical expressions much
more complex than just+ 1, and in particular to floating-point approximation of elertey functions. This requires
describing floating-point arithmetic expressions withiappa.

Gappa only manipulates expressions on real numbers. Inrtpegyx + 1 € [2,3], z is just a universally-
quantified real number and the operateris the usual addition on real numbeRs Floating-point arithmetic is
expressed through the use of “rounding operators”: funstioomR to R that associate to a real numheits rounded
valueo(z) in a specific format. These operators are sufficient to esgresperties of code relying on most floating-
point or fixed-point arithmetics.

Verifying that a computed value is close to an ideal valuercam be done by computing an enclosure of the error
between these two values. For example, the property f1,2] = o(o(2 x z) — 1) — (2 x x — 1) € [?, ?]” expresses
the absolute error caused during the floating-point contjputaf the following numerical code:

float x = ..;
assert(l <= x && x <= 2);
float y = 2 * x - 1,

Infinities and NaNs (Not-a-Numbers) are not an implicit perthis formalism: The rounding operators return a
real value and there is no upper bound on the magnitude ofdhérfy-point numbers. This means that NaNs and
overflows will not be generated nor propagated as they waoulBEE-754 arithmetic. However, one may use Gappa
to prove very useful properties, for instance that overflaw®NaNs due to some division loly cannot occur in a given
code: This can be expressed in terms of intervals. What omeotgrove are properties depending on the correct
propagation of infinities and NaNs in the code.

3.2 Proving properties using intervals

Thanks to the inclusion property of interval arithmetics; i an element of0, 3] andy an element of1, 2], thenz +y
is an element of the interval sujfy, 3] + [1, 2] = [1, 5]. This technique based on interval evaluation can be apfied
any expression on real numbers. That is how Gappa comp@enthosures requested by the user.

1http://lipforge.ens-Iyon.fr/www/gappa/ |



http://lipforge.ens-lyon.fr/www/gappa/

Interval arithmetic is not restricted to this role thoughdéed the interval sui, 3] + [1, 2] = [1, 5] do not only
give bounds o + y, it can also be seen as a proofiof y € [1,5]. Such a computation can be formally included as
an hypothesis of the theorem on the enclosure of the sum aatmumbers. This method is known as computational
reflexivity [@] and allows for the proofs to be machine-cketale. That is how the formal proofs generated by Gappa
can be checked independently without requiring any humi@naotion with a proof assistant.

Such “computable” theorems are available for the C@ [2&)] BIOL Light [@] proof assistants. Previous
work ] on using interval arithmetic for proving numericheorems has shown that a similar approach can be
applied for the PVl] proof assistant. As long as a proetkkr is able to do basic computations on integers, the
theorems Gappa relies on could be provided. As a consequbeceutput of Gappa can be targeted to a wide range
of formal certification frameworks, if needed.

3.3 Other computable predicates

Enclosures are not the only useful predicates. As interasconnected subsets of the real numbers, they are not
powerful enough to prove some properties on discrete $e&tdltating-point numbers or integers. So Gappa handles
other classes of predicates for an expression

FIX(z,e) = dImeZ, x=m- 2°
FLT(z,p) = 3Im,e€Z, x=m-2°N|m| <2

As with intervals, Gappa can compute with these new preeficdor exampl&IX(x,e,) A (y,ey) = FIX(xz +
y,min(ey, e,)). These predicates are especially useful to detect real exsexactly representable in a given format.
In particular, Gappa uses them to find rounded operationgémsafely be ignored because they do not contribute to
the global rounding error. Let us consider the floating-psubtraction of two floating-point numberse [3.2, 3.3]
andy € [1.4,1.8]. Note that Sterbenz’ Lemma is not sufficient to prove thatghktraction is actually exact, as
% > 2. Gappa is, however, able to automatically prove tifat— y) is equal tox — y.

As z andy are floating-point numbers, Gappa first proves that they earfresented with4 bits each (assuming
single precision arithmetic). As is bigger thar3.2, it can then deduce it is a multiple @22, or FIX(x, —22).
Similarly, it provesFIX(y, —23). The propertyfFIX(z — y, —23) comes then naturally. By computing with intervals,
Gappa also proves that — y| is bounded byl.9. A consequence of these last two propertie&is(x — y, 24): only
24 bits are needed to represant- y. Sox — y is representable by a single-precision floating-point neimb

There are also some specialized predicates for enclostiiesollowing one expresses the range of an expression
u with respect to another expression

REL(u,v,[a,b]) = —1<aATe€lab],u=v-(1+¢)

This predicate is seemingly equivalent to the enclosureefélative errot—*. It allows, however, to simplify proofs,
as the error can now be manipulated even whés potentially zero. For example, the relative roundingeof a
floating-point addition vanishes on subnormal numberdyiting zero) and is bounded elsewhere, so the following
property holdsREL(o(z + y), * + y, [—27°3,2753]) when rounding to nearest in double precision.

3.4 Gappa’s engine

Because basic interval evaluations do not keep track oétadions between expressions sharing the same terms, some
computed ranges may be too wide to be useful. This is espetiiaé when bounding errors. For example, when
bounding the absolute errofa) — b between an approximatiar{a) and an exact valuke The simplest option is to
first compute the ranges ofa) andb separately and then subtract them. However, first rewritiegexpression as
(o(a) — a) + (a — b) and then bounding(a) — a (a simple rounding error) and— b separately before adding their
ranges usually gives a much tighter result. These rulesyapéred by techniques developers usually apply by hand in
order to certify their numerical applications.

Gappa includes a database of such rewriting rules (selctiosh®ws how the user may expand this database). The
tool applies them automatically, so that it can bound exgoes along various evaluation paths. Since any of these



resulting intervals encloses the initial expression rtiersection does, too. Gappa keeps track of the path ettt
to the tightest interval intersection and discards thersthso as to reduce the size of the final proof. It may happen
that the resulting intersection is empty; it means thatehgra contradiction between the hypotheses of the logical
property and Gappa will use it to prove all the goals of thedalgproperty.

Once the logical property has been proved, a formal prooéregated by retracing the paths that were followed
when computing the ranges.

3.5 Hints

When Gappa is not able to satisfy the goal of the logical pitypthis does not necessarily mean that the property is
false. It may just mean that Gappa has not enough informationt the expressions it tries to bound.

It is possible to help Gappa in these situations by providavgiting hints These are rewriting rules similar to
those presented above in the case of rounding, but whoselnsss is specific to the problem at hand.

3.5.1 Explicit hints

A hint has the following form:

Exprl -> Expr2;

Itis used to give the following information to Gappa: “I e for some reason that, should you need to compute
an interval forExprl , you might get a tighter interval by trying the mathematicelquivalentExpr2 ”. This fuzzy
formulation is better explained by considering the follogiexamples.

1. The “some reason” in question will typically be that thegnammer knows that expressioAsB andC are
different approximations of the same quantity, and furiae thatA is an approximation t@ which is an
approximation taC. As previously, this means that these variables are céetland the adequate hint to give
in this case is

A-C->(A-B)+ (B -CQC);

It will suggest to Gappa to first compute intervals /6B andB-C, and then to sum them to get an interval for
A-C.
As there are an infinite number of arbitradByexpressions that can be inserted in the right hand side sipre
Gappa does not try to apply every possible rewriting rulemibencounterg\-C. However, a.2 will show,
Gappa usually infers some useBiexpressions and applies the rewriting rules automatically

2. Relative errors can be manipulated similarly. The hintge in this case is

(A-C)/IC > (A-B)/B + (B-C)IC + ((A-B)/B)*((B-C)/C);

This is still a mathematical identity, as one may check gaéifjain, Gappa tries to infer some useBieéxpres-
sions and to apply the corresponding rewriting rules.

3. Whenx is an approximation offiX and a relative error = *2% is known by the toolx can be rewritten
MX - (1 + ¢€). This kind of hint is useful in combination with the followgrone.

4. When manipulating fractional terms such%}% whereExpr1 andExpr2 are correlated (for example one
approximating the other), the interval division fails tegiuseful results if the interval f@xpr2 comes close
to 0. In this case, one will try to writBxpr1 = A - Expr3 andExpr2 = A - Expr4, so that the interval oBxpr4
does not come close thanymore. The following hint is then appropriate:

Exprl / Expr2 -> Expr3 / Expré4;

This rewriting rule is only valid ifA is not zero, so the cage= 0 has to be handled separately. So that Gappa
does not apply the rule in an invalid context, a constraint ean be added. The rule thus becomes:



Exprl / Expr2 -> Expr3 / Exprd { A <> 0 };

All these hints are correct if both sides are mathematialyivalent. Gappa therefore checks this automatically.
If the test fails, it emits a warning to the user that he or shustmeview the hint by hand. Therefore, writing even
complex hints is very safe: one may not introduce an errdnénproof by writing hints which do not emit warnings.

Besides, useless hints may consume execution time as Géggpm tvain to use them, but if they are useless, they
will be silently ignored in the final proof. Therefore, wrig useless hints is essentially harmless.

3.5.2 Automatic hints

After using Gappa to prove several elementary functions,tbing became clear: Users kept writing the same hints,
typically of the three first kinds enumeratedin]3.5.
Gappa was therefore modified to introduce a new kind of hint:

Exprl = Exprz;

that reads Exprl approximate€xpr2 ”. This has the effect of introducing rewriting hints bothr fabsolute and
relative differences involvingxprl or Expr2 . There may be useless hints among such automatic hintsghirt a
they will be mostly harmless.

For instance, when it encounters an expression of theoqonl - Expr3  (for any expressiokxpr3 ), Gappa
automatically tries the rul&xprl-Expr3 -> (Exprl-Expr2) + (Expr2-Expr3) . And when it encoun-
tersExpr3 - Expr2 , ittries the rewriting ruleexpr3-Expr2 -> (Expr3-Exprl) + (Exprl-Expr2) .

By default, Gappa assumes thatprl approximate€xpr2 if Exprl is the rounded value dExpr2 . It also
makes this assumption when an enclosure of the absolutéativeeerror betweeixprl andExpr2 appears in the
hypotheses of the logical proposition Gappa has to prove.

Remark: It is very important, in the various differenceseqguing in all these expressions, that the least accurate
term is written first and the most accurate written last. Tlameason is that the theorems of Gappa’s database apply
to expressions written in this order. This ordering coni@nprevents a combinatorial explosion on the number of
paths to explore.

3.5.3 Bisection and dichotomy hints

Finally, itis possible to instruct Gappa to split some ingds and perform its exploration on the resulting sub-iveés.
There are several possibilities. For instance, the fothabiint

$ z in (-1,2);

reads “Better enclosures may be obtained by separatelydesimg) the sub-cases< —1, -1 <z < 2,and2 < z.”
The following hint finds the splitting points automatically performing a dichotomy on the interval iuntil the
part of the goal corresponding Expr as been satisfied for all the sub-intervalzof

Expr $ z;

3.5.4 Writing hints in an interactive way

Gappa has evolved to include more and more automatic hutsydst real-world proofs still require writing complex,
problem-specific hints. Finding the right hint that Gappadsecould be quite complex and would require completely
mastering its theorem database and the algorithms used lengfine. Fortunately, a much simpler way is to build
the proof incrementally and question the tool by adding ardaving intermediate goals to prove, as the extended
example in next section will show. Before that, we first ddmethe outline of the methodology we use to prove
elementary functions.
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4 Proving elementary functions using Gappa

As in every proof work, style is important when working witha@pa: in a machine-checked proof, bad style will
not in principle endanger the validity of the proof, but it ynarevent its author to get to the end. In t@&Ilibm
framework, it may hinder acceptance of machine-checkedfp@mmong new developers.

Gappa does not impose a style, and when we started usingétwas no previous experience to get inspiration
from. After a few months of use, we had improved our “codindestin Gappa, so that the proofs were much more
concise and readable than the earlier ones. We had alsoaenethodology that works well for elementary functions.
This section is an attempt to describe this methodology gri€l. $Ve are aware that they may be inadequate for other
applications, and that even for elementary functions tleeyccbe improved further.

The methodology consists in three steps, which correspotitbtthree sections of a Gappa input file.

e First, the C code is translated into Gappa equations, in alatensures that the Gappa proof will indeed prove
some property of this program (and not of some other similaggam). Then equations are added describing
what the program is supposed to implement. Usually, thesat&ms are also in correspondence with the code.

e Then, the property to prove is added. It is usually in the fbirpotheses -> properties , Where the
hypotheses are known bounds on the inputs, or contributicdhe error determined outside Gappa, like the
approximation errors.

e Finally, one has to adlintsto help Gappa complete the proof. This last part is builténaentally.

The following sections detail these three steps.

4.1 Translating a FP program

We consider again the following C code, where we have addeddhstants:

s3 = -1.6666666666666665741e-01,;
s5 = 8.3333333333333332177e-03;
S7 = -1.9841269841269841253e-04;

yh2 = yh*yh;
ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
Fast2Sum(sh,sl, yh, yl + yh*s);

There is a lot of rounding operations in this code, so the fiistg to do is to define Gappa rounding operators
for the rounding modes used in the program. In our examplajseethe following line to definEEEEdouble as a
shortcut for IEEE-compliant rounding to the nearest dowslgch is the mode used i@Rlibm .

@IEEEdouble = float<ieee 64,ne>;

Then, if the C code is itself sufficiently simple and clearg ttanslation step only consists in making explicit the
rounding operations implicit in the C source code. To statthvthe constants3, s5 ands7 are given as decimal
strings, and the C compilers we use convert them to (binaybkk-precision FP numbers with round to nearest. We
ensure that Gappa works with these same constants as thded@Eode by inserting explicit rounding operations:

s3 = |EEEdouble(-1.6666666666666665741e-01);
s5 = IEEEdouble( 8.3333333333333332177e-03);
s7 = IEEEdouble(-1.9841269841269841253e-04);

Then we have to do the same for all the roundings hidden bebiadthmetic operations. Adding by hand all the
rounding operators, however, would be tedious and errongrand would make the Gappa syntax so different from
the C syntax that it would degrade confidence and maintdityaBesides, one would have to apply without error
the rules (well specified by the C99 stand@ [32]) goverfdmgnstance implicit parentheses in a C expression. For
these reasons, Gappa has a syntax that instructs it to pettics task automatically. The following Gappa lines

yh2 IEEEdouble= yh * yh;
ts |IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
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define the same mathematical relation between their rightilside and left-hand side as the corresponding lines of
the C programs. This, of course, is only true under the fdhgveonditions:

e all the C variables are double-precision variables,
e the Gappa variables on the right-hand side represent them,

e the compiler/OS/processor combination used to proces€ ttade respects the C99 and IEEE-754 standards
and computes in double-precision arithmetic.

Finally, we have to express in Gappa the Fast2Sum algorithiirere in C it is a macro or function call, for our
purpose we prefer to ignore this complexity and simply egpri@ Gappa the resulting behaviour, which is a sum
without error (we have here to trust an external proof ofltm'baviour[B[p]):

r IEEEdouble= yl + yh?*ts;
S = yh +r1; # the Fast2Sumis exact. s is sh+sl

Note that we are interested in the relative error of the sumith respect to the exact sine, and for this purpose the
fact thats has to be represented as a sum of two doubles in C is irrelevant

More importantly, this adds another condition for this ctrd@slation to be faithful: As the proof of the Fast2Sum
has as hypothesis that the exponenylofis larger than or equal to that of, we now have to prove that. We will
simply add this goal to the theorem to prove.

As a summary, for straight-line program segments with ngaftluble-precision variables, a set of corresponding
Gappa definitions can be obtained straightforwardly byretacing the G- with Gappd EEEdouble= , a very safe
operation.

4.2 Defining ideal values

To analyse this code, we now need a “mathematically idedihiien of all the variables, a reference with respect
to which the error is computed. This notion of mathematjcialeal may be quite subtle: What is the mathematically
ideal ofyh2 ? It could be

e the exact square gh (without rounding), or
e the exact square gh+yl thatyh approximates, or
¢ the exact square of the ideal reduced argumenthich is usually irrational.

The right choice depends on the properties to prove. Heeantithematically ideal value for boyh+yl andyh
will be the ideal reduced argument, which we nigle Similarly, the purest mathematical value tgh® approximates
is notedMy2 and will be defined aMy2 = My*My.

For the polynomial approximatiots , we could choose, as mathematical ideal, either the valuleeofunction
that the polynomial approximates, or the value of the sanignpmial, but computed oMy and without rounding
error. Here we chose the latter, although it is the lessal.ide

Here come a few naming conventions. The first was obviouslittie Gappa variables that mimick C variables
have the same name. We also impose the convention that stiablga begin with a lowercase letter. In addition,
Gappa variables for mathematically ideal terms will begithwa “M’. The other intermediate Gappa variables should
begin with capital letters to distinguish them from varegmimicking the code. Of course, related variables should
have related and, wherever possible, explicit names. Atfadse are conventions and are part of a proof style, not part
of Gappa syntax: the capitalization will give no informattito the tool, and neither will the fact that variables have
related names.

For instance, it will be convenient to define a variable eqoigh+yl :

Yhl = yh + vyl

11



4.3 Defining what the code is supposed to compute

Defining mathematically ideal values resumes to definingapga what the C code is supposed to implement. For
instance, using our previous conventions, the ling§owas probably evaluating the value of the same polynomial of
the idealMy:

My2 = My*My;
= My2 * (s3 + My2*(s5 + My2*s7));

We have kept the polynomial coefficients in lower case: Asaaly discussed in Sectinﬁh 2, the polynomial thus
defined nevertheless belongs to the set of polynomial wihaeefficients, and we have means to compute (outside
Gappa) a bound of its relative error with respect to the fiendgt approximates.

The link betweents and the polynomial approximating the sine is also best esgaetusing mathematically ideal
values:

PolySinY = My + My*Mts;

To sum upPolySinY is the actual polynomial with the same coefficies@isto s7 as in the C code, but evaluated
without rounding error, and evaluated on the ideal valueythayl approximates.

Another approach could be to use a Taylor polynomial, in Witiase the approximation error would be given by
the rest in the Taylor formula, the ideal polynomial wouldthe Taylor one, it would have ideal Taylor coefficients
(beginning with M), some of which would have to be rounded Borfumbers to appear in the program (lowercase).
Gappa could handle it, too, but it would be less convenient.

Another crucial question is, how do we define the real, id@athematical function which we eventually approx-
imate? Gappa has no builtin sine or logarithm. The currept@ach can be described in English asin{My) is a
value which, as long agy is smaller thar6.29e-3 , remains within a relative distance #f26e-24 of our ideal
polynomial”. In Gappa, this will translate to some hypot®em the property to prove:

[YhI| in [0, 6.29e-03]
/\ |(PonS|nY SinY)/SinY| <= 2.26e-24

. # (m)re hypot heses, see bel ow)
-> epstotal in ?

Here the interval ofvhl is defined by the range reduction, and its bound has been dethpaparately: it is
/512, plus some margin that accounts for the inexactness of axgtraduction.

Similarly, the relative distance between the sine and thgnpanial on this interval is computed outside Gappa.
We used to use Maple’s infinite norm, but it only returns anrapimation, so this was in principle a weakness of the
proof. We now use a safer, interval-based appro@h [18]emented in the Sollya totl

Of course this tool provides a theorem which could be expeas
[YhI| in [0, 6.29e-03] -> |(PolySinY - SinY)/SinY| <= 2.26e- 24. We justinject the prop-
erty of this theorem as an hypothesis in Gappa.

Concerning style, it will be more convenient to have a vddatefined as this approximation error. Similarly,
it will make the proof much clearer and concise to add, fromhkginning, as many definitions as possible for the
various terms and errors involved in the computation:

Epsargred = (Yhl - My)/My; # argunment reduction error

Epsapprox = (PolySinY - SinY)/SinY; # pol ynom al approxi mation error

Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynom al eval uation
Epstotal = (s - SinY)/SinY; # total error

4.4 Defining the property to prove

With the previous introduction, the theorem to prove, expeel as implications using classical first-order logic, is
stated as follows:

2http://sollya.gforge.inria.fr/ |
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# Hypot heses

[YhI| in [0, 6.29e-03]
I\ |Epsargred| <= 2.53e-23
N\ |Epsapprox| <= 2.26e-24

->

Epstotal in ? # the main goal of our theorem
N |rlyh] in [0,1] # the condition for the Fast2Sumto be valid
}

The full initial Gappa script is given below. It adds a morewate definition of/h andyl , stating that they are
double-precision numbers and that they form a disjoint texdiouble. It also adds a lower bound on the absolute value
of the reduced argument, obtained thanks to Kahan/Doufgasithm. This lower bound is important because it will
enable most values to stay away from zero, which ensuresdladite errors are not arbitrarily big due to underflow.

Listing 3: The initial Gappa file.

@IEEEdouble = float<ieee 64,ne>;

# yh+yl is a doubl e-double (call it Yhl)

yh = |IEEEdouble(dummy1l);

yl = IEEEdouble(dummy?2);

Yhl = yh + vyl # Below, there is also an hypothesis stating that yl <ul p(yh)
R R Transcription of the Ccode --------------------------

s3 = IEEEdouble(-1.6666666666666665741e-01);

s5 = IEEEdouble( 8.3333333333333332177e-03);

s7 = IEEEdouble(-1.9841269841269841253e-04);

yh2 |IEEEdouble= yh * yh;
ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
r  IEEEdouble= yl + yh*ts;

S = yh +r # no rounding, it is the Fast2Sum
#e------- Mat henati cal definition of what we are approximating --------
My2 = My*My;

Mts = My2 * (s3 + My2*(s5 + My2*s7));
PolySinY = My + My*Mts;

Epsargred = (Yhl - My)/My; # argunment reduction error

Epsapprox = (PolySinY - SinY)/SinY; # pol ynom al approxi mation error

Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynom al eval uation
Epstotal = (s - SinY)/SinY; # total error

R The theoremto prove --------------------------

# Hypot heses
[yl / yh| <= 1b-53
N |Yhl| in [1b-200, 6.29e-03] # | ower bound guaranteed by Kahan-Dougl as al gorithm
N\ |Epsargred| <= 2.53e-23
N\ |Epsapprox| <= 2.26e-24

->
#goal to prove

Epstotal in ? # [-1b-67, 1b-67]
N Jriyh] <= 1
}

13



4.5 With a little help from the user
Invoking Gappa on this file produces the following output:

Warning: no path was found for Epstotal.
Warning: no path was found for |r / yh|.

Results for |yl / yh| in [0, 1.11022e-16] and |Yhl| in [6.2230 2e-61, 0.00629]
and |Epsargred| in [0, 2.53e-23] and |Epsapprox| in [0, 2.26 e-24]:
Warning: some enclosures were not satisfied.

This means that Gappa needs some help, in the form of hinter&\th start? There are several way to interact with
the tool to understand where it fails.

e We may add additional goals to obtain enclosures for intdrate variables. For instance, adding the goal
[My| in ? |, we obtain the following answer

[My| in [0, 0.00629]

Gappawas able to deduce this enclosure from the enclosW¥ie ahypothesis) and the definition Bpsargred
Similarly, we may check for instance that the built-in eregis able to build a good enclosure@blySinY
but not ofs.

e We may add additional hypotheses and see what progress thay. eFor instance, providing a dummy
Epsround as an hypothesis allows Gappa to complete the proof, thariksautomatic hints.

This way it is possible to track the point where Gappa’s eagiets lost, and provide hints to help it.
In our case, the best thing to do is to express all the appratidmlayers detailed in Secti.5. Written as Gappa
equations, we get:

# Layers of approximation on s
S1 = yh + (yl + IEEEdouble(yh*ts)); # s without last rounding

S2 = yh + (yl + yh*ts); # removing penultimate rounding, too

S3 = (yh+yl) + (yh+yl)*ts; # putting back yl which was neglect ed
Epsl = (s-S1)/S1;

Eps2 = (S1-S2)/S2;

Eps3 = (S2-S3)/S3;

Eps4 = (S3-PolySinY)/PolySinY;

Remark again that all these relative errors are definedwelato the most accurate term.

We may add goals for these new relative errors: Gappa willfadle to bound any of them. We have to provide
hints.

Consider onlyEps4, the relative difference betwe&8 andPolySinY — which we saw Gappa is able to bound.
BothS3 andPolySinY are polynomial expressions without any rounding, and vdéntical coefficients. Therefore,
the difference between them resumes to the difference ketMid=yh+yl , usedinS3, andMy, used inPolySinY
We precisely have a measure of this difference: Esargred . The hint we have to provide to Gappa should
therefore expresSps4 as a function oEpsargred which, when evaluated by intervals, will provide a tight leac
sure. Here is a generic technique to obtain such an hint. &vewith Eps4 -> (S3-PolySinY)/PolySinY ,
which is just the definition oEps4, and we rewrite it incrementally until we have obtained apregsion involving
Epsargred . In the following hint, we have left, for the purpose of thigdrial, the intermediate rewriting steps
commented out.

Eps4 ->

# (S3-PolySinY)/PolySinY;

# S3/PolySinY - 1;

#  ((yh+yl) + (yh+ylh*ts) / (My + My*Mts) - 1;
#  ((yh+yD)/My) * (1+ts)/(1+Mts) - 1;

14



#  (Epsargred+1) * (1+ts)/(1+Mts) - 1;
# Epsargred * (1+ts)/(1+Mts) + 1 * (1+ts)/(A+Mts) - 1;
# Epsargred * (1+ts)/(1+Mts) +  (ts-Mts)/(1+Mts);
Epsargred * (1+ts)/(1+Mts) +  Mts*((ts-Mts)/Mts) / (1+Mts) ;

Considering the orders of magnitudes (see Sen 2.5)iva imderval evaluation of this last expression will be
very accurate. Indeet¥ts as well ags are very small comparedto 1, therefore the first term is dlmEpsargred
The second is the relative error f with respect taMits (expected to be no larger than®2), multiplied by Mts
which is smaller thar—'4. We therefore have a sum of two small terms which should piesismall enclosure.

Still, even with this hint, Gappa still fails to provide anabwsure forEps4. Adding the goaldits in ? andts
in ? , we observe tha¥lts is properly enclosed, but ntd . We therefore add a definition of the relative errotof
with respect tavits :

EpstsMts = (ts-Mts)/Mts ;

and we perform the same analysis: we describe the succedsapproximation layers betweds andMts, define
intermediate error terms for them, and provide hints forrimbng them. This will in turn require to explain to Gappa
how to go fromMyto yh2 through three approximation layers.

We will not detail this process line by line. The final Gapp#sds given in appendix, and is available from the
distribution of CRIlibm 2.

4.6 Summing up

Writing hints is the most time-consuming part of the proacause it is the part where the designer’s intelligence is
required. However, we hope to have shown that it may be doryeiverementally.

The example chosen in this article is actually quite comgtexGappa proof consists of more than 150 lines, half
of which are hints. The bound found @pstotal  is 27%7-24 and is obtained in a few seconds on a recent machine
(the time can be longer when there is a dichotomy). The rieguoq proof is more than 7000 lines long.

Some functions are simpler. We could write the proof of a tiage implementation[J5] with a few hints onlf [B3].
One reason is that the logarithm never comes close to 0, altipeoof can be handled only with absolute errors, for
which writing hints is much lighter.

5 Conclusion and perspectives

Validating tight error bounds on the low-level, optimizeaHfling-point code typical of elementary functions has glva
been a challenge, as many sources of errors cumulate tfedt.eGappa is a high-level proof assistant that is well
suited to this kind of proofs.

Using Gappa, it is easy to translate a part of a C program intathematical description of the operations involved
with fair confidence that this translation is faithful. Ergsing implicit mathematical knowledge one may have about
the code and its context is also easy. Gappa uses intertfain@tic to manage the ranges and errors involved in
numerical code. It handles most of the decorrelation prablautomatically thanks to its built-in rewriting rulesdan
an engine which explores the possible rewriting of expogssto minimize the size of the intervals. If decorrelation
remains, Gappa allows one to provide new rewriting ruleschacks them. All this is well founded on a library of
theorems which allow the obtained computation to be traedlto a proof checkable by a lower-level proof assistant
such as Coq and PVS. Finally, the tool can be questionedglth@process of building the proof so that this process
may be conducted interactively.

Therefore, it is possible to get quickly a fully validateapf with good confidence that this proof indeed proves
property of the initial code. Gappa is by no means automgtiapply it on a given piece of code requires exactly the
same knowledge and cleverness a paper proof would. Howekeguires much less work.

The currenCRIlibm distribution contains several bits of proofs using Gappseseral stages of its development.
Although this development is not over, the current versibBYis very stable and we may safely consider generalizing

Shttp://lipforge.ens-lyon.friwww/crlibm/
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the use of this tool in the future developmentadtlibm . It also took 6 months to develop a methodology and style

well suited to the validation of elementary functions. Tpaper presented this aspect as well. Very probably, new

problems will arise as we try to apply this methodology to riemctions, so that it will need to be refined further.
Iterative codes are currently out of scope of our methodglalhough it could be used for instance to prove loop
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A Complete Gappa script

Listing 4: The complete Gappa file.

# test with gappa - Munconstrai ned < sin. gappa

# The proof is not conplete, as it doesn’t work w thout -Minconstrained.
# What it nmeans is that Gappa is unable to prove that some denomi nators are not null.
# 1t'’s OK for practical purposes, but it takes sone nore work to get a fornal proof.

@IEEEdouble = float<ieee 64,ne>;

# Convention 1: uncapitalized variables match the variables in the C code. O her
variables begin with a capital letter

# Convention 2: variables beginning with "M are mat henati cal ideal

# yh+yl is a doubl e-double (call it Yhl)

yh = |IEEEdouble(dummy1l);

yl = IEEEdouble(dummy?2);

Yhl = yh + yl; # There is also an hypothesis stating that yl <ulp(yh)
LR Transcription of the Ccode --------------------------
s3 = IEEEdouble(-1.6666666666666665741e-01);

IEEEdouble( 8.3333333333333332177e-03);
IEEEdouble(-1.9841269841269841253e-04);

[%2]
a1
o n

yh2 IEEEdouble= yh * yh;
ts |IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
r IEEEdouble= yl + yh*ts;

S = yh +r # no rounding, it is the Fast2Sum
#e----- - Mat henati cal definition of what we are approximating --------
My2 = My*My;

Mts = My2 * (s3 + My2*(s5 + My2*s7));
PolySinY = My + My*Mts;

Epsargred = (Yhl - My)/My; # argument reduction error

Epsapprox = (PolySinY - SinY)/SinY; # pol ynom al approxi mation error

Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynom al eval uation
Epstotal = (s - SinY)/SinY; # total error

# Layers of approxinmation on s

S1 = yh + (yl + IEEEdouble(yh*ts)); # renove | ast round

S2 = yh + (yl + yh*s); # renove penul ti mate round
S3 = (yh+yl) + (yh+yl)*ts; # put yl back in

Epsl = (s-S1)/S1;

Eps2 = (S1-S2)/S2;

Eps3 = (S2-S3)/S3;

Eps4 = (S3-PolySinY)/PolySinY;
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

yhts = IEEEdouble(yh*ts); # just to make the hints lighter

p3 IEEEdouble= s3 + yh2*(s5 + yh2*s7); # idem

tsNoRound = yh2 * (s3 + yh2*(s5 + yh2*s7));

# A few definitions nostly to benefit fromautomatic hints.
EpstsMts = (ts-Mts)/Mts;
EpstsNoRoundMts = (tsNoRound - Mts)/Mts;

Epsy2 = (yh2-My2)/My2;

Epsy2_argred = (Yhl*YhI-My2)/My2;
Epsy2_negl_yl = (yh*yh-YhI*Yhl)/(YhI*Yhl);
Epsy2_rnd = (yh2-yh*yh)/(yh*yh);

e The theoremto prove ------------------------

o8 {

69
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72
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84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
929
100
101
102
103
104
10!
106

a

107
108
109
110

# Hypot heses
[yl / yh| <= 1b-53

N |YhI| in [1b-200, 6.29e-03] # | ower bound guaranteed by Kahan-Dougl as al gorithm
N |yh| in [1b-1000, 1] # sonme huge range for ensuring that yh is not zero

N\ |Epsargred| <= 2.53e-23
I\ |Epsapprox| <= 2.26e-24

>

#goal to prove

Epstotal in ? # [-1b-67, 1b-67]
N [riyh] <= 1
#/\ | My| in [1b-400, 6.29e-03]

$ Yhl in (0);
# First, the hints for Epsround

s"S1;

S17S2;
S2°S3;
S3"PolySinY;

Eps4 -> # (S3-PolySinY)/PolySinY;
# S3/PolySiny - 1;
#  ((yhtyl) + (yh+yl)~*ts) / (M + M*Ms) - 1]
# o ((yhtyl)/Wy) * (1+ts)/(1+Ms) - 1;
# (Epsargred+1) * (1+ts)/(1+Ms) - 1;
# Epsargred * (1+ts)/(1+Ms) + 1 * (1+ts)/(1+Ms) - 1;
# Epsargred * (1+ts)/(1+Ms) + (ts-Ms)/(1+Ms);
Epsargred * (1+ts)/(1+Mts) +  Mts*((ts-Mts)/Mts) / (1+Mts) ;

# Now we just need to bound ts-Ms:

ts ~ tsNoRound:;

(tsNoRound - Mts)/Mts ->

# yh2/ M2 * (s3 + yh2*(s5 + yh2*s7)) / (s3 + My2*(s5 + My2*s7))
(1+Epsy2) * (s3 + yh2*(s5 + yh2*s7)) / (s3 + My2*(s5 + My2*s7))

# Now we just need to express My2 in ternms of yh2 and Epsy2

My2 -> yh2/(1+Epsy2);
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111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
3

i
w

yh = Yhl;
(yh - Yh) / Yhl > 1/ (@ + yl [/ yh) - 1;

Eps3 ->

# (S2-S3)/S3

# S2/S3 - 1;

# (yh + (yl + yh*ts)) / ((yh+yl) + (yh+yl)*ts) -1

#  ((yh+yl) + (yh+yl)*ts - yl*ts) / ((yh+yl) + (yh+yl)*ts) -1
# - yl*ts /| ((yh+yl) + (yh+yl)*ts) ;

# - (yl/Yhl) * (ts /[ (1+ts)) ;

((yh-YhD)/Yhl) * (ts [ (1+ts)) ; ' # change sign to have the expression of a
roundi ng error

Eps2 -> # (S1-S2)/S2;

# (yh + (yl + I EEEdoubl e(yh*ts))) / (yh + (yl + yh*ts)) -1

# (1 EEEdoubl e(yh*ts) - yh*ts) / (yh + yl + yh*ts) ;

#  ((l| EEEdoubl e(yh*ts) - yh*ts)/(yh*ts)) / ( (yh+yl)/(yh*ts) + 1)
ts * ((IEEEdouble(yh*ts) - yh*ts)/(yh*ts)) / ( 1 + yllyh + ts ) ;

yhts/lyh -> ts*((yhts-yh*ts)/(yh*ts) + 1);

(yl+yhts)lyh -> yllyh + yhtslyh;
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