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On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth

Some 25 years ago Valiant introduced an algebraic model of computation in order to study the complexity of evaluating families of polynomials. The theory was introduced along with the complexity classes VP and VNP which are analogues of the classical classes P and NP. Families of polynomials that are difficult to evaluate (that is, VNP-complete) includes the permanent and hamiltonian polynomials. In a previous paper the authors together with P. Koiran studied the expressive power of permanent and hamiltonian polynomials of matrices of bounded treewidth, as well as the expressive power of perfect matchings of planar graphs. It was established that the permanent and hamiltonian polynomials of matrices of bounded treewidth are equivalent to arithmetic formulas. Also, the sum of weights of perfect matchings of planar graphs was shown to be equivalent to (weakly) skew circuits. In this paper we continue the research in the direction described above, and study the expressive power of permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth or bounded cliquewidth. In particular, we prove that permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth express exactly arithmetic formulas. This is an improvement of our previous result for matrices of bounded treewidth. Also, for matrices of bounded weighted cliquewidth we show membership in VP for these polynomials.

Introduction

In this paper we continue the work that was started in [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF]. Our focus is on easy special cases of otherwise difficult to evaluate polynomials, and their relation to various classes of arithmetic circuits. It is conjectured that the permanent and hamiltonian polynomials are hard to evaluate. Indeed, in Valiant's model [START_REF] Valiant | Completeness classes in algebra[END_REF][START_REF] Valiant | Reducibility by algebraic projections[END_REF] these families of polynomials are both VNP-complete. In the boolean framework they are complete for the complexity class ♯P [START_REF] Valiant | The complexity of computing the permanent[END_REF]. However, for matrices of bounded treewidth the permanent and hamiltonian polynomials can efficiently be evaluatedthe number of arithmetic operations being polynomial in the size of the matrix [START_REF] Courcelle | On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic[END_REF].

An earlier result along these lines is related to computing weights of perfect matchings in a graph: The sum of weights of all perfect matchings in a weighted (undirected) graph is another hard to evaluate polynomial, but for planar graphs it can be evaluated efficiently due to Kasteleyn's theorem [START_REF] Kasteleyn | Graph theory and crystal physics[END_REF]. By means of reductions these evaluation methods can all be seen as general-purpose evaluation algorithms for certain classes of polynomials. As an example, if an arithmetic formula represents a polynomial P then one can construct a matrix A of bounded treewidth such that:

(i) The entries of A are variables of P , or constants from the underlying field. (ii) The permanent of A is equal to P .

It turns out that the converse holds as well, so with respect to the computational complexity computing the permanent of a bounded treewidth matrix is equivalent to evaluating an arithmetic formula. In [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF] the following results (with abuse of notation) were established:

(i) permanent/hamiltonian(bounded treewidth matrix) ≡ arithmetic formulas. (ii) perfect matchings(planar matrix) ≡ arithmetic skew circuits.

One can also by similar techniques show that:

(iii) perfect matchings(bounded treewidth matrix) ≡ arithmetic formulas.

Other notions of graph "width" have been defined in the litterature besides treewidth, e.g. pathwidth, cliquewidth and rankwidth. Here we would like to study the evaluation methods mentioned above, but considering matrices A that have bounded pathwidth or bounded cliquewidth instead of bounded treewidth. In this paper we establish the following results:

(i) per/ham/perf. match.(bounded pathwidth matrix) ≡ arithmetic skew circuits of bounded width ≡ arithmetic weakly skew circuits of bounded width ≡ arithmetic formulas. (ii) arithmetic formulas ⊆ per/ham/perfect matchings(bounded cliquewidth matrix) ⊆ VP.

Overview of the paper. The second section of the paper introduces definitions used throughout the paper and provides some small technical results related to graph widths. In particular we show equivalence between the weighted definitions of cliquewidth, NLC-width and m-cliquewidth with respect to boundedness. Sections 3 and 4 are devoted to the expressiveness of the permanent, hamiltonian, and perfect matchings of the graphs of bounded pathwidth and bounded weighted cliquewidth respectively. We prove in Section 3 that permanent, hamiltonian, and perfect matchings limited to bounded pathwidth graphs express arithmetic formulas. In Section 4, we show that for all three polynomials the complexity is between arithmetic formulas and VP for graphs of bounded weighted cliquewidth.

Definitions and preliminary results

2.1 Arithmetic circuits Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices have indegree 0 or 2, where those with indegree 0 are referred to as inputs. A single vertex must have outdegree 0, and is referred to as output. Each vertex of indegree 2 must be labeled by either + or ×, thus representing computation. Vertices are commonly referred to as gates and edges as arrows.

By interpreting the input gates either as constants or variables it is easy to prove by induction that each arithmetic circuit naturally represents a polynomial.

In this paper various subclasses of arithmetic circuits will be considered: For weakly skew circuits we have the restriction that for every multiplication gate, at least one of the incoming arrows is from a subcircuit whose only connection to the rest of the circuit is through this incoming arrow. For skew circuits we have the restriction that for every multiplication gate, at least one of the incoming arrows is from an input gate. For formulas all gates (except output) have outdegree 1. Thus, reuse of partial results is not allowed.

For a detailed description of various subclasses of arithmetic circuits, along with examples, we refer to [START_REF] Malod | Characterizing Valiant's Algebraic Complexity Classes[END_REF].

Definition 2. The size of a circuit is the total number of gates in the circuit. The depth of a circuit is the length of the longest path from an input gate to the output gate.

Pathwidth and treewidth

Since the definition of pathwidth is closely related to the definition of treewidth (bounded pathwidth is a special case of bounded treewidth) we also include the definition of treewidth in this paper. Treewidth for undirected graphs is commonly defined as follows: Definition 3. Let G = V, E be a graph. A k-tree-decomposition of G is:

(i) A tree T = V T , E T . (ii) For each t ∈ V T a subset X t ⊆ V of size at most k + 1. (iii) For each edge (u, v) ∈ E there is a t ∈ V T such that {u, v} ⊆ X t . (iv) For each vertex v ∈ V the set {t ∈ V T |v ∈ X t } forms a (connected) subtree of T .
The treewidth of G is then the smallest k such that there exists a k-tree-decomposition for G. A k-path-decomposition of G is then a k-tree-decomposition where the "tree" T is a path (each vertex t ∈ V T has at most one child in T ).

Example 1. Here we show that cycles have pathwidth at most 2 by constructing a path-decomposition of G where each X t has size at most 3. Let v 1 , v 2 , . . . , v n be the vertices of a graph G which is a cycle. The edges of G are (v 1 , v 2 ), (v 2 , v 3 ), . . . , (v n-1 , v n ), (v n , v 1 ). The vertex v 1 is contained in every X t of the path-decomposition. Vertices v 2 and v 3 are contained in X 1 , vertices v 3 and v 4 are contained in X 2 , and so on. Finally, vertices v n-1 and v n are contained in X n-2 . This gives a path-decomposition of G of width 2.

The pathwidth (treewidth) of a directed, weighted graph is naturally defined as the pathwidth (treewidth) of the underlying, undirected, unweighted graph. The pathwidth (treewidth) of an (n × n) matrix M = (m i,j ) is defined as the pathwidth (treewidth) of the directed graph G M = V M , E M , w where V M = {1, . . . , n}, (i, j) ∈ E M iff m i,j = 0, and w(i, j) = m i,j . Notice that G M can have loops. Loops affect neither the pathwidth nor the treewidth of G M but are important for the characterization of the permanent polynomial.

Cliquewidth, NLCwidth and m-cliquewidth

Although there exists many algorithmic results for graphs of bounded treewidth, there are still classes of "trivial" graphs that have unbounded treewidth. Cliques are an example of such graphs. Cliquewidth is a different notion of "width" for graphs, and it is more general than treewidth since graphs of bounded treewidth have bounded cliquewidth, but cliques have bounded cliquewidth and unbounded treewidth.

We recall the definitions of cliquewidth, NLCwidth and m-cliquewidth for unweighted, undirected graphs. Then we introduce the new notions of W -cliquewidth, W -NLCwidth and W -mcliquewidth which are variants of the preceding ones for weighted, directed graphs. These graph widths are all defined using terms over an universal algebra. When we refer to parse-trees it means the parse-trees of these terms. Definition 4 ( [START_REF] Courcelle | Context-free Handle-rewriting Hypergraph Grammars[END_REF][START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]). A graph G has cliquewidth (denoted cwd(G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named clique operations):

(i) ver a , a ∈ S (basic construct: create a single vertex with label a). Example 2. Using the clique algebra, the clique with four vertices K 4 is constructed by the following term using only two source labels; S = {a, b}:

η a,b ((ρ a→b (η a,b ((ρ a→b (η a,b (ver a ⊕ ver b ))) ⊕ ver a ))) ⊕ ver a ).

Definition 5 ([19]).

A graph G has NLCwidth (denoted w N LC (G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named NLC operations):

(i) ver a , a ∈ S (basic construct: create a single vertex with label a). (ii) • R (H) for any mapping R from S to S (for every source label a ∈ S rename all vertices with label a to have label R(a) instead). (iii) H × S H ′ for any S ⊆ S 2 (disjoint union of graphs to which are added edges between all couples of vertices x ∈ H (with label l x ), y ∈ H ′ (with label l y ) having (l x , l y ) ∈ S).

One important distinction between cliquewidth and NLCwidth on one side and m-cliquewidth (to be defined below) on the other side is that in the first two each vertex is assigned exactly one label, and in the last one each vertex is assigned a set of labels (possibly empty).

Definition 6 ([6]).

A graph G has m-cliquewidth (denoted mcwd(G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named m-clique operations):

(i) ver A (basic construct: create a single vertex with a set of labels A, A ⊆ S). (ii) H ⊗ S,h,h ′ H ′ for any S ⊆ S 2 and any h, h ′ : P(S) → P(S) (disjoint union of graphs to which is added edges between all couples of vertices x ∈ H, y ∈ H ′ whose sets of labels L x , L y contain a couple of labels l x , l y such that (l x , l y ) ∈ S. Then the labels of vertices from H are changed via h and the labels of vertices from H ′ are changed via h ′ ).

It is stated in [START_REF] Courcelle | Compact Forbidden-Set Routing[END_REF] (a proof sketch of this result is given in [START_REF] Courcelle | Compact Forbidden-Set Routing[END_REF], one of the inequalities is proven in [START_REF] Johansson | Clique-decomposition, NLC-decomposition, and modular decomposition -relationships and results for random graphs[END_REF]) that

mcwd(G) ≤ wd N LC (G) ≤ cwd(G) ≤ 2 mcwd(G)+1 -1.
Hence, cliquewidth, NLC-width and m-cliquewidth are equivalent with respect to boundedness.

We have seen that the definition of pathwidth and treewidth for weighted graphs straight forward was defined as the width of the underlying, unweighted graph. This is a major difference compared to cliquewidth. We can see that if we consider non-edges as edges of weight 0, then every weighted graph has a clique (which has bounded cliquewidth 2) as its underlying, unweighted graph.

Our main motivation for studying bounded cliquewidth matrices is to obtain efficient algorithms for evaluating polynomials like the permanent and hamiltonian for such matrices. For this reason, it is not reasonable to define the cliquewidth of a weighted graph as the cliquewidth of the underlying, unweighted graph, because then computing the permanent of a matrix of cliquewidth 2 is as difficult as the general case. Hence, we put restrictions on how weights are assigned to edges: Edges added in the same operation between vertices having the same pair of labels, will all have the same weight.

We now introduce the definitions of W -cliquewidth, W -NLCwidth and W -m-cliquewidth. We will consider simple, weighted, directed graphs where the weights are in some set W . In the three following constructions, an arc from a vertex x to a vertex y is only added by relevant operations if there is not already an arc from x to y. The operations that differ from the unweighted case are indicated by bold font.

Definition 7.

A graph G has W -cliquewidth (denoted W cwd(G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named W -clique operations):

(i) ver a , a ∈ S (basic construct: create a single vertex with label a). (iv) H ⊕ H ′ (disjoint union of graphs). Definition 8. A graph G has W -NLCwidth (denoted W wd N LC (G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named W -NLC operations):

(i) ver a , a ∈ S (basic construct: create a single vertex with label a). (ii) • R (H) for any mapping R from S to S (for every source label a ∈ S rename all vertices with label a to have label R(a) instead). (iii) H × S H ′ for any partial function S : S 2 × {-1, 1} → W (disjoint union of graphs to which are added arcs of weight w for each couple of vertices x ∈ H, y ∈ H ′ whose labels l x , l y are such that S(l x , l y , s) = w; the arc is from x to y if s = 1 and from y to x if s = -1).

Definition 9.

A graph G has W -m-cliquewidth (denoted W mcwd(G)) at most k iff there exists a set of source labels S of cardinality k such that G can be constructed using a finite number of the following operations (named W -m-clique operations):

(i) ver A (basic construct: create a single vertex with set of labels A, A ⊆ S). (ii) H ⊗ S,h,h ′ H ′ for any partial function S : S 2 × {-1, 1} → W and any h, h ′ : P(S) → P(S)

(disjoint union of graphs to which is added missing arcs of weight w for each couple of vertices x ∈ H, y ∈ H ′ whose sets of labels L x , L y contain l x , l y such that S(l x , l y , s) = w; the arc is from x to y if s = 1 and from y to x if s = -1. Then the labels of vertices from H are changed via h and the labels of vertices from H ′ are changed via h ′ ).

In the last operation for W -m-cliquewidth, there is a possibility that two (or more) arcs are added from a vertex x to a vertex y during the same operation and then the obtained graph is not simple. For this reason, we will consider as well-formed terms only the terms (or parse-trees) where this does not occur.

The three preceding constructions of graphs can be extended to weighted graphs with loops by adding the basic constructs verloop w a or verloop w A which creates a single vertex with a loop of weight w and label a or set of labels A. If G is a weighted graph (directed or not) with loops and U nloop(G) denotes the weighted graph (directed or not) obtained from G by removing all loops, then one can easily show the following result.

-W cwd(G) = W cwd(U nloop(G)). -W wd N LC (G) = W wd N LC (U nloop(G)). -W mcwd(G) = W mcwd(U nloop(G)).
This justifies the fact that we overlook technical details for loops in the proof of the following theorem. Theorem 1 shows that the inequalities between the three widths are still valid in the weighted case. It justifies our definitions of cliquewidth for weighted graphs. For the proof we collect the ideas in [START_REF] Courcelle | Compact Forbidden-Set Routing[END_REF][START_REF] Johansson | Clique-decomposition, NLC-decomposition, and modular decomposition -relationships and results for random graphs[END_REF] and combine them with our definitions for weighted graphs.

Theorem 1. For any weighted graph G,

W mcwd(G) ≤ W wd N LC (G) ≤ W cwd(G) ≤ 2 W mcwd(G)+1 -1.

Proof. First inequality:

Let G be a weighted graph of W -NLCwidth at most k and T be a parse-tree constructing G with W -NLC operations on a set of source labels S of cardinality k. We can consider without loss of generality that in T :

-there are no two consecutive • R (H) operations, otherwise we can replace T by T ′ where the two consecutive nodes of T with • R (H) and • R ′ (H) operations on them have been replaced by one node

• R ′′ (H) (R ′′ = R ′ • R).
-no ver a operation is followed by a • R (H) operation, otherwise we can replace T by T ′ where this two operations are replaced by ver b where b = R(a).

-each H × S H ′ operation is followed by exactly one • R (H) operation, otherwise we can add an • Id (H) operation if there is none (Id is the identity function from S to S).

We can replace the W -NLC operation ver a by the W -m-clique operation ver {a} , and the consecutives W -NLC operation H × S H ′ and • R (H) by the W -m-clique operation H ⊗ S,h,h H ′ where h({a}) = {R(a)}, ∀a ∈ S. It is clear that these replacements in T will give a parse-tree constructing G with W -m-clique operations on the same set of source labels S of cardinality k. Hence, we have W mcwd(G) ≤ W wd N LC (G).

Second inequality:

Let G be a weighted graph of W -cliquewidth at most k and T be a parse-tree constructing G with W -clique operations on a set of source labels S of cardinality k. We can consider without loss of generality that in T : Last inequality: Let G be a weighted graph of W -m-cliquewidth at most k and T be a parse-tree constructing G with W -m-clique operations on a set of source labels S of cardinality k. Let S ′ be a set of source labels of cardinality 2 k+1 -1,

-after a disjoint union operation H ⊕ H ′ all arcs in G from x ∈ H to y ∈ H ′ (resp.
S ′ = S l ⊔ S r ⊔ {empty} where |S l | = |S r | = 2 k -1.
We define three bijections l : P(S)\∅ → S l , r : P(S)\∅ → S r , and u : S l → S r such that u(l(A)) = r(A), ∀A ∈ P(S). We will denote by ρ f a sequence of ρ a→b W -clique operations realizing a function f from S ′ to S ′ . We associate to each function S :

S 2 × {-1, 1} → W a sequence α S consisting of α w l(A),r(B) (resp. α w r(B),l(A) ) W -clique operations for all couples (a, b) ∈ S 2 , (A, B) ∈ (P(S)\∅) 2 such that S(a, b, 1) = w (resp. S(a, b, -1) = w), a ∈ A and b ∈ B.
We can replace the W -m-clique operation ver A by the W -clique operation ver l(A) if A = ∅ and ver empty otherwise. Each W -m-clique operation H⊗ S,h,h ′ H ′ will be replaced by the following W -clique operations:

-apply ρ u to the subtree constructing

H ′ . -make a H ⊕ H ′ W -clique operation. -apply α S . -apply ρ l•h•l -1 . -apply ρ l•h ′ •r -1 .
It is clear that these replacements in T will give a parse-tree constructing G with W -clique operations on the set of source labels S ′ of cardinality 2 k+1 -1. Hence, we have

W cwd(G) ≤ 2 W mcwd(G)+1 -1.
⊓ ⊔

Permanent and hamiltonian polynomials

In this paper we take a graph theoretic approach to deal with permanent and hamiltonian polynomials. The reason for this is that a natural way to define pathwidth, treewidth or cliquewidth of a matrix M is by the width of the graph G M (see Section 2.2), also see e.g. [START_REF] Makowsky | Polynomials of bounded treewidth[END_REF].

Definition 10. A cycle cover of a directed graph is a subset of the edges, such that these edges form disjoint, directed cycles (loops are allowed). Furthermore, each vertex in the graph must be in one (and only one) of these cycles. The weight of a cycle cover is the product of weights of all participating edges.

Definition 11. The permanent of an (n × n) matrix M = (m i,j ) is the sum of weights of all cycle covers of G M .

The permanent of M can also be defined by the formula

per(M ) = σ∈Sn n i=1 m i,σ(i) .
The equivalence with Definition 11 is clear since any permutation can be written down as a product of disjoint cycles, and this decomposition is unique. The hamiltonian polynomial ham(M ) is defined similarly, except that we only sum over cycle covers consisting of a single cycle (hence the name).

There is a natural way of representing polynomials by permanents. Indeed, if the entries of M are variables or constants from some field K, then f = per(M ) is a polynomial with coefficients in K (in Valiant's terminology, f is a projection of the permanent polynomial). In the next sections we study the power of this representation in the case where M has bounded pathwidth or bounded cliquewidth.

Connections between permanents and sum of weights of perfect matchings

Another combinatorial characterization of the permanent is by sum of weights of perfect matchings in a bipartite graph. We will use this connection to deduce results for the permanent from results for the sum of weights of perfect matchings and vice versa.

Definition 12. Let G be a directed graph (weighted or not). We define the inside-outside graph of G, denoted IO(G), as the bipartite, undirected graph (weighted or not) obtained as follows:

-split each vertex u ∈ V (G) in two vertices u + and u -; -each arc uv (of weight w) is replaced by an edge between u + and v -(of weight w). A loop on u (of weight w) is replaced by an edge between u + and u -(of weight w).

It is well-known that the permanent of a matrix M can be defined as the sum of weights of all perfect matchings of IO(G M ). We can see that the adjacency matrix of

IO(G M ) is 0 M M t 0 . Lemma 1. If G has treewidth (pathwidth) k, then IO(G) has treewidth (pathwidth) at most 2 • k + 1. Proof. Let T, (X t ) t∈V (T ) be a k-tree(path)-decomposition of G. It is clear that T, (X ′ t ) t∈V (T ) , where X ′ t = {u + , u -|u ∈ X t }, is a tree(path)-decomposition of IO(G) of width 2 • k + 1. ⊓ ⊔ Lemma 2. If G has W -cliquewidth k, then IO(G) has W -cliquewidth at most 2 • k.
Proof. Let T be a parse-tree constructing G with W -clique operations on a set of source labels S of cardinality k. We can replace the W -clique operation ver a by the three operations (ver a + ) ⊕ (ver a -), and the W -clique operation ρ a→b (H) by the W -clique operations ρ a + →b + (H) and ρ a -→b -(H). Finally each α w a,b (H) W -clique operation can be replaced by the η w a + ,b -(H) Wclique operation. It is clear that these replacements in T will give a parse-tree constructing IO(G) with W -clique operations on the set of source labels {a + , a -|a ∈ S} of size 2 • k.

⊓ ⊔

Expressiveness of matrices of bounded pathwidth

In this section we study the expressive power of permanents, hamiltonians and perfect matchings of matrices of bounded pathwidth. We will prove that in each case we capture exactly the families of polynomials computed by polynomial size skew circuits of bounded width. A by-product of these proofs will be a proof of the equivalence between polynomial size skew circuits of bounded width and polynomial size weakly skew circuits of bounded width. This equivalence can not be immediately deduced from the already known equivalence between polynomial size skew circuits and polynomial size weakly skew circuits in the unbounded width case [START_REF] Toda | Classes of arithmetic circuits capturing the complexity of computing the determinant[END_REF] (the proofs in [START_REF] Toda | Classes of arithmetic circuits capturing the complexity of computing the determinant[END_REF] use a combinatorial characterization of the complexity of the determinant as the sum of weights of s, t-paths in a graph of polynomial size with distinguished vertices s and t. The additional difficulties to extend these proofs to circuits and graphs of bounded width would be equivalent to the ones we deal with). We will then prove that skew circuits of bounded width are equivalent to arithmetic formulas.

Definition 13. An arithmetic circuit ϕ has bounded width k ≥ 1 if there exists a finite set of totally ordered layers such that:

-Each gate of ϕ is contained in exactly 1 layer.

-Each layer contains at most k gates.

-For every non-input gate of ϕ if that gate is in some layer n, then both inputs to it are in layer n + 1.

Theorem 2. The polynomial computed by a weakly skew circuit of bounded width can be expressed as the permanent of a matrix of bounded pathwidth. The size of the matrix is polynomial in the size of the circuit. All entries in the matrix are either 0, 1, constants of the polynomial, or variables of the polynomial.

Proof. Let ϕ be a weakly skew circuit of bounded width k ≥ 1 and l > 1 the number of layers in ϕ. The directed graph G we construct will have pathwidth at most 7•k 2 -1 (each bag in the path-decomposition will contain at most 7•k 2 vertices) and the number of bags in the pathdecomposition will be l -1. G will have two distinguished vertices s and t, and the sum of weights of all directed paths from s to t equals the value computed by ϕ. The vertex s will be in all bags of the path-decomposition of G.

Since ϕ is a weakly skew circuit we consider a decomposition of it into disjoint subcircuits defined recursively as follows: The output gate of ϕ belongs to the main subcircuit. If a gate in the main subcircuit is an addition gate, then both of its input gates are in the main subcircuit as well. If a gate g in the main subcircuit is a multiplication gate, then we know that at least one input to g is the output gate of a subcircuit which is disjoint from ϕ except for its connection to g. This subcircuit forms a disjoint multiplication-input subcircuit. The other input to g belongs to the main subcircuit. If some disjoint multiplication-input subcircuit ϕ ′ contains at least one multiplication gate, then we make a decomposition of ϕ ′ recursively. Note that such a decomposition of a weakly skew circuit not necessarily is unique (nor does it need to be), because both inputs to a multiplication gate can be disjoint from the rest of the circuit, and then any one of these two can be chosen as the one that belongs to the main subcircuit.

Let ϕ 0 , ϕ 1 , . . . , ϕ d be the disjoint subcircuits obtained in the decomposition (ϕ 0 is the main subcircuit). The graph G will have a vertex v g for every gate g of ϕ and d + 1 additional vertices s = s 0 , s 1 , . . . , s d (t will correspond to v g where g is the output gate of ϕ). For every gate g in the subcircuit ϕ i , the following construction will ensure that the sum of weights of directed paths from s i to v g is equal to the value computed at g in ϕ.

For the construction of G we process the decomposition of ϕ in a bottom-up manner. Let subcircuit ϕ i be a leaf in the decomposition of ϕ (so ϕ i consists solely of addition gates and input gates). Assume that ϕ i is located in layers top i through bot i (1

≥ top i ≥ bot i ≥ l) of ϕ.
First we add a vertex s i to G in bag bot i -1, and for each input gate with value w in the bottom layer bot i of ϕ i we add a vertex to G also in bag bot i -1 along with an edge of weight w from s i to that vertex. Let n range from bot i -1 to top i : Add the already created vertex s i to bag n -1 and handle input gates of ϕ i in layer n as previously described. For each addition gate of ϕ i in layer n we add a new vertex to G (which is added to bags n and n -1 of the path-decomposition of G). In bag n we already have two vertices that represent inputs to this addition gate, so we add edges of weight 1 from both of these to the newly added vertex. The vertex representing the output gate of the circuit ϕ i is denoted by t i . The sum of weighted directed paths from s i to t i equals the value computed by the subcircuit ϕ i .

Let ϕ i be a subcircuit in the decomposition of ϕ that contains multiplication gates. Addition gates and input gates in ϕ i are handled as before. Let g be a multiplication gate in ϕ i in layer n and ϕ j the disjoint multiplication-input subcircuit that is one of the inputs to g. We know that vertices s j and t j already are in bag n, so we add an edge of weight 1 from the vertex representing the other input to g to the vertex s j , and an edge of weight 1 from t j to a newly created vertex v g that represents gate g, and then v g is added to bags n and n -1.

For Note that in layer 1 of ϕ we just have the output gate. This gate is represented by the vertex t of G which is in bag 1 of the path-decomposition.

The sum of weights of all directed paths from s to t in G can by induction be shown to be equal to the value computed by ϕ. The final step in the reduction to the permanent polynomial is to add an edge of weight 1 from t back to s and loops of weight 1 at all nodes different from s and t.

⊓ ⊔

The proof of Theorem 2 can be modified to work for the hamiltonian polynomial as well. We adapt the idea used to show universality of the hamiltonian polynomial in [START_REF] Malod | Polynômes et coefficients[END_REF]. For the permanent polynomial each bag in the path-decomposition contains at most 7•k 2 vertices; for each of these vertices we now need to introduce one extra vertex in the same bag. In addition each bag must contain 2 more vertices in order to establish a connection to adjacent bags in the path-decomposition. In total each bag now contains at most 7 • k + 2 vertices. Theorem 3. The polynomial computed by a weakly skew circuit of bounded width can be expressed as the sum of weights of perfect matchings of a symmetric matrix of bounded pathwidth. The size of the matrix is polynomial in the size of the circuit. All entries in the matrix are either 0, 1, constants of the polynomial, or variables of the polynomial.

Proof. It is a direct consequence of Theorem 2 and Lemma 1.

⊓ ⊔

Now we prove that the permanent, the hamiltonian, and the sum of weights of perfect matchings of a bounded pathwidth graph can be expressed as a skew circuit of bounded width.

Theorem 4. The hamiltonian of a matrix of bounded pathwidth can be expressed as a skew circuit of bounded width. The size of the circuit is polynomial in the size of the matrix.

Proof. Let M be a matrix of bounded pathwidth k and let G M be the underlying, directed graph. Each bag in the path-decomposition of G M contains at most k + 1 vertices. We refer to one end of the path-decomposition as the of the path-decomposition and the other as the root (recall that path-decompositions are special cases of tree-decompositions).

We process the path-decomposition of G M from the leaf towards the root. The overall idea is the same as the proof of Theorem 5 in [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF] -namely to consider weighted partial path covers (i.e. partial covers consisting solely of paths) of subgraphs of G M that are induced by the path-decomposition of G M . During the processing of the path-decomposition of G M at every level distinct from the root, new partial path covers are constructed by taking one previously generated partial path cover and then add at most (k + 1)

2 new edges, so all the multiplication gates we have in our circuit are skew. For any bag in the path-decomposition of G M we only need to consider a number of partial path covers that depends solely on k, so the circuit we produce has bounded width. At the root we add sets of edges to partial path covers to form hamiltonian cycles.

⊓ ⊔ Theorem 5. The sum of weights of perfect matchings of a symmetric matrix of bounded pathwidth can be expressed as a skew circuit of bounded width. The size of the circuit is polynomial in the size of the matrix.

Proof. Let M be a symmetric matrix of bounded pathwidth k and let G M be the underlying, undirected graph. Each bag in the path-decomposition of G M contains at most k + 1 vertices. We process the path-decomposition of G M from the leaf towards the root. The proof is very similar to the proof of Theorem 4 -namely to consider weighted matchings of subgraphs of G M that are induced by the matching of G M . During the processing of the matching of G M at every level distinct from the root, new matchings are constructed by taking one previously generated matching and then add at most (k + 1)

2 new edges, so all the multiplication gates we have in our circuit are skew. For any bag in the path-decomposition of G M we only need to consider a number of matchings that depends solely on k, so the circuit we produce has bounded width. At the root we sum only the weights of perfect matchings to obtain the output of the circuit.

⊓ ⊔ Theorem 6. The permanent of a matrix of bounded pathwidth can be expressed as a skew circuit of bounded width. The size of the circuit is polynomial in the size of the matrix.

Proof. It is a direct consequence of Theorem 5 and Lemma 1.

⊓ ⊔

Corollary 1. A family of polynomials is computable by polynomial size skew circuits of bounded width if and only if it is computable by polynomial size weakly skew circuits of bounded width.

Proof. It is trivial to see that a family of polynomials computed by polynomial size skew circuits of bounded width can be computed by polynomial size weakly skew circuits of bounded width. Conversely, if a family of polynomials is computed by polynomial size weakly skew circuits of bounded width then by Theorem 2 it can be expressed as the permanents of bounded pathwidth graphs which can be computed by polynomial size skew circuits of bounded width according to Theorem 6.

⊓ ⊔

We need the following Theorem from [START_REF] Ben-Or | Computing Algebraic Formulas Using a Constant Number of Registers[END_REF] to prove the equivalence between polynomial size skew circuits of bounded width and polynomial size arithmetic formulas.

Theorem 7. Any arithmetic formula can be computed by a linear bijection straight-line program of polynomial size that uses three registers.

Let R 1 , . . . , R m be a set of m registers, a linear bijection straight-line (LBS) program is a vector of m initial values given to the registers plus a sequence of instructions of the form

(i) R j ← R j + (R i × c), or (ii) R j ← R j -(R i × c), or (iii) R j ← R j + (R i × x u ), or (iv) R j ← R j -(R i × x u ),
where 1 ≤ i, j ≤ m, i = j, 1 ≤ u ≤ n, c is a constant, and x 1 , . . . , x n are variables (n is the number of variables). We suppose without loss of generality that the value computed by the LBS program is the value in the first register after all instructions have been executed. Theorem 8. A family of polynomials is computable by polynomial size skew circuits of bounded width if and only if it is computable by a family of polynomial size arithmetic formulas.

Proof. Let (f n ) be a family of polynomials computable by polynomial size skew circuits of bounded width, then by Theorem 2 it can be expressed as the permanents of bounded pathwidth graphs. Since graphs of bounded pathwith have bounded treewidth, we know by Theorem 5 in [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF] that it can be computed by a family of polynomial size arithmetic formulas.

Conversely, if (f n ) is a family of polynomial size arithmetic formulas, then by Theorem 7, it is computable by linear bijection straight-line programs of polynomial size that use three registers. We will modify these programs to obtain equivalent skew circuits of width 6. At each step, the set of indices {i, j, k} will be equal to {1, 2, 3}.

Suppose the initial values of the three registers are r 1 , r 2 , r 3 , then the first layer of our skew circuit contains three input gates with the three values r 1 , r 2 , r 3 along with two others inputs which will be defined according to the next instruction in the straight-line program.

If the next instruction is

R j ← R j + (R i × U )
where U is a variable or a constant, then we assign the values 0 and U to the two input gates not already defined in the current layer l and we create a new layer l -1 with three addition gates corresponding to R i , R j , R k whose inputs are the gate corresponding to R i (resp. R j , R k ) in layer l and the input with value 0 in layer l. We also put a multiplication gate whose inputs are the gate corresponding to R i and the input with value U in layer l. And we put again an input gate with value 0. Then we create a new layer l -2 with three addition gates corresponding to R i , R j , R k whose inputs are the gate corresponding to R i (resp. R j , R k ) and the input with value 0 for i, k or the gate computing (R i × U ) for j in layer l -1. We also put two others inputs which will be defined according to the next instruction.

If the next instruction is R j ← R j -(R i × U ), then we need to create one more layer than in the first case. We first assign the values 0 and U to the two input gates not already defined in the current layer l and we create a new layer l -1 with three addition gates corresponding to R i , R j , R k whose inputs are the gate corresponding to R i (resp. R j , R k ) in layer l and the input with value 0 in layer l. We also put a multiplication gate whose inputs are the gate corresponding to R i and the input with value U in layer l. And we put again an input gate with value 0 and another one with value -1. Then we create an intermediate new layer l -2 with three addition gates corresponding to R i , R j , R k whose inputs are the gate corresponding to R i (resp. R j , R k ) and the input with value 0. We also put a multiplication gate whose inputs are the gate computing (R i × U ) and the input with value -1 in layer l -1. And we put again an input gate with value 0. Finally we create a new layer l -3 with three addition gates corresponding to R i , R j , R k whose inputs are the gate corresponding to R i (resp. R j , R k ) and the input with value 0 for i, k or the gate computing -(R i × U ) for j in layer l -2. We also put two others inputs which will be defined according to the next instruction.

In both cases, it is clear by induction that the three gates of the current layer corresponding to R i , R j , R k are computing the values in these registers if we execute the instructions treated so far. Hence the result.

⊓ ⊔

Expressiveness of matrices of bounded weighted cliquewidth

In this section we study the expressive power of permanents, hamiltonians and perfect matchings of matrices that have bounded weighted cliquewidth. We first prove that every arithmetic formula can be expressed as the permanent, hamiltonian, or sum of weights of perfect matchings of a matrix of bounded W -cliquewidth, using the results for the bounded pathwidth matrices and the following lemma. Proof. Let T, (X t ) t∈V (T ) be a k-path-decomposition of G. We refer to one end of the pathdecomposition as the leaf of the path-decomposition and the other as the root. Let G t be the subgraph of G induced by the vertices in bags below X t .

We prove by induction on the height of T, (X t ) t∈V (T ) that every graph G t can be constructed by W -clique operations using at most k + 2 distinct labels. Moreover, at the end of this construction all vertices in bag X t have distinct labels and all other vertices have a sink label.

If |V (T )| = 1 then G has at most k + 1 vertices. We can create them with k + 1 distinct labels and add independently each edge between two vertices using W -clique operations.

Suppose |V (T )| > 1, let r be the root and t be its child. By induction, G t can be constructed by W -clique operations using at most k + 2 distinct labels. For all vertex v ∈ X t \X r , we add a renaming operation which gives sink label to v (this renaming operation renames only v since, by induction, v has distinct label from other vertices). Since |X r | ≤ k + 1 and all vertices in V (G)\X r have sink label, we can create the vertices of X r \X t with distinct labels and add them by disjoint union to the current construction. It is now clear that all the vertices of X r have distinct labels thus we can add independently each edge between two vertices. Hence the conclusion.

⊓ ⊔ Theorem 9. Every arithmetic formula can be expressed as the permanent of a matrix of Wcliquewidth at most 22 and size polynomial in n, where n is the size of the formula. All entries in the matrix are either 0, 1, constants of the formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. Due to the proof of Theorem 8, we know that it can be computed by a skew circuit of width 6 and size O(n O (1) ). Hence it is equal to the permanent of a graph of size O(n O (1) ), pathwidth at most Theorem 10. Every arithmetic formula can be expressed as the sum of weights of perfect matchings of a symmetric matrix of W -cliquewidth at most 44 and size polynomial in n, where n is the size of the formula. All entries in the matrix are either 0, 1, constants of the formula, or variables of the formula.

Proof. It is a direct consequence of Theorem 9 and Lemma 2.

⊓ ⊔

Alternatively we can modify the constructions of bounded treewidth graphs expressing formulas in [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF]. These modifications require more work than the preceding proofs but we obtain smaller constants since we obtain graphs of W -cliquewidth at most 13/34/26 (instead of 22/45/44) whose permanent/hamiltonian/sum of weights of perfect matchings are equal to formulas. The proofs of these constants are given in the Appendix.

Due to our restrictions on how weights are assigned in our definition of bounded W -cliquewidth it is not true that weighted graphs of bounded treewidth have bounded W -cliquewidth. In fact, if one tries to follow the proofs in [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF][START_REF] Corneil | On the Relationship Between Clique-Width and Treewidth[END_REF] that show that graphs of bounded treewidth have bounded cliquewidth, then one obtains that a weighted graph G of treewidth k has Wcliquewidth at most 3 • (|W G | + 1) k-1 or 3 • (∆ + 1) k-1 . W G denotes the set of weights on the edges of G and ∆ is the maximum degree of G. Weighted trees still have bounded weighted cliquewidth (the bound is 3), but we can show that there exists a family of weighted graphs with treewidth 2 and unbounded W -cliquewidth [START_REF] Lyaudet | [END_REF].

We now turn to the upper bound on the complexity of the permanent, hamiltonian, and sum of weights of perfect matchings of graphs of bounded weighted cliquewidth. We show that in all three cases the complexity is at most the complexity of VP.

The decision version of the hamiltonian cycle problem has been shown to be polynomial time solvable in [START_REF] Espelage | How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time[END_REF] for matrices of bounded cliquewidth. Here we extend these ideas in order to compute the hamiltonian polynomial efficiently (in VP) for bounded W -m-cliquewidth matrices. Definition 14. A path cover of a directed graph G is a subset of the edges of G, such that these edges form disjoint, directed, non-cyclic paths in G. We require that every vertex of G is in (exactly) one path. For technical reasons we allow "paths" of length 0, by having paths that start and end in the same vertex. Such constructions do not have the same interpretation as a loop. The weight of a path cover is the product of weights of all participating edges (in the special case where there are no participating edges the weight is defined to be 1).

Theorem 11. The hamiltonian of an n×n matrix of bounded W -m-cliquewidth can be expressed as a circuit of size O(n O (1) ) and thus is in VP.

Proof. Let M be an n × n matrix of bounded W -m-cliquewidth. By G we denote the underlying, directed, weighted graph for M . The circuit is constructed based on the parse-tree T for G. By T t we denote the subtree of T rooted at t for some node t ∈ T . By G t we denote the subgraph of G constructed from the parse-tree T t .

The overall idea is to produce a circuit that computes the sum of weights of all hamiltonian cycles of G. To obtain this there will be non-output gates that compute weights of all path covers of all G t graphs, and then we combine these subresults. Of course, the total number of path covers can grow exponentially with the size of G t , so we will not "describe" path covers directly by the edges participating in the covers. Instead we describe a path cover of some G t graph by the labels associated with the start-and end-vertices of the paths in the cover. Such a description do not uniquely describe a path cover, because two different path covers of the same graph can contain the same number of paths and all these paths can have the same labels associated. However, we do not need the weight of each individual path cover. If multiple path covers of some graph G t share the same description, then we just compute the sum of weights of these path covers.

For a leaf in the parse-tree T of G we construct a single gate of constant weight 1, representing a path cover consisting of a single "path" of length 0, starting and ending in a vertex with the given labels. Per definition this path cover has weight 1.

For an internal node t ∈ T the grammar rule describes which edges to add and how to relabel vertices. We obtain new path covers by considering a path cover from the left child of t and a path cover from the right child of t: For each such pair of path covers consider all subsets of edges added at node t, and for every subset of edges check if the addition of these edges to the pair of path covers will result in a valid path cover. If it does, then add a gate that computes the weight of this path cover, by multiplying the weight of the left path cover, the weight of the right path cover and the total weight of the newly added edges. After all pairs of path covers have been processed, check if any of the resulting path covers have the same description -namely that the number of paths in some path covers are the same, and that these paths have the same labels for start-and end-vertices. If multiple path covers have the same description then add addition gates to the circuit and produce a single gate which computes the sum of weights of all these path covers.

For the root node r of T we combine path covers from the children of r to produce hamiltonian cycles, instead of path covers. Finally, the output of the circuit is a summation of all gates computing weights of hamiltonian cycles.

Proof of correctness: The first step of the proof is by induction over the height of the parsetree T . We will show that for each non-root node t of T there is for every path cover description of G t a corresponding gate in the circuit that computes the sum of weights of all path covers of G t with that description. For the base cases -leaves of T -it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with edges at a node t of the parse-tree T . Edges added at node t are only added in here, and not at any other nodes in T , so every path cover of G t can be split into 3 parts: A path cover of G t l , a path cover of G tr and a polynomial number of edges added at node t. Consider a path cover description along with all path covers of G t that have this description. All of these path covers can be split into 3 such parts, and by our induction hypothesis the weights of the path covers of G t l and G tr are computed in already constructed gates.

In order to complete the proof of correctness we have to handle the root t of T in a special way. At the root we do not compute weights of path covers, but instead compute weights of hamiltonian cycles. Every hamiltonian cycle of G can (similarly to path covers) be split into 3 parts: A path cover of G t l , a path cover of G tr and a polynomial number of edges added at the root of T . By our induction hypothesis all the needed weights are already computed.

The size of the circuit is polynomial since at each step the number of path cover descriptions is polynomially bounded once the W -m-cliquewidth is bounded.

⊓ ⊔ Theorem 12. The sum of weights of perfect matchings of an n×n symmetric matrix of bounded W -NLCwidth can be expressed as a circuit of size O(n O (1) ) and thus is in VP.

Proof. Let M be an n × n symmetric matrix of bounded W -NLCwidth. By G we denote the underlying, undirected, weighted graph for M . The circuit is constructed based on the parse-tree T for G. By T t we denote the subtree of T rooted at t for some node t ∈ T . By G t we denote the subgraph of G constructed from the parse-tree T t . Let k be the W -NLCwidth of G. We assume without loss of generality that T is a parse-tree on the set of labels {a 1 , . . . , a k }.

The overall idea is much similar to that of Theorem 11, namely to produce a circuit that computes the sum of weights of all perfect matchings of G. To obtain this there will be nonoutput gates that compute weights of all matchings of all G t graphs, and then we combine these subresults. Of course, the total number of matchings can grow exponentially with the size of G t , so we will not "describe" matchings directly by the edges participating in the covers. Instead we describe a matching of some G t graph by the labels associated to the uncovered vertices. More precisely, for each matching of G t and each label a we give the number of a-vertices which are not covered by the matching. Such a description do not uniquely describe a matching, because two different matchings of the same graph can have the same number of uncovered vertices which have the same labels associated. However, we do not need the weight of each individual matching. If multiple matchings of some graph G t share the same description, then we just compute the sum of weights of these matchings. It is clear that the number of description needed is at most n k .

For a leaf ver ai in the parse-tree T of G we construct a single terminal gate of constant weight 1, representing an empty matching. The description associated to this gate is ((a 1 , 0), . . . , (a i , 1), . . . , (a k , 0)).

For an internal node t ∈ T with operation • R (H) we just need to change the description of terminal gates in the circuit contructed so far. More precisely, if the description of the gate was ((a 1 , n 1 ), . . . , (a i , n i ), . . . , (a k , n k )) then it becomes ((a 1 , aj ∈R -1 (a1) n j ), . . . , (a i , aj ∈R -1 (ai) n j ), . . . , (a k , aj ∈R -1 (a k ) n j )).

For an internal node t ∈ T with operation H × S H ′ the grammar rule describes which edges to add. We first create a multiplication gate using the values of each couple of terminal gates of the left child l of t and the right child r of t. It corresponds to the weights of the disjoint unions of the matchings of l and r. There is at most n 2k such gates. To each gate, we associate a left and right description corresponding to the vertices from l and r. Those gates are the new terminal gates. We put the following total order a 1 < a 2 < • • • < a k on the labels and the corresponding lexicographic order on the couples (a i , a j ). We will consider that the edges added via S are added by blocks corresponding to a couple (a i , a j ) (All edges in the same block are added at the same time) and that all blocks of edges are added sequentially in lexicographic order. Thus we have at most k 2 steps of adding edges to consider. Suppose S(a i , a j ) = w ij . For the step corresponding to (a i , a j ) we obtain new matchings by considering each terminal gate g 0 . Let ((a 1 , n 1 ), . . . , (a i , n i ), . . . , (a k , n k )) and ((a 1 , n ′ 1 ), . . . , (a j , n ′ j ), . . . , (a k , n ′ k )) be the left and right description of g 0 . Let n min = min{n i , n ′ j}. For all matching corresponding to g 0 and all p between 0 and n min we can obtain ni p • n ′ j p matchings by adding p edges of weight w ij between p vertices among n i of G l and p vertices among n ′ j of G r . Hence, for all p = 0 we add a multiplication gate with inputs g 0 and the constant ni p • n ′ j p • (w ij ) p . This new gate g p has left and right description ((a 1 , n 1 ), . . . , (a i , n ip), . . . , (a k , n k )) and ((a 1 , n ′ 1 ), . . . , (a j , n ′ jp), . . . , (a k , n ′ k )). There are at most 2 • n 2k+1 such new gates since p < n. Finally we make an addition tree computing the addition of the gates g p which have the same left and right description. Each such tree needs at most O((2k + 2) log(n)) new gates and there are at most 2 • n 2k trees. The outputs of these trees are the new terminal gates. When all the k 2 steps of adding edges are done we compute the description of each terminal gate as the sum of its left and right description then we put an addition tree computing the addition of the terminal gates which have the same global description. The outputs of these trees are the new terminal gates.

Finally, we obtain the output of the circuit at the root node r of T . It is the output of the terminal gate with description ((a 1 , 0), . . . , (a i , 0), . . . , (a k , 0)).

Proof of correctness: The first step of the proof is by induction over the height of the parsetree T . We will show that for each node t of T there is for every matching description of G t a corresponding gate in the circuit that computes the sum of weights of all matchings of G t with that description. For the base cases -leaves of T -it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with edges at a node t of the parse-tree T . Edges added at node t are only added in here, and not at any other nodes in T , so every matching of G t can be split into 3 parts: A matching of G t l , a matching of G tr and a polynomial number of edges added at node t. Consider a matching description along with all matchings of G t that have this description. All of these matchings can be split into 3 such parts, and by our induction hypothesis the weights of the path covers of G t l and G tr are computed in already constructed gates.

The number of new gates added for each operation H × S H ′ is at most O(k 2 • n 2k+1 ). Since the number of these operations is at most n, we obtain a circuit of polynomial size.

⊓ ⊔ Based on the tree-decomposition T of G we construct a graph G ′ of bounded W -cliquewidth such that (with slight abuse of notation) per(G) = per(G ′ ). A major difference between grammars for bounded treewidth matrices and grammars for bounded cliquewidth matrices is that we cannot "merge" two vertices into a single vertex when dealing with grammars for bounded cliquewidth matrices. As a consequence the graphs G and G ′ will not be isomorphic, but there will be a 1 to 1 correspondence between their cycle covers.

For every non-loop edge (u, v) of G there can be multiple nodes t ∈ V T such that u and v both are in the set X t . We say that an edge (u, v) of G "belong" to a node t ∈ V T , if t is the node closest to the root of T where u and v both are in X t (for every edge such a node is uniquely defined).

The general idea for the construction of G ′ is as follows: We process T in a bottom-up manner. For a node t ∈ V T we first construct subgraphs representing the children l and r of t, then we add the edges belonging to t using a special labeling scheme for the vertices. We do not have a label in the grammar for each vertex of G because this will not result in a constant number of labels. Instead, since |X l | ≤ 3 and |X r | ≤ 3 we use labels to represent vertices in X l and X r and reuse these labels during the processing of T .

A vertex v of G is represented through multiple vertices in G ′ , but only two of them are "active" at any time during the construction of G ′ : One vertex of indegree 0 is managing edges leaving v in G, and one vertex of outdegree 0 is managing edges entering v in G. Since X l and X r both have size at most 3 we then need the following labels for this scheme: left-a-in, left-a-out, left-b-in, left-b-out, left-c-in and left-c-out (and 6 similar labels for right). In addition to that we also need a sink label, giving a total of 13 labels needed to construct G ′ .

Processing T to construct G ′ : For a leaf t of T we construct 6 vertices (or 4, if |X t | = 2), with the labels left-a-in, left-a-out, left-b-in, left-b-out, left-c-in and left-c-out (assuming t is the left child of its parent). For non-loop edges belonging to node t, e.g. a directed edge from the vertex represented with labels left-b-in/out to the vertex represented with labels left-a-in/out of weight w, we then add edges (actually just a single edge is added because both of the labels are only assigned to one vertex of G ′ ) from vertices with label left-b-out to vertices with label left-a-in of weight w. Next, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not present in X p (p being the parent of t in T ), then we add an edge of weight 1 from left-b-in to left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w from left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.

For an internal node t ∈ V T (including the root of T ) we first consider vertices of G that are in both X l and X r , e.g. left-a-in/out and right-b-in/out represent the same vertex of G. We assume that t is the left child of its parent in T . We add a loop of weight 1 to each of rightb-in and right-b-out. Then we add an edge of weight 1 from right-b-in to left-a-in and an edge of weight 1 from left-a-out to right-b-out. Then right-b-in and right-b-out are renamed to sink. Next we add two vertices to G ′ for every vertex in X t that are not in X l nor X r . There will be "available" in/out labels for these two vertices, since in this case at least two other vertices were renamed to sink during processing of each child of t. Next we consider all edges of G belonging to t. Assume there is a directed edge from the vertex represented by right-c-in/out to the vertex represented by left-b-in/out of weight w, then we add an edge of weight w from right-c-out to left-b-in. Last, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not present in X p (p being the parent of t in T ) or if t is the root of T then we add an edge of weight 1 from left-b-in to left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w from left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.

Proof of correctness: A vertex v of G is represented through two disjoint sets of vertices in G ′ : One set of vertices managing edges entering v in G, and one set of vertices managing edges leaving v in G. We denote these sets of vertices in G ′ as v in and v out . A vertex of G ′ belong to v in if at some point during the processing of T it were assigned an in label which was representing v in G. By our construction it is clear that every vertex of G ′ belong to either v in or v out for exactly 1 vertex v of G, and the set v in form a directed tree where all non-loop edges lead towards the root and have weight 1. All non-root vertices in this tree have a loop of weight 1. The set v out has equivalent properties, with the exception that non-loop edges lead towards the leaves instead of the root. Now consider two vertices u and v of G along with a directed edge of weight w from u to v, and consider the trees u out and v in in G ′ . At some point in the construction of G ′ an edge of weight w was added from a vertex in u out to a vertex in v in in G ′ , so there is a path of weight w from the root of u out to the root of v in and all vertices of u out and v in not in this path have a loop of weight 1. So in a cycle cover of G where we include the edge from u to v we then have an equivalent path in G ′ and all remaining vertices in u out and v in are then covered by loops. In order to "continue" the construction of the path in G ′ we then also have an edge of weight 1 from the root of v in to the root of v out . In order to simulate loops in cycle covers of G ′ we have added an edge from the root of v out back to the root of v in of same weight as the loop in G. So a loop in G corresponds to a cycle of length 2 in G ′ , and then all other nodes in both v in and v out are covered by loops of weight 1.

It is then easy to verify that cycle covers in G ′ are in bijection with cycle covers of G and the corresponding pairs of cycle covers have same weight. Finally, note that between any two vertices of G ′ there is at most 1 edge so we can find a matrix M ′ such that the underlying graph of M ′ is equivalent to G ′ and then per(M ′ ) = per(M ).

⊓ ⊔ Theorem 15. Every arithmetic formula can be expressed as the hamiltonian of a matrix of Wcliquewidth at most 34 and size polynomial in n, where n is the size of the formula. All entries in the matrix are either 0, 1, or constants of the formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. Due to [START_REF] Flarup | On the expressive power of planar perfect matching and permanents of bounded treewidth matrices[END_REF] we know that ϕ can be expressed as the hamiltonian of a matrix M that has treewidth at most 6 and size at most (2n + 1) × (2n + 1). Let G be the underlying, weighted, directed graph for the matrix M and let T = V T , E T be the binary 6-tree-decomposition of G. With only a linear increase in size of T we can assume that T is a binary tree-decomposition. The overall idea is the same as in Theorem 14 -namely to process the tree-decomposition T of G. Since all |X t | ≤ 7 in this tree-decomposition we instead need at least 2 • 14 + 1 = 29 labels during the processing of T to construct G ′ .

However, if we just use the exact same idea as in Theorem 9, then for every cycle cover in the produced graph many vertices are covered through loops. Instead of introducing such loops we "eliminate" them using the same idea as in [START_REF] Malod | Polynômes et coefficients[END_REF] used for showing universality of the hamiltonian polynomial.

We need 5 additional labels for this construction: left-h1, left-h2, right-h1, right-h2 and temp, for a total of 34 labels. For a leaf t of T we start the processing of t by constructing two vertices and label them left-h1 and left-h2 (assuming t is the left child of its parent in T ), and add an edge of weight 1 from left-h1 to left-h2. Remaining processing of t is done as before.

For an internal node t of T we first add an edge of weight 1 from left-h2 to right-h1, rename left-h2 and right-h1 to sink, and rename right-h2 to left-h2 (assuming t is the left child of its parent in T ). Some vertices, e.g. the vertex with label right-c-in, may have a loop added during
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  (ii) ρ a→b (H), a, b ∈ S (rename all vertices with label a to have label b instead). (iii) η a,b (H), a, b ∈ S, a = b (add edges between all couples of vertices where one of them has label a and the other has label b). (iv) H ⊕ H ′ (disjoint union of graphs).

  (ii) ρ a→b (H), a, b ∈ S (rename all vertices with label a to have label b instead). (iii) α w a,b (H), a, b ∈ S, a = b, w ∈ W (add missing arcs of weight w from all vertices with label a to all vertices with label b).

  from y to x) are added between the disjoint union operation H ⊕ H ′ and the first following operation O of disjoint union or renaming. Otherwise consider the first operation α w a,b (H) after O adding an arc between a vertex x ′ from H and a vertex y ′ from H ′ . We can add an operation α w a ′ ,b ′ (H) before O where a ′ (resp. b ′ ) is the label in H ⊕ H ′ of the tail (resp. head) of the arc added by the operation α w a,b (H). -each operation α w a,b (H) add at least one arc. -all α w a,b (H) operations are between a disjoint union operation H ⊕ H ′ and the first following operation O of disjoint union or renaming. We can replace the W -clique operation ver a by the W -NLC operation ver a , and the W -clique operation ρ a→b (H) by the W -NLC operation • R (H) where R(a) = b and R(c) = c, ∀c ∈ S, c = a. Finally each group consisting of a H ⊕ H ′ W -clique operation and the following α w a,b (H) W -clique operations can be replaced by the W -NLC operation G × S G ′ where S(a, b, 1) = S(a, b, -1) = w if there is an α w a,b (H) operation in the group. It is clear that these replacements in T will give a parse-tree constructing G with W -NLC operations on the same set of source labels S of cardinality k. Hence, we have W wd N LC (G) ≤ W cwd(G).

C 1 :

 1 every b (1 ≥ b ≥ l -1) we need to show that only a constant number of vertices are added to bag b during the entire process. Every gate in layer b of ϕ is represented by a vertex, and these vertices may all be added to bag b. Every gates in layer b + 1 are also represented by a vertex, and all of these are added to bag b (because they are used as input here). So far we have at most 2 • k gate vertices in each bag. In addition a number of s i vertices are also added to bag b. For each subcircuit ϕ j that has a gate in layer b or b + 1, we have the corresponding s j vertex in bag b, so what remains is to show that at most 3•k 2 disjoint subcircuits have a gate in layer b or b + 1. Each of these subcircuits are in exactly one of the following 3 sets: Subcircuits that have a gate in layer b, but NONE of them are multiplication gates. C 2 : Subcircuits that DO have a multiplication gate in layer b. C 3 : Subcircuits that have their root in layer b + 1. There are at most k 2 subcircuits in the set C 2 . Otherwise, since two inputs to a multiplication gate are in different subcircuits and since subcircuits in C 2 are disjoint layer b + 1 would contain at least 2 • ( k 2 + 1) gates and thus have width more than k. By how subcircuits are constructed, all subcircuits in C 3 are considered as the disjoint multiplication-input subcircuit of distinct multiplication gates in layer b, so there are at least |C 3 | multiplication gates in layer b. Since subcircuits in C 1 do NOT have multiplication gates in layer b we have that |C 1 | + |C 3 | ≤ k. Thus, at most |C 1 | + |C 2 | + |C 3 | ≤ 3•k 2 distinct subcircuits have their s i vertex added to bag b.

Lemma 3 .

 3 Let G be a weighted graph (directed or not) with weights in W . If G has pathwidth k, then G has W -cliquewidth at most k + 2.

7 •6 2 - 1 =

 721 20 by Theorem 2, and W -cliquewidth at most 20 + 2 = 22 by Lemma 3. ⊓ ⊔ For the hamiltonian the W -cliquewidth becomes ((7 • 6 + 2) -1) + 2 = 45 instead.
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	Proof. It is a direct consequence of Theorem 12 and Lemma 2.	⊓ ⊔
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Theorem 13. The permanent of an n × n matrix of bounded W -m-cliquewidth can be expressed as a circuit of size O(n O

(1) 

) and thus is in VP.

the processing of t. Instead of adding such a loop we do the following: Add a new vertex with label temp, add an edge of weight 1 from left-h2 to right-c-in, add an edge of weight 1 from right-c-in to temp, add an edge of weight 1 from left-h2 to temp, rename left-h2 to sink, rename temp to left-h2. Remaining processing of t is done as before.

When we reach the root r of T we consider any vertex of X r , e.g. the vertex represented by labels left-a-in/out. In the final step, instead of adding an edge of weight 1 from left-a-in to left-a-out, we add an edge of weight 1 from left-a-in to left-h1 and an edge of weight 1 from left-h2 to left-a-out. Now, for every hamiltonian cycle of G we break up the equivalent cycle of G ′ and visit any remaining vertices of G ′ along a path of total weight 1.

⊓ ⊔ Theorem 16. Every arithmetic formula can be expressed as the sum of weights of perfect matchings of a symmetric matrix of W -cliquewidth at most 26 and size polynomial in n, where n is the size of the formula. All entries in the matrix are either 0, 1, constants of the formula, or variables of the formula.

Proof. It is a direct consequence of Theorem 14 and Lemma 2. ⊓ ⊔