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Abstract

High confidence in floating-point programs requires provingnumerical properties of final and intermediate values.
One may need to guarantee that a value stays within some range, or that the error relative to some ideal value is well
bounded. Such work may require several lines of proof for each line of code, and will usually be broken by the
smallest change to the code (e.g. for maintenance or optimization purpose). Certifying these programs by hand is
therefore very tedious and error-prone. This article discusses the use of the Gappa proof assistant in this context.
Gappa has two main advantages over previous approaches: Itsinput format is very close to the actual C code to
validate, and it automates error evaluation and propagation using interval arithmetic. Besides, it can be used to
incrementally prove complex mathematical properties pertaining to the C code. Yet it does not require any specific
knowledge about automatic theorem proving, and thus is accessible to a wide community. Moreover, Gappa may
generate a formal proof of the results that can be checked independently by a lower-level proof assistant like Coq,
hence providing an even higher confidence in the certification of the numerical code. The article demonstrates the use
of this tool on a real-size example, an elementary function with correctly rounded output.

1 Introduction

Floating-point (FP) arithmetic was designed to help developing software handling real numbers. However, FP numbers
are only an approximation to the real numbers. A novice programmer may incorrectly assume that FP numbers
possess all the basic properties of the real numbers, for instance associativity of the addition, and waste time fighting
the associated subtle bugs. Having been bitten once, he may forever stay wary of FP computing as something that
cannot be trusted. As many safety-critical systems rely on floating-point arithmetic, the question of the confidence
that one can have in such systems is of paramount importance,all the more as floating-point hardware, long available
in mainstream processors, is now also increasingly designed into embedded systems.

This question was addressed in 1985 by the IEEE-754 standardfor floating-point arithmetic [1]. This standard
defines common floating-point formats (single and double precision), but it also precisely specifies the behavior of the
basic operators+, −, ×, ÷, and√ . In the rounding mode to the nearest, these operators shall return thecorrectly
roundedresult, uniquely defined as the floating-point number closest to the exact mathematical value (in case of a
tie, the number returned is the one with the even mantissa). The standard also defines threedirected roundingmodes
(towards+∞, towards−∞, and towards0) with similar correct rounding requirements on the operators.

The adoption and widespread use of this standard have increased the numerical quality and portability of floating-
point code. It has improved confidence in such code and allowed construction of proofs of numerical behavior [2].
Directed rounding modes are also the key to enable efficientinterval arithmetic[3], a general technique to obtain
validated numerical results.

This article is related to the IEEE-754 standard in two ways.Firstly, it discusses the issue of proving properties
of numerical code, building upon the properties specified bythis standard. Secondly, one of our case studies will be
the proof of the implementation of an elementary function (the logarithm) returning correctly-rounded results. Such
correctly-rounded implementations will contribute to a better floating-point standard, where the numerical quality of
elementary functions matches that of the basic operators.

Elementary functions were left out of the IEEE-754 standardin 1985 in part because the correct rounding property
is much more difficult to guarantee than for the basic arithmetic operators. The problem will be exposed in detail in the
sequel. In short, the correctness of the implementation of acorrectly rounded function requires thea priori knowledge
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of a bound on the overall error of evaluatingf(x). Moreover, this bound should be tight, as a loose bound negatively
impacts performance [4, 5].

This article describes an approach to machine-checkable proofs of such tight bounds, which is both interactive and
easy to manage, yet much safer than a hand-written proof. It applies to error bounds as well as range bounds. Our
approach is not restricted to the validation of elementary functions. It currently applies to any straight-line floating-
point program of reasonable size (up to several hundreds of operations).

The novelty here is the use of a tool that transforms a high-level description of the proof into a machine-checkable
version, in contrast to previous work by Harrison [6, 7] who directly described the proof of the implementation of
some functions in all the low-level details. The Gappa approach is more concise and more flexible in the case of a
subsequent change to the code. More importantly, it is accessible to people outside the formal proof community.

This article is organized as follows. Next section describes in detail the challenges posed by automatic computation
of tight bounds on ranges and errors. Section 3 describes theGappa tool. Section 4 gives an overview on the techniques
for proving an elementary function using Gappa and give an extensive example of the interactive construction of the
proof.

2 Proving properties of floating-point code

2.1 Floating-point numbers are not real numbers

We have already mentioned that floating-point (FP) numbers do not possess basic properties of real numbers. The
following FP code sequence, due to Dekker [8], illustrates this:

Listing 1: The Fast2Sum algorithm.

1 s = a+b;
2 r = b-(s-a);

This sequence consists only of three operations. The first one computes the FP sum of the two numbersa andb.
The second one would always returnb and the third one0, if this FP sum was exact. As the numbers here are FP
numbers, however, the sum is often inexact, because of the rounding. In IEEE-754 arithmetic with round-to-nearest,
under certain conditions, this algorithm computes inr the error committed by this first rounding. In other words, it
ensures thatr + s = a + b in addition to the fact thats is the FP number closest toa + b. The Fast2Sum algorithm
provides us with an exact representation of the sum of two FP numbers as a pair of FP numbers, a very useful operation.

This example illustrates an important point, which pervades all of this article: FP numbers may be an approxima-
tion of the reals that fails to ensure basic properties of thereals, but they are also a very well-defined set of rational
numbers, which have other well-defined properties, upon which it is possible to build mathematical proofs such as the
proof of the Fast2Sum algorithm.

Let us come back to the condition under which the Fast2Sum algorithm works. This condition is that the exponent
of a is larger than or equal to that ofb, which will be true for instance if|a| ≥ |b|. If one is to use this algorithm,
one has first to prove that this condition is true. Note that alternatives to the Fast2Sum exist for the case when one is
unable to prove this condition. The version by Knuth [9] requires6 operations instead of3. Here, being able to prove
the condition, which is a property on values of the code, willresult in better performance.

The proof of the properties of the Fast2Sum sequence (three FP operations) requires several pages [8], and is
indeed currently out of reach of the Gappa tool, basically because it can not be reduced to manipulating ranges and
errors. This is not a problem, since this algorithm has already been proven using machine checkers [10]. We consider
it as a generic building-block of larger floating-point programs, and the focus of our approach is to automate the proof
of such larger programs. In the case of the Fast2Sum, this means proving the condition.

Let us now introduce the class of larger FP programs that we have targeted in this work: implementations of
elementary functions
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2.2 Elementary functions

Current floating-point implementations of elementary functions [11, 12, 13, 14, 15] have several features that make
their proof challenging:

• The code size is too large to be safely proven by hand. In the first versions of theCRlibm project, the complete
paper proof of a single function required tens of pages. It isdifficult to trust such proofs.

• The code is optimized for performance, making extensive useof floating-point tricks such as the Fast2Sum
above. As a consequence, classical tools of real analysis cannot be straightforwardly applied. Very often,
considering the same operations on real numbers would be simply meaningless.

• The code is bound to evolve for optimization purpose, because better algorithms may be found, but also because
the processor technology evolves. Such changes will imposeto rewrite the proof, which is both tedious and
error-prone.

• Much of the knowledge required to prove error bounds on the code is implicit or hidden, be it behind the
semantics of the programming language (which defines implicit parenthesing, for examples), or in the various
approximations made. Therefore, the mere translation of a piece of code into a set of mathematical variables
that represent the values manipulated by this code is tedious and error-prone if done by hand.

Fortunately, FP elementary function implementations alsohave pleasant features that make their proof tractable:

• There is a clear and simple definition of the mathematical object that the floating-point code is supposed to
approximate. This will not always be the case of e.g. scientific simulation code.

• The code size is small enough to be tractable, typically lessthan a hundred floating-point operations.

• The control flow is simple, consisting mostly of straight-line code with a few tests but no loops.

The following elaborates on these features.

2.2.1 A primer on elementary function evaluation

The evaluation of an elementary function is classically [14, 15] performed by a polynomial approximation valid on a
small interval only. Arange reductionstep brings the input numberx into this small interval, and areconstruction
step builds the final result out of the results of both previous steps. For example, the logarithm may use as a range
reduction the errorless decomposition ofx into its mantissam and exponentE: x = m · 2E. It may then evaluate
the logarithm of the mantissa, and the reconstruction consists in evaluatinglog(x) = log(m) + E · log(2). Note that
current implementations typically involve several layered steps of range reduction and reconstruction. With current
processor technology, efficient implementations [11, 12, 16] rely on large tables of precomputed values. See the books
by Muller [15] or Markstein [17] for recent surveys on the subject.

In the previous logarithm example, the range reduction was exact, but the reconstruction involved a multiplication
by the irrationallog(2), and was therefore necessarily approximate. This is not always the case. For example, for
trigonometric functions, the range reduction involves subtracting multiples of the irrationalπ/2, and will be inexact,
whereas the reconstruction step consists in changing the sign depending on the quadrant, which is exact in floating-
point arithmetic.

It should not come as a surprise that either range reduction or reconstruction are inexact. Indeed, FP numbers are
rational numbers, but for most elementary functions, it canbe proven that, with the exception of a few values, the
image of a rational is irrational. Therefore, in an implementation, one is bound, at some point, to manipulate numbers
which are approximations of irrational numbers.

This introduces another issue which is especially relevantto elementary function implementation. One wants to
obtain a double-precision FP result which is a good approximation to the mathematical result, the latter being an
irrational most of the times. For this purpose, one needs to evaluate an approximation of this irrational to a precision
better than that of the FP format.

3



2.2.2 Reaching better-than-double precision

Better-than-double precision is typically attained thanks todouble-extendedarithmetic on processors that support it,
or double-doublearithmetic, where a number is held as the unevaluated sum of two doubles, just as the 8-digit decimal
number3.8541942 ·101 may be represented by the unevaluated sum of two 4-digit numbers3.854 ·101+1.942 ·10−3.
Well-known and well-proven algorithms exist for manipulating double-double numbers [8, 9], the simplest of which
is the Fast2Sum already introduced.

However these algorithms are costly, as each operation on double-double numbers requires several FP operations.
In this article, we will consider implementations based on double-double arithmetic, because they are more challeng-
ing, but Gappa handles double-extended arithmetic equallywell.

2.3 Floating-point errors, but not only

The evaluation of any mathematical function entails two main sources of errors.

• Approximation errors (also called methodical errors), such as the error of approximating a function with a
polynomial. One may have a mathematical bound for them (given by a Taylor formula for instance), or one may
have to compute such a bound using numerics [18], for exampleif the polynomial has been computed using
Remez algorithm.

• Rounding errors, produced by most floating-point operations of the code.

The distinction between both types of errors is sometimes arbitrary: for example, the error due to rounding the
polynomial coefficients to floating point numbers is usuallyincluded in the approximation error of the polynomial.
The same holds for the rounding of table values, which is accounted for more accurately as approximation error than as
rounding error. This point is mentioned here because a lack of accuracy in the definition of the various errors involved
in a given code may lead to one of them being forgotten.

2.4 The point with efficient code

Efficient code is especially difficult to analyze and prove because of all the techniques and tricks used by expert
programmers.

For instance, many floating-point operations are exact, andthe experienced developer of floating-point code will
try to use them. Examples include multiplication by a power of two, subtraction of numbers of similar magnitude
thanks to Sterbenz’ Lemma [19], exact addition and exact multiplication algorithms (returning a double-double),
multiplication of a small integer by a floating-point numberwhose mantissa ends with enough zeroes, etc.

The expert programmer will also do his best to avoid computing more accurately than strictly needed. He will re-
move from the computation some operations that are expectednot to improve the accuracy of the result by much. This
can be expressed as an additional approximation. However, it soon becomes difficult to know what is an approximation
to what, especially as the computations are re-parenthesized to maximize floating-point accuracy.

To illustrate the resulting code obfuscation, let us introduce the piece of code that will serve as a running example
along this article.

2.5 Example: A double-double polynomial evaluation

Listing 2 is an extract of the code of a sine function in theCRlibm library. These three lines compute the value of an
odd polynomialp(y) = y + s3 × y3 + s5 × y5 + s7 × y7 close to the Taylor approximation of the sine (its degree-1
coefficient is equal to1). In our algorithm, the reduced argumenty is ideally obtained by subtracting to the FP inputx
an integer multiple ofπ/256. As a consequencey ∈ [−π/512, π/512] ⊂ [−2−7, 2−7].

However, asy is irrational, the implementation of this range reduction has to return a number more accurate than
a double, otherwise there is no hope of achieving an accuracyof the sine that matches floating-point double precision.
In our implementation, range reduction therefore returns adouble-doubleyh + yl.
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To minimise the number of operations, Horner rule is used forthe polynomial evaluation:p(y) = y + y3 × (s3 +
y2 × (s5 + y2 × s7)). For a double-double inputy = yh + yl, the expression to compute is thus(yh + yl) + (yh +
yl)3 × (s3 + (yh + yl)2 × (s5 + (yh + yl)2 × s7)).

The actual code uses an approximation to this expression: the computation will be accurate enough if all the
Horner steps except the last one are computed in double-precision. Thus,yl will be neglected for these iterations,
and coefficientss3 to s7 will be stored as double-precision numbers noteds3, s5 ands7. The previous expression
becomes:

(yh + yl) + yh3 × (s3 + yh2 × (s5 + yh2 × s7)).

However, if this expression is computed as parenthesized above, it will not be very accurate. Specifically, the
floating-point additionyh + yl will (by definition of a double-double) returnyh, so the information held byyl will
be completely lost. Fortunately, the rest of the Horner evaluation also has much smaller magnitude thanyh (this is
deduced fromy ∈ [−2−7, 2−7], thereforey3 ∈ [−2−21, 2−21]). The following parenthesing is therefore much more
accurate:

yh +
(

yl+ yh× yh2 × (s3 + yh2 × (s5+ yh2 × s7))
)

.

In this last version of the expression, only the leftmost addition must be accurate: we will use a Fast2Sum (which
as we saw is an exact addition of two doubles returning a double-double). The other operations use the native — and
therefore fast — double-precision arithmetic. We obtain the code of Listing 2.

Listing 2: Three lines of C

1 yh2 = yh*yh;
2 ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
3 Fast2Sum(sh,sl, yh, yl + yh*ts);

To sum up, this code implements the evaluation of a polynomial with many layers of approximation. For instance,
variableyh2 approximatesy2 through the following layers:

• y was approximated byyh + yl with the relative accuracyǫargred

• yh+ yl is approximated byyh in most of the computation,

• yh2 is approximated byyh2=yh*yh , with a floating-point rounding error.

In addition, the polynomial is an approximation to the sine function, with a relative error bound ofǫapprox which
is supposed known (how it was obtained it is out of the scope ofthis paper [18]).

Thus, the difficulty of evaluating a tight bound on an elementary function implementation is to combine all these
errors without forgetting any of them, and without using overly pessimistic bounds when combining several sources
of errors. The typical trade-off here will be that a tight bound requires considerable more work than a loose bound
(and its proof might inspire considerably less confidence).Some readers may get an idea of this trade-off by relating
each intermediate value with its error to confidence intervals, and propagating these errors using interval arithmetic.
In many cases, a tighter error will be obtained by splitting confidence intervals into several cases, and treating them
separately, at the expense of an explosion of the number of cases. This is one of the tasks that Gappa will helpfully
automate.

2.6 Previous and related work

We have not yet explained why a tight error bound is required in order to obtain a correctly rounded implementation.
This question is surveyed in [5]. To sum it up, an error bound is needed to guarantee correct rounding, and the tighter
the bound, the more efficient the implementation. A related problem is that of proving the behaviour ofinterval
elementary functions [20]. In this case, a bound is requiredto ensure that the interval returned by the function contains
the image of the input interval. A loose bound here means returning a larger interval than possible, and hence useless
interval bloat. In both case, the tighter the bound, the better the implementation.

As a summary, proofs written for version of theCRlibm project up to versions 0.8 [21] are typically composed of
several pages of paper proof and several pages of supportingMaple for a few lines of code. This provides an excellent
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documentation and helps maintaining the code, but experience has consistently shown that such proofs are extremely
error-prone. Implementing the error computation in Maple was a first step towards the automation of this process, but
if it helps avoiding computation mistakes, it does not prevent methodological mistakes. Gappa was designed, among
other objectives, in order to fill this void.

There has been other attempts of assisted proofs of elementary functions or similar floating-point code. The pure
formal proof approach of Harrison [6, 7, 22] goes deeper thanthe Gappa approach, as it accounts for approximation
errors. However it is accessible only to experts of formal proofs, and fragile in case of a change to the code. The
approach of Krämeret al [23, 24] relies on operator overloading and does not providea formal proof.

3 The Gappa tool

Gappa1 extends the interval arithmetic paradigm to the field of numerical code certification [25, 26]. Given the de-
scription of a logical property involving the bounds of mathematical expressions, the tool tries to prove the validity of
this property. When the property contains unbounded expressions, the tool computes bounding ranges such that the
property holds. For instance, the incomplete property “x + 1 ∈ [2, 3] ⇒ x ∈ [?, ?]” can be input to Gappa. The tool
answers that[1, 2] is a range of the expressionx such that the whole property holds.

Once Gappa has reached the stage where it considers the property to be valid, it generates a formal proof that can
be checked by an independent proof assistant. This proof is completely independent of Gappa and its validity does not
depend on Gappa’s own validity. It can be mechanically verified by an external proof checker and included in bigger
formal developments.

3.1 Floating-point considerations

Section 4 will give examples of Gappa’s syntax and show that Gappa can be applied to mathematical expressions much
more complex than justx+1, and in particular to floating-point approximation of elementary functions. This requires
describing floating-point arithmetic expressions within Gappa.

Gappa only manipulates expressions on real numbers. In the propertyx + 1 ∈ [2, 3], x is just a universally-
quantified real number and the operator+ is the usual addition on real numbersR. Floating-point arithmetic is
expressed through the use of “rounding operators”: functions fromR to R that associate to a real numberx its rounded
value◦(x) in a specific format. These operators are sufficient to express properties of code relying on most floating-
point or fixed-point arithmetics.

Verifying that a computed value is close to an ideal value cannow be done by computing an enclosure of the error
between these two values. For example, the property “x ∈ [1, 2] ⇒ ◦(◦(2× x)− 1)− (2× x− 1) ∈ [?, ?]” expresses
the absolute error caused during the floating-point computation of the following numerical code:

1 float x = ...;
2 assert(1 <= x && x <= 2);
3 float y = 2 * x - 1;

Infinities and NaNs (Not-a-Numbers) are not an implicit partof this formalism: The rounding operators return a
real value and there is no upper bound on the magnitude of the floating-point numbers. This means that NaNs and
overflows will not be generated nor propagated as they would in IEEE-754 arithmetic. However, one may use Gappa
to prove very useful properties, for instance that overflows, or NaNs due to some division by0, cannot occur in a given
code: This can be expressed in terms of intervals. What one cannot prove are properties depending on the correct
propagation of infinities and NaNs in the code.

3.2 Proving properties using intervals

Thanks to the inclusion property of interval arithmetic, ifx is an element of[0, 3] andy an element of[1, 2], thenx+y
is an element of the interval sum[0, 3] + [1, 2] = [1, 5]. This technique based on interval evaluation can be appliedto
any expression on real numbers. That is how Gappa computes the enclosures requested by the user.

1http://lipforge.ens-lyon.fr/www/gappa/
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Interval arithmetic is not restricted to this role though. Indeed the interval sum[0, 3] + [1, 2] = [1, 5] do not only
give bounds onx + y, it can also be seen as a proof ofx + y ∈ [1, 5]. Such a computation can be formally included as
an hypothesis of the theorem on the enclosure of the sum of tworeal numbers. This method is known as computational
reflexivity [27] and allows for the proofs to be machine-checkable. That is how the formal proofs generated by Gappa
can be checked independently without requiring any human interaction with a proof assistant.

Such “computable” theorems are available for the Coq [28] and HOL Light [29] proof assistants. Previous
work [30] on using interval arithmetic for proving numerical theorems has shown that a similar approach can be
applied for the PVS [31] proof assistant. As long as a proof checker is able to do basic computations on integers, the
theorems Gappa relies on could be provided. As a consequence, the output of Gappa can be targeted to a wide range
of formal certification frameworks, if needed.

3.3 Other computable predicates

Enclosures are not the only useful predicates. As intervalsare connected subsets of the real numbers, they are not
powerful enough to prove some properties on discrete sets like floating-point numbers or integers. So Gappa handles
other classes of predicates for an expressionx:

FIX(x, e) ≡ ∃m ∈ Z, x = m · 2e

FLT(x, p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

As with intervals, Gappa can compute with these new predicates. For example,FIX(x, ex) ∧ (y, ey) ⇒ FIX(x +
y, min(ex, ey)). These predicates are especially useful to detect real numbers exactly representable in a given format.
In particular, Gappa uses them to find rounded operations that can safely be ignored because they do not contribute to
the global rounding error. Let us consider the floating-point subtraction of two floating-point numbersx ∈ [3.2, 3.3]
andy ∈ [1.4, 1.8]. Note that Sterbenz’ Lemma is not sufficient to prove that thesubtraction is actually exact, as
3.3
1.4

> 2. Gappa is, however, able to automatically prove that◦(x − y) is equal tox − y.
As x andy are floating-point numbers, Gappa first proves that they can be represented with24 bits each (assuming

single precision arithmetic). Asx is bigger than3.2, it can then deduce it is a multiple of2−22, or FIX(x,−22).
Similarly, it provesFIX(y,−23). The propertyFIX(x − y,−23) comes then naturally. By computing with intervals,
Gappa also proves that|x − y| is bounded by1.9. A consequence of these last two properties isFLT(x − y, 24): only
24 bits are needed to representx − y. Sox − y is representable by a single-precision floating-point number.

There are also some specialized predicates for enclosures.The following one expresses the range of an expression
u with respect to another expressionv:

REL(u, v, [a, b]) ≡ −1 < a ∧ ∃ǫ ∈ [a, b], u = v · (1 + ǫ)

This predicate is seemingly equivalent to the enclosure of the relative erroru−v
v

. It allows, however, to simplify proofs,
as the error can now be manipulated even whenv is potentially zero. For example, the relative rounding error of a
floating-point addition vanishes on subnormal numbers (including zero) and is bounded elsewhere, so the following
property holds:REL(◦(x + y), x + y, [−2−53, 2−53]) when rounding to nearest in double precision.

3.4 Gappa’s engine

Because basic interval evaluations do not keep track of correlations between expressions sharing the same terms, some
computed ranges may be too wide to be useful. This is especially true when bounding errors. For example, when
bounding the absolute error◦(a) − b between an approximation◦(a) and an exact valueb. The simplest option is to
first compute the ranges of◦(a) andb separately and then subtract them. However, first rewritingthe expression as
(◦(a) − a) + (a − b) and then bounding◦(a) − a (a simple rounding error) anda − b separately before adding their
ranges usually gives a much tighter result. These rules are inspired by techniques developers usually apply by hand in
order to certify their numerical applications.

Gappa includes a database of such rewriting rules (section 3.5 shows how the user may expand this database). The
tool applies them automatically, so that it can bound expressions along various evaluation paths. Since any of these
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resulting intervals encloses the initial expression, their intersection does, too. Gappa keeps track of the paths thatlead
to the tightest interval intersection and discards the others, so as to reduce the size of the final proof. It may happen
that the resulting intersection is empty; it means that there is a contradiction between the hypotheses of the logical
property and Gappa will use it to prove all the goals of the logical property.

Once the logical property has been proved, a formal proof is generated by retracing the paths that were followed
when computing the ranges.

3.5 Hints

When Gappa is not able to satisfy the goal of the logical property, this does not necessarily mean that the property is
false. It may just mean that Gappa has not enough informationabout the expressions it tries to bound.

It is possible to help Gappa in these situations by providingrewriting hints. These are rewriting rules similar to
those presented above in the case of rounding, but whose usefulness is specific to the problem at hand.

3.5.1 Explicit hints

A hint has the following form:

Expr1 -> Expr2;

It is used to give the following information to Gappa: “I believe for some reason that, should you need to compute
an interval forExpr1 , you might get a tighter interval by trying the mathematically equivalentExpr2 ”. This fuzzy
formulation is better explained by considering the following examples.

1. The “some reason” in question will typically be that the programmer knows that expressionsA, B andC are
different approximations of the same quantity, and furthermore thatA is an approximation toB which is an
approximation toC. As previously, this means that these variables are correlated, and the adequate hint to give
in this case is

A - C -> (A - B) + (B - C);

It will suggest to Gappa to first compute intervals forA-B andB-C, and then to sum them to get an interval for
A-C.

As there are an infinite number of arbitraryB expressions that can be inserted in the right hand side expression,
Gappa does not try to apply every possible rewriting rule when it encountersA-C. However, as 3.5.2 will show,
Gappa usually infers some usefulB expressions and applies the rewriting rules automatically.

2. Relative errors can be manipulated similarly. The hint touse in this case is

(A-C)/C -> (A-B)/B + (B-C)/C + ((A-B)/B)*((B-C)/C);

This is still a mathematical identity, as one may check easily. Again, Gappa tries to infer some usefulB expres-
sions and to apply the corresponding rewriting rules.

3. Whenx is an approximation ofMX and a relative errorǫ = x−MX
MX

is known by the tool,x can be rewritten
MX · (1 + ǫ). This kind of hint is useful in combination with the following one.

4. When manipulating fractional terms such asExpr1

Expr2
whereExpr1 andExpr2 are correlated (for example one

approximating the other), the interval division fails to give useful results if the interval forExpr2 comes close
to 0. In this case, one will try to writeExpr1 = A · Expr3 andExpr2 = A · Expr4, so that the interval onExpr4
does not come close to0 anymore. The following hint is then appropriate:

Expr1 / Expr2 -> Expr3 / Expr4;

This rewriting rule is only valid ifA is not zero, so the caseA = 0 has to be handled separately. So that Gappa
does not apply the rule in an invalid context, a constraint onA can be added. The rule thus becomes:
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Expr1 / Expr2 -> Expr3 / Expr4 { A <> 0 };

All these hints are correct if both sides are mathematicallyequivalent. Gappa therefore checks this automatically.
If the test fails, it emits a warning to the user that he or she must review the hint by hand. Therefore, writing even
complex hints is very safe: one may not introduce an error in the proof by writing hints which do not emit warnings.

Besides, useless hints may consume execution time as Gappa tries in vain to use them, but if they are useless, they
will be silently ignored in the final proof. Therefore, writing useless hints is essentially harmless.

3.5.2 Automatic hints

After using Gappa to prove several elementary functions, one thing became clear: Users kept writing the same hints,
typically of the three first kinds enumerated in 3.5.

Gappa was therefore modified to introduce a new kind of hint:

Expr1 ˜ Expr2;

that reads “Expr1 approximatesExpr2 ”. This has the effect of introducing rewriting hints both for absolute and
relative differences involvingExpr1 or Expr2 . There may be useless hints among such automatic hints, but again
they will be mostly harmless.

For instance, when it encounters an expression of the formExpr1 - Expr3 (for any expressionExpr3 ), Gappa
automatically tries the ruleExpr1-Expr3 -> (Expr1-Expr2) + (Expr2-Expr3) . And when it encoun-
tersExpr3 - Expr2 , it tries the rewriting ruleExpr3-Expr2 -> (Expr3-Expr1) + (Expr1-Expr2) .

By default, Gappa assumes thatExpr1 approximatesExpr2 if Expr1 is the rounded value ofExpr2 . It also
makes this assumption when an enclosure of the absolute or relative error betweenExpr1 andExpr2 appears in the
hypotheses of the logical proposition Gappa has to prove.

Remark: It is very important, in the various differences appearing in all these expressions, that the least accurate
term is written first and the most accurate written last. The main reason is that the theorems of Gappa’s database apply
to expressions written in this order. This ordering convention prevents a combinatorial explosion on the number of
paths to explore.

3.5.3 Bisection and dichotomy hints

Finally, it is possible to instruct Gappa to split some intervals and perform its exploration on the resulting sub-intervals.
There are several possibilities. For instance, the following hint

$ z in (-1,2);

reads “Better enclosures may be obtained by separately considering the sub-casesz ≤ −1, −1 ≤ z ≤ 2, and2 ≤ z.”
The following hint finds the splitting points automaticallyby performing a dichotomy on the interval ofz until the

part of the goal corresponding toExpr as been satisfied for all the sub-intervals ofz.

Expr $ z;

3.5.4 Writing hints in an interactive way

Gappa has evolved to include more and more automatic hints, but most real-world proofs still require writing complex,
problem-specific hints. Finding the right hint that Gappa needs could be quite complex and would require completely
mastering its theorem database and the algorithms used by its engine. Fortunately, a much simpler way is to build
the proof incrementally and question the tool by adding and removing intermediate goals to prove, as the extended
example in next section will show. Before that, we first describe the outline of the methodology we use to prove
elementary functions.
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4 Proving elementary functions using Gappa

As in every proof work, style is important when working with Gappa: in a machine-checked proof, bad style will
not in principle endanger the validity of the proof, but it may prevent its author to get to the end. In theCRlibm
framework, it may hinder acceptance of machine-checked proofs among new developers.

Gappa does not impose a style, and when we started using it there was no previous experience to get inspiration
from. After a few months of use, we had improved our “coding style” in Gappa, so that the proofs were much more
concise and readable than the earlier ones. We had also set upa methodology that works well for elementary functions.
This section is an attempt to describe this methodology and style. We are aware that they may be inadequate for other
applications, and that even for elementary functions they could be improved further.

The methodology consists in three steps, which correspond to the three sections of a Gappa input file.

• First, the C code is translated into Gappa equations, in a waythat ensures that the Gappa proof will indeed prove
some property of this program (and not of some other similar program). Then equations are added describing
what the program is supposed to implement. Usually, these equations are also in correspondence with the code.

• Then, the property to prove is added. It is usually in the formhypotheses -> properties , where the
hypotheses are known bounds on the inputs, or contribution to the error determined outside Gappa, like the
approximation errors.

• Finally, one has to addhintsto help Gappa complete the proof. This last part is built incrementally.

The following sections detail these three steps.

4.1 Translating a FP program

We consider again the following C code, where we have added the constants:

1 s3 = -1.6666666666666665741e-01;
2 s5 = 8.3333333333333332177e-03;
3 s7 = -1.9841269841269841253e-04;
4 yh2 = yh*yh;
5 ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
6 Fast2Sum(sh,sl, yh, yl + yh*ts);

There is a lot of rounding operations in this code, so the firstthing to do is to define Gappa rounding operators
for the rounding modes used in the program. In our example, weuse the following line to defineIEEEdouble as a
shortcut for IEEE-compliant rounding to the nearest double, which is the mode used inCRlibm .

@IEEEdouble = float<ieee_64,ne>;

Then, if the C code is itself sufficiently simple and clean, the translation step only consists in making explicit the
rounding operations implicit in the C source code. To start with, the constantss3 , s5 ands7 are given as decimal
strings, and the C compilers we use convert them to (binary) double-precision FP numbers with round to nearest. We
ensure that Gappa works with these same constants as the compiled C code by inserting explicit rounding operations:

s3 = IEEEdouble(-1.6666666666666665741e-01);
s5 = IEEEdouble( 8.3333333333333332177e-03);
s7 = IEEEdouble(-1.9841269841269841253e-04);

Then we have to do the same for all the roundings hidden behindC arithmetic operations. Adding by hand all the
rounding operators, however, would be tedious and error-prone, and would make the Gappa syntax so different from
the C syntax that it would degrade confidence and maintainability. Besides, one would have to apply without error
the rules (well specified by the C99 standard [32]) governingfor instance implicit parentheses in a C expression. For
these reasons, Gappa has a syntax that instructs it to perform this task automatically. The following Gappa lines

yh2 IEEEdouble= yh * yh;
ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
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define the same mathematical relation between their right-hand side and left-hand side as the corresponding lines of
the C programs. This, of course, is only true under the following conditions:

• all the C variables are double-precision variables,

• the Gappa variables on the right-hand side represent them,

• the compiler/OS/processor combination used to process theC code respects the C99 and IEEE-754 standards
and computes in double-precision arithmetic.

Finally, we have to express in Gappa the Fast2Sum algorithm.Where in C it is a macro or function call, for our
purpose we prefer to ignore this complexity and simply express in Gappa the resulting behaviour, which is a sum
without error (we have here to trust an external proof of thisbehaviour [8, 9]):

r IEEEdouble= yl + yh*ts;
s = yh + r; # the Fast2Sum is exact. s is sh+sl

Note that we are interested in the relative error of the sums with respect to the exact sine, and for this purpose the
fact thats has to be represented as a sum of two doubles in C is irrelevant.

More importantly, this adds another condition for this codetranslation to be faithful: As the proof of the Fast2Sum
has as hypothesis that the exponent ofyh is larger than or equal to that ofr , we now have to prove that. We will
simply add this goal to the theorem to prove.

As a summary, for straight-line program segments with mostly double-precision variables, a set of corresponding
Gappa definitions can be obtained straightforwardly by justreplacing the C= with GappaIEEEdouble= , a very safe
operation.

4.2 Defining ideal values

To analyse this code, we now need a “mathematically ideal” definition of all the variables, a reference with respect
to which the error is computed. This notion of mathematically ideal may be quite subtle: What is the mathematically
ideal ofyh2 ? It could be

• the exact square ofyh (without rounding), or

• the exact square ofyh+yl thatyh approximates, or

• the exact square of the ideal reduced argumenty , which is usually irrational.

The right choice depends on the properties to prove. Here, the mathematically ideal value for bothyh+yl andyh
will be the ideal reduced argument, which we noteMy. Similarly, the purest mathematical value thatyh2 approximates
is notedMy2 and will be defined asMy2 = My*My.

For the polynomial approximationts , we could choose, as mathematical ideal, either the value ofthe function
that the polynomial approximates, or the value of the same polynomial, but computed onMy and without rounding
error. Here we chose the latter, although it is the lesser ideal.

Here come a few naming conventions. The first was obviously that the Gappa variables that mimick C variables
have the same name. We also impose the convention that such variables begin with a lowercase letter. In addition,
Gappa variables for mathematically ideal terms will begin with a “M”. The other intermediate Gappa variables should
begin with capital letters to distinguish them from variables mimicking the code. Of course, related variables should
have related and, wherever possible, explicit names. Again, these are conventions and are part of a proof style, not part
of Gappa syntax: the capitalization will give no information to the tool, and neither will the fact that variables have
related names.

For instance, it will be convenient to define a variable equalto yh+yl :

Yhl = yh + yl;
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4.3 Defining what the code is supposed to compute

Defining mathematically ideal values resumes to defining in Gappa what the C code is supposed to implement. For
instance, using our previous conventions, the line forts was probably evaluating the value of the same polynomial of
the idealMy:

My2 = My*My;
Mts = My2 * (s3 + My2*(s5 + My2*s7));

We have kept the polynomial coefficients in lower case: As already discussed in Section 2, the polynomial thus
defined nevertheless belongs to the set of polynomial with real coefficients, and we have means to compute (outside
Gappa) a bound of its relative error with respect to the function it approximates.

The link betweents and the polynomial approximating the sine is also best expressed using mathematically ideal
values:

PolySinY = My + My*Mts;

To sum up,PolySinY is the actual polynomial with the same coefficientss3 to s7 as in the C code, but evaluated
without rounding error, and evaluated on the ideal value that yh+yl approximates.

Another approach could be to use a Taylor polynomial, in which case the approximation error would be given by
the rest in the Taylor formula, the ideal polynomial would bethe Taylor one, it would have ideal Taylor coefficients
(beginning with M), some of which would have to be rounded to FP numbers to appear in the program (lowercase).
Gappa could handle it, too, but it would be less convenient.

Another crucial question is, how do we define the real, ideal,mathematical function which we eventually approx-
imate? Gappa has no builtin sine or logarithm. The current approach can be described in English as: “sin(My) is a
value which, as long asMy is smaller than6.29e-3 , remains within a relative distance of2.26e-24 of our ideal
polynomial”. In Gappa, this will translate to some hypotheses in the property to prove:

|Yhl| in [0, 6.29e-03]
/\ |(PolySinY - SinY)/SinY| <= 2.26e-24
/\ ... # (more hypotheses, see below)

-> epstotal in ?

Here the interval ofYhl is defined by the range reduction, and its bound has been computed separately: it is
π/512, plus some margin that accounts for the inexactness of argument reduction.

Similarly, the relative distance between the sine and the polynomial on this interval is computed outside Gappa.
We used to use Maple’s infinite norm, but it only returns an approximation, so this was in principle a weakness of the
proof. We now use a safer, interval-based approach [18], implemented in the Sollya tool2.

Of course this tool provides a theorem which could be expressed as
|Yhl| in [0, 6.29e-03] -> |(PolySinY - SinY)/SinY| <= 2.26e- 24 . We just inject the prop-
erty of this theorem as an hypothesis in Gappa.

Concerning style, it will be more convenient to have a variable defined as this approximation error. Similarly,
it will make the proof much clearer and concise to add, from the beginning, as many definitions as possible for the
various terms and errors involved in the computation:

Epsargred = (Yhl - My)/My; # argument reduction error
Epsapprox = (PolySinY - SinY)/SinY; # polynomial approximation error
Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynomial evaluation
Epstotal = (s - SinY)/SinY; # total error

4.4 Defining the property to prove

With the previous introduction, the theorem to prove, expressed as implications using classical first-order logic, is
stated as follows:

2http://sollya.gforge.inria.fr/
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{
# Hypotheses

|Yhl| in [0, 6.29e-03]
/\ |Epsargred| <= 2.53e-23
/\ |Epsapprox| <= 2.26e-24

->

Epstotal in ? # the main goal of our theorem
/\ |r/yh| in [0,1] # the condition for the Fast2Sum to be valid
}

The full initial Gappa script is given below. It adds a more accurate definition ofyh andyl , stating that they are
double-precision numbers and that they form a disjoint double-double. It also adds a lower bound on the absolute value
of the reduced argument, obtained thanks to Kahan/Douglas algorithm. This lower bound is important because it will
enable most values to stay away from zero, which ensures thatrelative errors are not arbitrarily big due to underflow.

Listing 3: The initial Gappa file.

1 @IEEEdouble = float<ieee_64,ne>;
2

3 # yh+yl is a double-double (call it Yhl)
4 yh = IEEEdouble(dummy1);
5 yl = IEEEdouble(dummy2);
6 Yhl = yh + yl; # Below, there is also an hypothesis stating that yl<ulp(yh)
7

8 #--------------- Transcription of the C code --------------------------
9

10 s3 = IEEEdouble(-1.6666666666666665741e-01);
11 s5 = IEEEdouble( 8.3333333333333332177e-03);
12 s7 = IEEEdouble(-1.9841269841269841253e-04);
13 yh2 IEEEdouble= yh * yh;
14 ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
15 r IEEEdouble= yl + yh*ts;
16 s = yh + r; # no rounding, it is the Fast2Sum
17

18 #-------- Mathematical definition of what we are approximating --------
19

20 My2 = My*My;
21 Mts = My2 * (s3 + My2*(s5 + My2*s7));
22 PolySinY = My + My*Mts;
23

24 Epsargred = (Yhl - My)/My; # argument reduction error
25 Epsapprox = (PolySinY - SinY)/SinY; # polynomial approximation error
26 Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynomial evaluation
27 Epstotal = (s - SinY)/SinY; # total error
28

29 #---------------------- The theorem to prove --------------------------
30 {
31 # Hypotheses
32 |yl / yh| <= 1b-53
33 /\ |Yhl| in [1b-200, 6.29e-03] # lower bound guaranteed by Kahan-Douglas algorithm
34 /\ |Epsargred| <= 2.53e-23
35 /\ |Epsapprox| <= 2.26e-24
36

37 ->
38

39 #goal to prove
40 Epstotal in ? # [-1b-67, 1b-67]
41 /\ |r/yh| <= 1
42 }
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4.5 With a little help from the user

Invoking Gappa on this file produces the following output:

Warning: no path was found for Epstotal.
Warning: no path was found for |r / yh|.

Results for |yl / yh| in [0, 1.11022e-16] and |Yhl| in [6.2230 2e-61, 0.00629]
and |Epsargred| in [0, 2.53e-23] and |Epsapprox| in [0, 2.26 e-24]:

Warning: some enclosures were not satisfied.

This means that Gappa needs some help, in the form of hints. Where to start? There are several way to interact with
the tool to understand where it fails.

• We may add additional goals to obtain enclosures for intermediate variables. For instance, adding the goal
|My| in ? , we obtain the following answer

|My| in [0, 0.00629]

Gappa was able to deduce this enclosure from the enclosure ofYhl (hypothesis) and the definition ofEpsargred .
Similarly, we may check for instance that the built-in engine is able to build a good enclosure ofPolySinY ,
but not ofs .

• We may add additional hypotheses and see what progress they entail. For instance, providing a dummy
Epsround as an hypothesis allows Gappa to complete the proof, thanks to its automatic hints.

This way it is possible to track the point where Gappa’s engine gets lost, and provide hints to help it.
In our case, the best thing to do is to express all the approximation layers detailed in Section 2.5. Written as Gappa

equations, we get:

# Layers of approximation on s
S1 = yh + (yl + IEEEdouble(yh*ts)); # s without last rounding
S2 = yh + (yl + yh*ts); # removing penultimate rounding, too
S3 = (yh+yl) + (yh+yl)*ts; # putting back yl which was neglect ed

Eps1 = (s-S1)/S1;
Eps2 = (S1-S2)/S2;
Eps3 = (S2-S3)/S3;
Eps4 = (S3-PolySinY)/PolySinY;

Remark again that all these relative errors are defined relatively to the most accurate term.
We may add goals for these new relative errors: Gappa will be unable to bound any of them. We have to provide

hints.
Consider onlyEps4 , the relative difference betweenS3 andPolySinY – which we saw Gappa is able to bound.

BothS3 andPolySinY are polynomial expressions without any rounding, and with identical coefficients. Therefore,
the difference between them resumes to the difference betweenYhl=yh+yl , used inS3, andMy, used inPolySinY .
We precisely have a measure of this difference: it isEpsargred . The hint we have to provide to Gappa should
therefore expressEps4 as a function ofEpsargred which, when evaluated by intervals, will provide a tight enclo-
sure. Here is a generic technique to obtain such an hint. We start with Eps4 -> (S3-PolySinY)/PolySinY ,
which is just the definition ofEps4 , and we rewrite it incrementally until we have obtained an expression involving
Epsargred . In the following hint, we have left, for the purpose of this tutorial, the intermediate rewriting steps
commented out.

Eps4 ->
# (S3-PolySinY)/PolySinY;
# S3/PolySinY - 1;
# ((yh+yl) + (yh+yl)*ts) / (My + My*Mts) - 1;
# ((yh+yl)/My) * (1+ts)/(1+Mts) - 1;
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# (Epsargred+1) * (1+ts)/(1+Mts) - 1;
# Epsargred * (1+ts)/(1+Mts) + 1 * (1+ts)/(1+Mts) - 1;
# Epsargred * (1+ts)/(1+Mts) + (ts-Mts)/(1+Mts);

Epsargred * (1+ts)/(1+Mts) + Mts*((ts-Mts)/Mts) / (1+Mts) ;

Considering the orders of magnitudes (see Section 2.5), a naive interval evaluation of this last expression will be
very accurate. Indeed,Mts as well asts are very small compared to 1, therefore the first term is closeto Epsargred .
The second is the relative error ofts with respect toMts (expected to be no larger than2−52), multiplied byMts
which is smaller than2−14. We therefore have a sum of two small terms which should provide a small enclosure.

Still, even with this hint, Gappa still fails to provide an enclosure forEps4 . Adding the goalsMts in ? andts
in ? , we observe thatMts is properly enclosed, but notts . We therefore add a definition of the relative error ofts
with respect toMts :

EpstsMts = (ts-Mts)/Mts ;

and we perform the same analysis: we describe the successionof approximation layers betweents andMts , define
intermediate error terms for them, and provide hints for bounding them. This will in turn require to explain to Gappa
how to go fromMy to yh2 through three approximation layers.

We will not detail this process line by line. The final Gappa script is given in appendix, and is available from the
distribution ofCRlibm 3.

4.6 Summing up

Writing hints is the most time-consuming part of the proof, because it is the part where the designer’s intelligence is
required. However, we hope to have shown that it may be done very incrementally.

The example chosen in this article is actually quite complex: its Gappa proof consists of more than 150 lines, half
of which are hints. The bound found onEpstotal is 2−67,24 and is obtained in a few seconds on a recent machine
(the time can be longer when there is a dichotomy). The resulting Coq proof is more than 7000 lines long.

Some functions are simpler. We could write the proof of a logarithm implementation [5] with a few hints only [33].
One reason is that the logarithm never comes close to 0, so thefull proof can be handled only with absolute errors, for
which writing hints is much lighter.

5 Conclusion and perspectives

Validating tight error bounds on the low-level, optimized floating-point code typical of elementary functions has always
been a challenge, as many sources of errors cumulate their effect. Gappa is a high-level proof assistant that is well
suited to this kind of proofs.

Using Gappa, it is easy to translate a part of a C program into amathematical description of the operations involved
with fair confidence that this translation is faithful. Expressing implicit mathematical knowledge one may have about
the code and its context is also easy. Gappa uses interval arithmetic to manage the ranges and errors involved in
numerical code. It handles most of the decorrelation problems automatically thanks to its built-in rewriting rules, and
an engine which explores the possible rewriting of expressions to minimize the size of the intervals. If decorrelation
remains, Gappa allows one to provide new rewriting rules, but checks them. All this is well founded on a library of
theorems which allow the obtained computation to be translated to a proof checkable by a lower-level proof assistant
such as Coq and PVS. Finally, the tool can be questioned during the process of building the proof so that this process
may be conducted interactively.

Therefore, it is possible to get quickly a fully validated proof with good confidence that this proof indeed proves
property of the initial code. Gappa is by no means automatic:to apply it on a given piece of code requires exactly the
same knowledge and cleverness a paper proof would. However,it requires much less work.

The currentCRlibm distribution contains several bits of proofs using Gappa atseveral stages of its development.
Although this development is not over, the current version (0.9) is very stable and we may safely consider generalizing

3http://lipforge.ens-lyon.fr/www/crlibm/
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the use of this tool in the future developments ofCRlibm . It also took 6 months to develop a methodology and style
well suited to the validation of elementary functions. Thispaper presented this aspect as well. Very probably, new
problems will arise as we try to apply this methodology to newfunctions, so that it will need to be refined further.

Iterative codes are currently out of scope of our methodology, although it could be used for instance to prove loop
invariants.

A Complete Gappa script

Listing 4: The complete Gappa file.

1 # test with gappa -Munconstrained < sin.gappa
2 # The proof is not complete, as it doesn’t work without -Munconstrained.
3 # What it means is that Gappa is unable to prove that some denominators are not null.
4 # It’s OK for practical purposes, but it takes some more work to get a formal proof.
5

6 @IEEEdouble = float<ieee_64,ne>;
7 # Convention 1: uncapitalized variables match the variables in the C code. Other

variables begin with a capital letter
8 # Convention 2: variables beginning with "M" are mathematical ideal
9

10 # yh+yl is a double-double (call it Yhl)
11

12 yh = IEEEdouble(dummy1);
13 yl = IEEEdouble(dummy2);
14 Yhl = yh + yl; # There is also an hypothesis stating that yl<ulp(yh)
15

16 #--------------- Transcription of the C code --------------------------
17

18 s3 = IEEEdouble(-1.6666666666666665741e-01);
19 s5 = IEEEdouble( 8.3333333333333332177e-03);
20 s7 = IEEEdouble(-1.9841269841269841253e-04);
21

22 yh2 IEEEdouble= yh * yh;
23 ts IEEEdouble= yh2 * (s3 + yh2*(s5 + yh2*s7));
24 r IEEEdouble= yl + yh*ts;
25 s = yh + r; # no rounding, it is the Fast2Sum
26

27 #-------- Mathematical definition of what we are approximating --------
28

29 My2 = My*My;
30 Mts = My2 * (s3 + My2*(s5 + My2*s7));
31 PolySinY = My + My*Mts;
32

33 Epsargred = (Yhl - My)/My; # argument reduction error
34 Epsapprox = (PolySinY - SinY)/SinY; # polynomial approximation error
35 Epsround = (s - PolySinY)/PolySinY; # rounding errors in the polynomial evaluation
36 Epstotal = (s - SinY)/SinY; # total error
37

38

39

40 # Layers of approximation on s
41 S1 = yh + (yl + IEEEdouble(yh*ts)); # remove last round
42 S2 = yh + (yl + yh*ts); # remove penultimate round
43 S3 = (yh+yl) + (yh+yl)*ts; # put yl back in
44

45 Eps1 = (s-S1)/S1;
46 Eps2 = (S1-S2)/S2;
47 Eps3 = (S2-S3)/S3;
48 Eps4 = (S3-PolySinY)/PolySinY;

16



49

50

51 yhts = IEEEdouble(yh*ts); # just to make the hints lighter
52 p3 IEEEdouble= s3 + yh2*(s5 + yh2*s7); # idem
53

54

55 tsNoRound = yh2 * (s3 + yh2*(s5 + yh2*s7));
56

57 # A few definitions mostly to benefit from automatic hints.
58 EpstsMts = (ts-Mts)/Mts;
59 EpstsNoRoundMts = (tsNoRound - Mts)/Mts;
60

61 Epsy2 = (yh2-My2)/My2;
62 Epsy2_argred = (Yhl*Yhl-My2)/My2;
63 Epsy2_negl_yl = (yh*yh-Yhl*Yhl)/(Yhl*Yhl);
64 Epsy2_rnd = (yh2-yh*yh)/(yh*yh);
65

66

67 #---------------------- The theorem to prove --------------------------
68 {
69 # Hypotheses
70 |yl / yh| <= 1b-53
71 /\ |Yhl| in [1b-200, 6.29e-03] # lower bound guaranteed by Kahan-Douglas algorithm
72 /\ |yh| in [1b-1000, 1] # some huge range for ensuring that yh is not zero
73 /\ |Epsargred| <= 2.53e-23
74 /\ |Epsapprox| <= 2.26e-24
75

76 ->
77

78 #goal to prove
79 Epstotal in ? # [-1b-67, 1b-67]
80 /\ |r/yh| <= 1
81 #/\ |My| in [1b-400, 6.29e-03]
82 }
83

84 # ---------------------- Hints ----------------------------------
85 $ Yhl in (0);
86

87 # First, the hints for Epsround
88

89 s˜S1;
90 S1˜S2;
91 S2˜S3;
92 S3˜PolySinY;
93

94 Eps4 -> # (S3-PolySinY)/PolySinY;
95 # S3/PolySinY - 1;
96 # ((yh+yl) + (yh+yl)*ts) / (My + My*Mts) - 1;
97 # ((yh+yl)/My) * (1+ts)/(1+Mts) - 1;
98 # (Epsargred+1) * (1+ts)/(1+Mts) - 1;
99 # Epsargred * (1+ts)/(1+Mts) + 1 * (1+ts)/(1+Mts) - 1;

100 # Epsargred * (1+ts)/(1+Mts) + (ts-Mts)/(1+Mts);
101 Epsargred * (1+ts)/(1+Mts) + Mts*((ts-Mts)/Mts) / (1+Mts) ;
102

103 # Now we just need to bound ts-Mts:
104 ts ˜ tsNoRound;
105 (tsNoRound - Mts)/Mts ->
106 # yh2/My2 * (s3 + yh2*(s5 + yh2*s7)) / (s3 + My2*(s5 + My2*s7)) - 1 ;
107 (1+Epsy2) * (s3 + yh2*(s5 + yh2*s7)) / (s3 + My2*(s5 + My2*s7)) -1;
108 # Now we just need to express My2 in terms of yh2 and Epsy2
109 My2 -> yh2/(1+Epsy2);
110
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111 yh ˜ Yhl;
112 (yh - Yhl) / Yhl -> 1 / (1 + yl / yh) - 1;
113

114 Eps3 ->
115 # (S2-S3)/S3
116 # S2/S3 - 1;
117 # (yh + (yl + yh*ts)) / ((yh+yl) + (yh+yl)*ts) - 1 ;
118 # ((yh+yl) + (yh+yl)*ts - yl*ts) / ((yh+yl) + (yh+yl)*ts) - 1 ;
119 # - yl*ts / ((yh+yl) + (yh+yl)*ts) ;
120 # - (yl/Yhl) * (ts / (1+ts)) ;
121 ((yh-Yhl)/Yhl) * (ts / (1+ts)) ; # change sign to have the expression of a

rounding error
122

123

124 Eps2 -> # (S1-S2)/S2;
125 # (yh + (yl + IEEEdouble(yh*ts))) / (yh + (yl + yh*ts)) -1 ;
126 # (IEEEdouble(yh*ts) - yh*ts) / (yh + yl + yh*ts) ;
127 # ((IEEEdouble(yh*ts) - yh*ts)/(yh*ts)) / ( (yh+yl)/(yh*ts) + 1 ) ;
128 ts * ((IEEEdouble(yh*ts) - yh*ts)/(yh*ts)) / ( 1 + yl/yh + ts ) ;
129

130 yhts/yh -> ts*((yhts-yh*ts)/(yh*ts) + 1);
131

132

133 (yl+yhts)/yh -> yl/yh + yhts/yh;
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