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Abstract. Some 25 years ago Valiant introduced an algebraic model of computation
in order to study the complexity of evaluating families of polynomials. The theory was
introduced along with the complexity classes VP and VNP which are analogues of the
classical classes P and NP. Families of polynomials that are difficult to evaluate (that is,
VNP-complete) includes the permanent and hamiltonian polynomials.

In a previous paper the authors together with P. Koiran studied the expressive power
of permanent and hamiltonian polynomials of matrices of bounded treewidth, as well as
the expressive power of perfect matchings of planar graphs. It was established that the
permanent and hamiltonian polynomials of matrices of bounded treewidth are equivalent
to arithmetic formulas. Also, the sum of weights of perfect matchings of planar graphs
was shown to be equivalent to (weakly) skew circuits.

In this paper we continue the research in the direction described above, and study the ex-
pressive power of permanents, hamiltonians and perfect matchings of matrices that have
bounded pathwidth or bounded cliquewidth. In particular, we prove that permanents,
hamiltonians and perfect matchings of matrices that have bounded pathwidth express
exactly arithmetic formulas. This is an improvement of our previous result for matri-
ces of bounded treewidth. Also, for matrices of bounded weighted cliquewidth we show
membership in VP for these polynomials.

1 Introduction

In this paper we continue the work that was started in [8]. Our focus is on easy special cases
of otherwise difficult to evaluate polynomials, and their relation to various classes of arithmetic
circuits. It is conjectured that the permanent and hamiltonian polynomials are hard to evaluate.
Indeed, in Valiant’s model [16, 17] these families of polynomials are both VNP-complete. In the
boolean framework they are complete for the complexity class #P [18]. However, for matrices of
bounded treewidth the permanent and hamiltonian polynomials can efficiently be evaluated -
the number of arithmetic operations being polynomial in the size of the matrix [4].

An earlier result along these lines is related to computing weights of perfect matchings
in a graph: The sum of weights of all perfect matchings in a weighted (undirected) graph is
another hard to evaluate polynomial, but for planar graphs it can be evaluated efficiently due
to Kasteleyn’s theorem [10].
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By means of reductions these evaluation methods can all be seen as general-purpose eval-
uation algorithms for certain classes of polynomials. As an example, if an arithmetic formula
represents a polynomial P then one can construct a matrix A of bounded treewidth such that:

(i) The entries of A are variables of P, or constants from the underlying field.
(ii) The permanent of A is equal to P.

It turns out that the converse holds as well, so with respect to the computational com-
plexity computing the permanent of a bounded treewidth matrix is equivalent to evaluating an
arithmetic formula. In [8] the following results (with abuse of notation) were established:

(i) permanent/hamiltonian(bounded treewidth matrix) = arithmetic formulas.
(ii) perfect matchings(planar matrix) = arithmetic skew circuits.

One can also by similar techniques show that:
(iii) perfect matchings(bounded treewidth matrix) = arithmetic formulas.

Other notions of graph “width” have been defined in the litterature besides treewidth, e.g.
pathwidth, cliquewidth and rankwidth. Here we would like to study the evaluation methods men-
tioned above, but considering matrices A that have bounded pathwidth or bounded cliquewidth
instead of bounded treewidth. In this paper we establish the following results:

(i) per/ham/perf. match.(bounded pathwidth matrix) = arithmetic skew circuits of bounded
width = arithmetic weakly skew circuits of bounded width = arithmetic formulas.
(i) arithmetic formulas C per/ham/perfect matchings(bounded cliquewidth matrix) C VP.

Overview of the paper. The second section of the paper introduces definitions used through-
out the paper and provides some small technical results related to graph widths. In particular we
show equivalence between the weighted definitions of cliquewidth, NLC-width and m-cliquewidth
with respect to boundedness. Sections 3 and 4 are devoted to the expressiveness of the perma-
nent, hamiltonian, and perfect matchings of the graphs of bounded pathwidth and bounded
weighted cliquewidth respectively. We prove in Section 3 that permanent, hamiltonian, and per-
fect matchings limited to bounded pathwidth graphs express arithmetic formulas. In Section 4,
we show that for all three polynomials the complexity is between arithmetic formulas and VP
for graphs of bounded weighted cliquewidth.

2 Definitions and preliminary results

2.1 Arithmetic circuits

Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices have indegree 0
or 2, where those with indegree 0 are referred to as inputs. A single vertex must have outdegree
0, and is referred to as output. Fach vertex of indegree 2 must be labeled by either + or X, thus
representing computation. Vertices are commonly referred to as gates and edges as arrows.

By interpreting the input gates either as constants or variables it is easy to prove by induction
that each arithmetic circuit naturally represents a polynomial.

In this paper various subclasses of arithmetic circuits will be considered: For weakly skew
circuits we have the restriction that for every multiplication gate, at least one of the incoming



arrows is from a subcircuit whose only connection to the rest of the circuit is through this
incoming arrow. For skew circuits we have the restriction that for every multiplication gate, at
least one of the incoming arrows is from an input gate. For formulas all gates (except output)
have outdegree 1. Thus, reuse of partial results is not allowed.

For a detailed description of various subclasses of arithmetic circuits, along with examples,
we refer to [14].

Definition 2. The size of a circuit is the total number of gates in the circuit. The depth of a
circuit is the length of the longest path from an input gate to the output gate.

2.2 Pathwidth and treewidth

Since the definition of pathwidth is closely related to the definition of treewidth (bounded
pathwidth is a special case of bounded treewidth) we also include the definition of treewidth in
this paper. Treewidth for undirected graphs is commonly defined as follows:

Definition 3. Let G = (V, E) be a graph. A k-tree-decomposition of G is:

(i) A tree T = (Vp, ET).
(ii) For each t € Vi a subset Xy CV of size at most k + 1.
(i1i) For each edge (u,v) € E there is a t € Vp such that {u,v} C X;.
(iv) For each vertex v € V the set {t € Vr|v € X} forms a (connected) subtree of T'.

The treewidth of G is then the smallest k such that there exists a k-tree-decomposition for G.
A k-path-decomposition of G is then a k-tree-decomposition where the “tree” T is a path (each
vertex t € Vp has at most one child in T ).

Ezxample 1. Here we show that cycles have pathwidth at most 2 by constructing a path-decom-
position of G where each X; has size at most 3. Let vy, vs,...,v, be the vertices of a graph
G which is a cycle. The edges of G are (v1,v2), (v2,v3), ..., (Un—1,Vn), (Un,v1). The vertex vy
is contained in every X, of the path-decomposition. Vertices vy and vs are contained in Xj,
vertices vz and vy are contained in X5, and so on. Finally, vertices v,_1 and v, are contained
in X,,_o. This gives a path-decomposition of G of width 2.

The pathwidth (treewidth) of a directed, weighted graph is naturally defined as the pathwidth
(treewidth) of the underlying, undirected, unweighted graph. The pathwidth (treewidth) of an
(n x n) matrix M = (m; ;) is defined as the pathwidth (treewidth) of the directed graph
Gy = (Vi Exr,w) where Vi = {1,...,n}, (¢,7) € En iff m; ; # 0, and w(i, j) = m; ;. Notice
that Gps can have loops. Loops affect neither the pathwidth nor the treewidth of G but are
important for the characterization of the permanent polynomial.

2.3 Cliquewidth, NLCwidth and m-cliquewidth

Although there exists many algorithmic results for graphs of bounded treewidth, there are
still classes of “trivial” graphs that have unbounded treewidth. Cliques are an example of
such graphs. Cliquewidth is a different notion of “width” for graphs, and it is more general
than treewidth since graphs of bounded treewidth have bounded cliquewidth, but cliques have
bounded cliquewidth and unbounded treewidth.



We recall the definitions of cliquewidth, NLCwidth and m-cliquewidth for unweighted, undi-
rected graphs. Then we introduce the new notions of W-cliquewidth, W-NLCwidth and W-m-
cliquewidth which are variants of the preceding ones for weighted, directed graphs. These graph
widths are all defined using terms over an universal algebra. When we refer to parse-trees it
means the parse-trees of these terms.

Definition 4 ([3,5]). A graph G has cliquewidth (denoted cwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named clique operations):

(i) verq, a € S (basic construct: create a single vertex with label a).
(i1) pa—p(H), a,b €S (rename all vertices with label a to have label b instead).
(111) Nap(H), a,b € S, a # b (add edges between all couples of vertices where one of them has
label a and the other has label b).
(iv) H & H' (disjoint union of graphs).

Ezxample 2. Using the clique algebra, the clique with four vertices Ky is constructed by the
following term using only two source labels; S = {a, b}:

Na.b((Pa—b (Na,p((Pa—b(Map(vere & very))) @ very))) @ very).

Definition 5 ([19]). A graph G has NLCwidth (denoted wyrc(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named NLC operations):

(i) verq, a € S (basic construct: create a single vertex with label a).
(ii) or(H) for any mapping R from S to S (for every source label a € S rename all vertices
with label a to have label R(a) instead).
(iii) H xg H' for any S C 8% (disjoint union of graphs to which are added edges between all
couples of vertices x € H (with label l,,), y € H' (with label 1) having (I5,1,) € S).

One important distinction between cliquewidth and NLCwidth on one side and m-cliquewidth
(to be defined below) on the other side is that in the first two each vertex is assigned exactly
one label, and in the last one each vertex is assigned a set of labels (possibly empty).

Definition 6 ([6]). A graph G has m-cliquewidth (denoted mcwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named m-clique operations):

(i) vera (basic construct: create a single vertex with a set of labels A, A C S).

(ii) H @gpp H' for any S C 8% and any h, 1/ : P(S) — P(S) (disjoint union of graphs to
which is added edges between all couples of vertices x € H, y € H' whose sets of labels L, L,
contain a couple of labels Iy, 1, such that (Iz,1,) € S. Then the labels of vertices from H are
changed via h and the labels of vertices from H' are changed via h').

It is stated in [6] (a proof sketch of this result is given in [6], one of the inequalities is proven
in [9]) that
mewd(G) < wdnpo(G) < cwd(G) < 2mewd@+ _ 1,

Hence, cliquewidth, NLC-width and m-cliquewidth are equivalent with respect to boundedness.



We have seen that the definition of pathwidth and treewidth for weighted graphs straight
forward was defined as the width of the underlying, unweighted graph. This is a major differ-
ence compared to cliquewidth. We can see that if we consider non-edges as edges of weight 0,
then every weighted graph has a clique (which has bounded cliquewidth 2) as its underlying,
unweighted graph.

Our main motivation for studying bounded cliquewidth matrices is to obtain efficient algo-
rithms for evaluating polynomials like the permanent and hamiltonian for such matrices. For
this reason, it is not reasonable to define the cliquewidth of a weighted graph as the cliquewidth
of the underlying, unweighted graph, because then computing the permanent of a matrix of
cliquewidth 2 is as difficult as the general case. Hence, we put restrictions on how weights are
assigned to edges: Edges added in the same operation between vertices having the same pair of
labels, will all have the same weight.

We now introduce the definitions of W-cliquewidth, W-NLCwidth and W-m-cliquewidth. We
will consider simple, weighted, directed graphs where the weights are in some set W. In the three
following constructions, an arc from a vertex x to a vertex y is only added by relevant operations
if there is not already an arc from x to y. The operations that differ from the unweighted case
are indicated by bold font.

Definition 7. A graph G has W -cliquewidth (denoted Wecwd(G)) at most k iff there exists a
set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W -clique operations):

(i) verq, a € S (basic construct: create a single vertex with label a).
(11) pa—b(H), a,b € S (rename all vertices with label a to have label b instead).
(iii) o (H), a,b € S, a# b, we W (add missing arcs of weight w from all vertices with label
a to all vertices with label b).
(iv) H & H' (disjoint union of graphs).

Definition 8. A graph G has W-NLCwidth (denoted Wwdnrc(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W-NLC' operations):

(i) verq, a € S (basic construct: create a single vertex with label a).
(ii) or(H) for any mapping R from S to S (for every source label a € S rename all vertices
with label a to have label R(a) instead).
(iii) H xs H' for any partial function S : 8% x {—1,1} — W (disjoint union of graphs to which
are added arcs of weight w for each couple of vertices x € H, y € H' whose labels l,,1, are
such that S(lg, 1y, s) = w; the arc is from x toy if s =1 and from y to x if s = —1).

Definition 9. A graph G has W-m-cliquewidth (denoted Wmcwd(G)) at most k iff there exists
a set of source labels S of cardinality k such that G can be constructed using a finite number of
the following operations (named W -m-clique operations):

(i) vera (basic construct: create a single vertex with set of labels A, A C S).

(it) H ®spp H' for any partial function S : 8? x {—1,1} — W and any h,h' : P(S) — P(S)
(disjoint union of graphs to which is added missing arcs of weight w for each couple of
vertices x € H, y € H' whose sets of labels Ly, L, contain lg, 1, such that S(ly,1,,s) = w;
the arc is from x toy if s =1 and from y to x if s = —1. Then the labels of vertices from
H are changed via h and the labels of vertices from H' are changed via h').



In the last operation for W-m-cliquewidth, there is a possibility that two (or more) arcs are
added from a vertex = to a vertex y during the same operation and then the obtained graph is
not simple. For this reason, we will consider as well-formed terms only the terms (or parse-trees)
where this does not occur.

The three preceding constructions of graphs can be extended to weighted graphs with loops
by adding the basic constructs verloopy or verloop’j which creates a single vertex with a loop
of weight w and label a or set of labels A. If G is a weighted graph (directed or not) with loops
and Unloop(G) denotes the weighted graph (directed or not) obtained from G by removing all
loops, then one can easily show the following result.

— Wewd(G) = Wewd(Unloop(G)).
— Wwdnre(G) = Wwdn o (Unloop(G)).
— Wmecwd(G) = Wmcwd(Unloop(Q)).

This justifies the fact that we overlook technical details for loops in the proof of the following
theorem. Theorem 1 shows that the inequalities between the three widths are still valid in the
weighted case. It justifies our definitions of cliquewidth for weighted graphs. For the proof we
collect the ideas in [6,9] and combine them with our definitions for weighted graphs.

Theorem 1. For any weighted graph G,
Wmewd(G) < Wwdyro(G) < Wewd(G) < 2Wmewd(@+1 _q,

Proof. First inequality:

Let G be a weighted graph of W-NLCwidth at most k and T" be a parse-tree constructing G
with W-NLC operations on a set of source labels S of cardinality k. We can consider without
loss of generality that in 7"

- there are no two consecutive og(H) operations, otherwise we can replace T' by T’ where the
two consecutive nodes of T' with og(H) and og:(H) operations on them have been replaced
by one node ogv(H) (R” = R' o R).

- no ver, operation is followed by a og(H) operation, otherwise we can replace T by T” where
this two operations are replaced by ver, where b = R(a).

- each H xg H' operation is followed by exactly one og(H) operation, otherwise we can add
an orq(H) operation if there is none (Id is the identity function from S to S).

We can replace the W-NLC operation ver, by the W-m-clique operation veryqy, and the con-
secutives W-NLC operation H xg H' and or(H) by the W-m-clique operation H ®gppn H'
where h({a}) = {R(a)},Va € S. It is clear that these replacements in T" will give a parse-tree
constructing G with W-m-clique operations on the same set of source labels S of cardinality k.
Hence, we have Wmcwd(G) < Wwdy Lo (G).

Second inequality:

Let G be a weighted graph of W-cliquewidth at most k and T' be a parse-tree constructing G
with W-clique operations on a set of source labels S of cardinality k. We can consider without
loss of generality that in 7"

- after a disjoint union operation H & H’ all arcs in G from = € H to y € H' (resp. from
y to z) are added between the disjoint union operation H @ H' and the first following
operation O of disjoint union or renaming. Otherwise consider the first operation ¥, (H)
after O adding an arc between a vertex z’ from H and a vertex y' from H’. We can add
an operation «y), ., (H) before O where a’(resp. ') is the label in H @& H' of the tail (resp.
head) of the arc added by the operation oy, (H).



- each operation «y,(H) add at least one arc.
- all oy, (H) operations are between a disjoint union operation H @& H' and the first following
operation O of disjoint union or renaming.

We can replace the W-clique operation ver, by the W-NLC operation ver,, and the W-clique
operation p,—p(H) by the W-NLC operation og(H) where R(a) = b and R(c) = ¢,Ve € S, ¢ # a.
Finally each group consisting of a H & H’ W-clique operation and the following o ,(H)
W-clique operations can be replaced by the W-NLC operation G Xg G’ where S (a,b,ﬁl) =
S(a,b,—1) = w if there is an oy, (H) operation in the group. It is clear that these replacements
in T will give a parse-tree constructing G with W-NLC operations on the same set of source
labels S of cardinality k. Hence, we have Wwdnc(G) < Wewd(G).

Last inequality:

Let G be a weighted graph of W-m-cliquewidth at most k£ and T" be a parse-tree constructing
G with W-m-clique operations on a set of source labels S of cardinality k. Let S’ be a set of source
labels of cardinality 2871 — 1, &' = S;US, U{empty} where |S;| = |S,| = 2¥ — 1. We define three
bijections | : P(S)\0 — S, r : P(S)\D — S;, and u : S — S, such that u(l(4)) = r(A),VA €
P(S). We will denote by p; a sequence of p,—, W-clique operations realizing a function f from
S’ to 8. We associate to each function S : S x {—1,1} — W a sequence ag consisting of
ai{ayr(p) (€SP Oy 10 4y) W-clique operations for all couples (a,b) € S8?,(A,B) € (P(S)\0)?
such that S(a,b,1) = w (resp. S(a,b,—1) =w),a € Aand b € B.

We can replace the W-m-clique operation vers by the W-clique operation ver; 4y if A #
and verempty otherwise. Each W-m-clique operation H®g p, n H' will be replaced by the following
W-clique operations:

- apply py to the subtree constructing H'.
- make a H & H' W-clique operation.

- apply as.

- apply propor-1-

- apply propror—1.

It is clear that these replacements in 7" will give a parse-tree constructing G with W-clique

operations on the set of source labels S’ of cardinality 2¥*! — 1. Hence, we have Wecwd(G) <
2Wmcwd(G)+1 —1. O

2.4 Permanent and hamiltonian polynomials

In this paper we take a graph theoretic approach to deal with permanent and hamiltonian poly-
nomials. The reason for this is that a natural way to define pathwidth, treewidth or cliquewidth
of a matrix M is by the width of the graph G (see Section 2.2), also see e.g. [12].

Definition 10. A cycle cover of a directed graph is a subset of the edges, such that these edges
form disjoint, directed cycles (loops are allowed). Furthermore, each vertex in the graph must be
in one (and only one) of these cycles. The weight of a cycle cover is the product of weights of
all participating edges.

Definition 11. The permanent of an (n X n) matric M = (m; ;) is the sum of weights of all
cycle covers of Gy .



The permanent of M can also be defined by the formula

per(M) = Z Hmi,a(i)-

€S, i=1

The equivalence with Definition 11 is clear since any permutation can be written down as
a product of disjoint cycles, and this decomposition is unique. The hamiltonian polynomial
ham(M) is defined similarly, except that we only sum over cycle covers consisting of a single
cycle (hence the name).

There is a natural way of representing polynomials by permanents. Indeed, if the entries
of M are variables or constants from some field K, then f = per(M) is a polynomial with
coefficients in K (in Valiant’s terminology, f is a projection of the permanent polynomial). In
the next sections we study the power of this representation in the case where M has bounded
pathwidth or bounded cliquewidth.

2.5 Connections between permanents and sum of weights of perfect matchings

Another combinatorial characterization of the permanent is by sum of weights of perfect match-
ings in a bipartite graph. We will use this connection to deduce results for the permanent from
results for the sum of weights of perfect matchings and vice versa.

Definition 12. Let G be a directed graph (weighted or not). We define the inside-outside graph
of G, denoted IO(G), as the bipartite, undirected graph (weighted or not) obtained as follows:

— split each vertex u € V(G) in two vertices u™ and u™;
— each arc uv (of weight w) is replaced by an edge between u* and v~ (of weight w). A loop
on u (of weight w) is replaced by an edge between u™ and u~ (of weight w).

It is well-known that the permanent of a matrix M can be defined as the sum of weights of all

perfect matchings of TO(Gjps). We can see that the adjacency matrix of IO(Gyy) is (]\?/t ]\04) .

Lemma 1. If G has treewidth (pathwidth) k, then IO(G) has treewidth (pathwidth) at most
2-k+1.

Proof. Let (T, (X¢t)iev (1)) be a k-tree(path)-decomposition of G. It is clear that (T', (X})icv (1)),
where X] = {u™,u™|u € X,}, is a tree(path)-decomposition of IO(G) of width 2 - k + 1. O

Lemma 2. If G has W-cliquewidth k, then IO(G) has W -cliquewidth at most 2 - k.

Proof. Let T be a parse-tree constructing G with W-clique operations on a set of source la-
bels S of cardinality k. We can replace the W-clique operation ver, by the three operations
(verqe+) @ (very-), and the W-clique operation p,—,(H) by the W-clique operations p,+ _,+ (H)
and p,- - (H). Finally each o, (H) W-clique operation can be replaced by the Mok b (H) W-
clique operation. It is clear that these replacements in 7' will give a parse-tree constructing
IO(G) with W-clique operations on the set of source labels {a™,a™|a € S} of size 2 - k. O



3 Expressiveness of matrices of bounded pathwidth

In this section we study the expressive power of permanents, hamiltonians and perfect matchings
of matrices of bounded pathwidth. We will prove that in each case we capture exactly the families
of polynomials computed by polynomial size skew circuits of bounded width. A by-product of
these proofs will be a proof of the equivalence between polynomial size skew circuits of bounded
width and polynomial size weakly skew circuits of bounded width. This equivalence can not be
immediately deduced from the already known equivalence between polynomial size skew circuits
and polynomial size weakly skew circuits in the unbounded width case [15] (the proofs in [15]
use a combinatorial characterization of the complexity of the determinant as the sum of weights
of s,t-paths in a graph of polynomial size with distinguished vertices s and ¢. The additional
difficulties to extend these proofs to circuits and graphs of bounded width would be equivalent
to the ones we deal with). We will then prove that skew circuits of bounded width are equivalent
to arithmetic formulas.

Definition 13. An arithmetic circuit ¢ has bounded width k > 1 if there exists a finite set of
totally ordered layers such that:

- Each gate of ¢ is contained in exactly 1 layer.

- Fach layer contains at most k gates.

- For every non-input gate of ¢ if that gate is in some layer n, then both inputs to it are in
layer n+ 1.

Theorem 2. The polynomial computed by a weakly skew circuit of bounded width can be ex-
pressed as the permanent of a matriz of bounded pathwidth. The size of the matriz is polynomial
in the size of the circuit. All entries in the matriz are either 0, 1, constants of the polynomial,
or variables of the polynomial.

Proof. Let ¢ be a weakly skew circuit of bounded width & > 1 and [ > 1 the number of layers
in ¢. The directed graph G we construct will have pathwidth at most L%J —1 (each bag in the
path-decomposition will contain at most L%J vertices) and the number of bags in the path-
decomposition will be | — 1. G will have two distinguished vertices s and ¢, and the sum of
weights of all directed paths from s to t equals the value computed by . The vertex s will be
in all bags of the path-decomposition of G.

Since ¢ is a weakly skew circuit we consider a decomposition of it into disjoint subcircuits
defined recursively as follows: The output gate of ¢ belongs to the main subcircuit. If a gate in
the main subcircuit is an addition gate, then both of its input gates are in the main subcircuit
as well. If a gate g in the main subcircuit is a multiplication gate, then we know that at
least one input to g is the output gate of a subcircuit which is disjoint from ¢ except for
its connection to g. This subcircuit forms a disjoint multiplication-input subcircuit. The other
input to g belongs to the main subcircuit. If some disjoint multiplication-input subcircuit ¢’
contains at least one multiplication gate, then we make a decomposition of ¢’ recursively. Note
that such a decomposition of a weakly skew circuit not necessarily is unique (nor does it need
to be), because both inputs to a multiplication gate can be disjoint from the rest of the circuit,

and then any one of these two can be chosen as the one that belongs to the main subcircuit.

Let ¢o, 1, ..., 94 be the disjoint subcircuits obtained in the decomposition (¢g is the main
subcircuit). The graph G will have a vertex v, for every gate g of ¢ and d+ 1 additional vertices
$ = 80,81,..-,84 (t will correspond to v, where g is the output gate of ¢). For every gate g



in the subcircuit ¢;, the following construction will ensure that the sum of weights of directed
paths from s; to v, is equal to the value computed at g in .

For the construction of G we process the decomposition of ¢ in a bottom-up manner. Let
subcircuit ¢; be a leaf in the decomposition of ¢ (so ¢; consists solely of addition gates and
input gates). Assume that ¢; is located in layers top; through bot; (1 > top; > bot; > 1) of .
First we add a vertex s; to G in bag bot; — 1, and for each input gate with value w in the bottom
layer bot; of p; we add a vertex to G also in bag bot; — 1 along with an edge of weight w from s;
to that vertex. Let n range from bot; — 1 to top;: Add the already created vertex s; to bag n—1
and handle input gates of y; in layer n as previously described. For each addition gate of ¢; in
layer n we add a new vertex to G (which is added to bags n and n— 1 of the path-decomposition
of G). In bag n we already have two vertices that represent inputs to this addition gate, so we
add edges of weight 1 from both of these to the newly added vertex. The vertex representing
the output gate of the circuit ; is denoted by ¢;. The sum of weighted directed paths from s;
to t; equals the value computed by the subcircuit ;.

Let ¢; be a subcircuit in the decomposition of ¢ that contains multiplication gates. Addition
gates and input gates in ¢; are handled as before. Let g be a multiplication gate in ¢; in layer
n and ¢; the disjoint multiplication-input subcircuit that is one of the inputs to g. We know
that vertices s; and ¢; already are in bag n, so we add an edge of weight 1 from the vertex
representing the other input to g to the vertex s;, and an edge of weight 1 from ¢; to a newly
created vertex v, that represents gate g, and then v, is added to bags n and n — 1.

For every b (1 > b > 1 — 1) we need to show that only a constant number of vertices are
added to bag b during the entire process. Every gate in layer b of ¢ is represented by a vertex,
and these vertices may all be added to bag b. Every gates in layer b+ 1 are also represented by
a vertex, and all of these are added to bag b (because they are used as input here). So far we
have at most 2 - k gate vertices in each bag. In addition a number of s; vertices are also added
to bag b. For each subcircuit ¢; that has a gate in layer b or b+ 1, we have the corresponding s;
vertex in bag b, so what remains is to show that at most L%J disjoint subcircuits have a gate
in layer b or b + 1. Each of these subcircuits are in exactly one of the following 3 sets:

C1: Subcircuits that have a gate in layer b, but NONE of them are multiplication gates.
Cs: Subcircuits that DO have a multiplication gate in layer b.
Cs: Subcircuits that have their root in layer b + 1.

There are at most L%J subcircuits in the set Cy. Otherwise, since two inputs to a multiplication
gate are in different subcircuits and since subcircuits in C are disjoint layer b+ 1 would contain
at least 2- ( L%J +1) gates and thus have width more than k. By how subcircuits are constructed,
all subcircuits in C5 are considered as the disjoint multiplication-input subcircuit of distinct
multiplication gates in layer b, so there are at least |C5| multiplication gates in layer b. Since
subcircuits in C; do NOT have multiplication gates in layer b we have that |Cy| + |Cs| < k.
Thus, at most |C1 |+ |Ca| +[Cs| < |2E] distinct subcircuits have their s; vertex added to bag b.

Note that in layer 1 of ¢ we just have the output gate. This gate is represented by the vertex
t of G which is in bag 1 of the path-decomposition.

The sum of weights of all directed paths from s to ¢t in G can by induction be shown to be
equal to the value computed by . The final step in the reduction to the permanent polynomial
is to add an edge of weight 1 from ¢ back to s and loops of weight 1 at all nodes different from
s and t. O

The proof of Theorem 2 can be modified to work for the hamiltonian polynomial as well.
We adapt the idea used to show universality of the hamiltonian polynomial in [13]. For the
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permanent polynomial each bag in the path-decomposition contains at most L7—2’€J vertices; for
each of these vertices we now need to introduce one extra vertex in the same bag. In addition
each bag must contain 2 more vertices in order to establish a connection to adjacent bags in the
path-decomposition. In total each bag now contains at most 7 - k + 2 vertices.

Theorem 3. The polynomial computed by a weakly skew circuit of bounded width can be ex-
pressed as the sum of weights of perfect matchings of a symmetric matrix of bounded pathwidth.
The size of the matriz is polynomial in the size of the circuit. All entries in the matriz are either
0, 1, constants of the polynomial, or variables of the polynomial.

Proof. Tt is a direct consequence of Theorem 2 and Lemma 1. a

Now we prove that the permanent, the hamiltonian, and the sum of weights of perfect
matchings of a bounded pathwidth graph can be expressed as a skew circuit of bounded width.

Theorem 4. The hamiltonian of a matrix of bounded pathwidth can be expressed as a skew
circuit of bounded width. The size of the circuit is polynomial in the size of the matriz.

Proof. Let M be a matrix of bounded pathwidth £ and let Gps be the underlying, directed
graph. Each bag in the path-decomposition of Gj; contains at most k + 1 vertices. We refer to
one end of the path-decomposition as the leaf of the path-decomposition and the other as the
root (recall that path-decompositions are special cases of tree-decompositions).

We process the path-decomposition of Gjs from the leaf towards the root. The overall idea
is the same as the proof of Theorem 5 in [8] — namely to consider weighted partial path covers
(i.e. partial covers consisting solely of paths) of subgraphs of Gj; that are induced by the
path-decomposition of G ;. During the processing of the path-decomposition of G at every
level distinct from the root, new partial path covers are constructed by taking one previously
generated partial path cover and then add at most (k + 1)2 new edges, so all the multiplication
gates we have in our circuit are skew. For any bag in the path-decomposition of Gj; we only
need to consider a number of partial path covers that depends solely on k, so the circuit we
produce has bounded width. At the root we add sets of edges to partial path covers to form
hamiltonian cycles. O

Theorem 5. The sum of weights of perfect matchings of a symmetric matriz of bounded path-
width can be expressed as a skew circuit of bounded width. The size of the circuit is polynomial
in the size of the matriz.

Proof. Let M be a symmetric matrix of bounded pathwidth £ and let Gj; be the underlying,
undirected graph. Each bag in the path-decomposition of G; contains at most k + 1 vertices.
We process the path-decomposition of G; from the leaf towards the root. The proof is very
similar to the proof of Theorem 4 — namely to consider weighted matchings of subgraphs of G,
that are induced by the matching of G5;. During the processing of the matching of G at every
level distinct from the root, new matchings are constructed by taking one previously generated
matching and then add at most (k + 1)2 new edges, so all the multiplication gates we have in
our circuit are skew. For any bag in the path-decomposition of G we only need to consider a
number of matchings that depends solely on k, so the circuit we produce has bounded width. At
the root we sum only the weights of perfect matchings to obtain the output of the circuit. O

Theorem 6. The permanent of a matriz of bounded pathwidth can be expressed as a skew circuit
of bounded width. The size of the circuit is polynomial in the size of the matriz.
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Proof. Tt is a direct consequence of Theorem 5 and Lemma 1. a

Corollary 1. A family of polynomials is computable by polynomial size skew circuits of bounded
width if and only if it is computable by polynomial size weakly skew circuits of bounded width.

Proof. Tt is trivial to see that a family of polynomials computed by polynomial size skew circuits
of bounded width can be computed by polynomial size weakly skew circuits of bounded width.
Conversely, if a family of polynomials is computed by polynomial size weakly skew circuits of
bounded width then by Theorem 2 it can be expressed as the permanents of bounded pathwidth
graphs which can be computed by polynomial size skew circuits of bounded width according to
Theorem 6. O

We need the following Theorem from [1] to prove the equivalence between polynomial size
skew circuits of bounded width and polynomial size arithmetic formulas.

Theorem 7. Any arithmetic formula can be computed by a linear bijection straight-line program
of polynomial size that uses three registers.

Let Ry,..., R, be a set of m registers, a linear bijection straight-line (LBS) program is a
vector of m initial values given to the registers plus a sequence of instructions of the form

((13 gj — gj + Egz X c;, or
1 g o Iy — i X C), Or
(i) Rj < R; + (R; X xy), or
(IV) Rj — Rj — (Rz X SCu),

where 1 < i,7 <m, 1 # j, 1 <wu <n,cisa constant, and x1,...,z, are variables (n is the
number of variables). We suppose without loss of generality that the value computed by the
LBS program is the value in the first register after all instructions have been executed.

Theorem 8. A family of polynomials is computable by polynomial size skew circuits of bounded
width if and only if it is computable by a family of polynomial size arithmetic formulas.

Proof. Let (f,) be a family of polynomials computable by polynomial size skew circuits of
bounded width, then by Theorem 2 it can be expressed as the permanents of bounded pathwidth
graphs. Since graphs of bounded pathwith have bounded treewidth, we know by Theorem 5 in [8]
that it can be computed by a family of polynomial size arithmetic formulas.

Conversely, if (f,,) is a family of polynomial size arithmetic formulas, then by Theorem 7, it is
computable by linear bijection straight-line programs of polynomial size that use three registers.
We will modify these programs to obtain equivalent skew circuits of width 6. At each step, the
set of indices {i, 7, k} will be equal to {1,2,3}.

Suppose the initial values of the three registers are r1, 79,73, then the first layer of our skew
circuit contains three input gates with the three values 71,72, 73 along with two others inputs
which will be defined according to the next instruction in the straight-line program.

If the next instruction is R; <« R, + (R; x U) where U is a variable or a constant, then
we assign the values 0 and U to the two input gates not already defined in the current layer
[ and we create a new layer [ — 1 with three addition gates corresponding to R;, R;, Ry whose
inputs are the gate corresponding to R; (resp. R;, Rx) in layer | and the input with value 0 in
layer [. We also put a multiplication gate whose inputs are the gate corresponding to R; and the
input with value U in layer [. And we put again an input gate with value 0. Then we create a
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new layer [ — 2 with three addition gates corresponding to R;, R;, R}, whose inputs are the gate
corresponding to R; (resp. R,;, Ri) and the input with value 0 for 4,k or the gate computing
(R; x U) for j in layer | — 1. We also put two others inputs which will be defined according to
the next instruction.

If the next instruction is R; «— R; — (R; x U), then we need to create one more layer than
in the first case. We first assign the values 0 and U to the two input gates not already defined
in the current layer [ and we create a new layer [ — 1 with three addition gates corresponding
to R;, R;, R, whose inputs are the gate corresponding to R; (resp. R;, Rx) in layer [ and the
input with value 0 in layer [. We also put a multiplication gate whose inputs are the gate
corresponding to R; and the input with value U in layer [. And we put again an input gate with
value 0 and another one with value —1. Then we create an intermediate new layer [ — 2 with
three addition gates corresponding to Iz;, R;, Ri, whose inputs are the gate corresponding to R;
(resp. Rj, Ri) and the input with value 0. We also put a multiplication gate whose inputs are the
gate computing (R; x U) and the input with value —1 in layer [ — 1. And we put again an input
gate with value 0. Finally we create a new layer | — 3 with three addition gates corresponding
to R;, Rj, Ri whose inputs are the gate corresponding to R; (resp. R;, Rx) and the input with
value 0 for ¢,k or the gate computing —(R; x U) for j in layer [ — 2. We also put two others
inputs which will be defined according to the next instruction.

In both cases, it is clear by induction that the three gates of the current layer corresponding
to R;, R;, Ry are computing the values in these registers if we execute the instructions treated
so far. Hence the result. ]

4 Expressiveness of matrices of bounded weighted cliquewidth

In this section we study the expressive power of permanents, hamiltonians and perfect matchings
of matrices that have bounded weighted cliquewidth.

We first prove that every arithmetic formula can be expressed as the permanent, hamiltonian,
or sum of weights of perfect matchings of a matrix of bounded W-cliquewidth, using the results
for the bounded pathwidth matrices and the following lemma.

Lemma 3. Let G be a weighted graph (directed or not) with weights in W. If G has pathwidth
k, then G has W -cliquewidth at most k + 2.

Proof. Let (T, (X¢)tcv (1)) be a k-path-decomposition of G. We refer to one end of the path-
decomposition as the leaf of the path-decomposition and the other as the root. Let G; be the
subgraph of GG induced by the vertices in bags below X;.

We prove by induction on the height of (T, (X¢)icv(r)) that every graph G; can be con-
structed by W-clique operations using at most k + 2 distinct labels. Moreover, at the end of this
construction all vertices in bag X; have distinct labels and all other vertices have a sink label.

If [V(T)] = 1 then G has at most k + 1 vertices. We can create them with & + 1 distinct
labels and add independently each edge between two vertices using W-clique operations.

Suppose |V (T)| > 1, let r be the root and ¢ be its child. By induction, G; can be constructed
by W-clique operations using at most k 4+ 2 distinct labels. For all vertex v € X;\ X, we add a
renaming operation which gives sink label to v (this renaming operation renames only v since,
by induction, v has distinct label from other vertices). Since |X,| < k + 1 and all vertices in
V(G)\X, have sink label, we can create the vertices of X, \X; with distinct labels and add
them by disjoint union to the current construction. It is now clear that all the vertices of X,

13



have distinct labels thus we can add independently each edge between two vertices. Hence the
conclusion. O

Theorem 9. FEvery arithmetic formula can be expressed as the permanent of a matriz of W-
cliguewidth at most 22 and size polynomial in n, where n is the size of the formula. All entries
in the matriz are either 0, 1, constants of the formula, or variables of the formula.

Proof. Let ¢ be a formula of size n. Due to the proof of Theorem 8, we know that it can be
computed by a skew circuit of width 6 and size O(n®™1)). Hence it is equal to the permanent of
a graph of size O(n®™M), pathwidth at most L7—26J — 1 =20 by Theorem 2, and W-cliquewidth
at most 20 4+ 2 = 22 by Lemma 3. a

For the hamiltonian the W-cliquewidth becomes ((7-6 + 2) — 1) 4+ 2 = 45 instead.

Theorem 10. Every arithmetic formula can be expressed as the sum of weights of perfect match-
ings of a symmetric matriz of W-cliquewidth at most 44 and size polynomial in n, where n is
the size of the formula. All entries in the matriz are either 0, 1, constants of the formula, or
variables of the formula.

Proof. Tt is a direct consequence of Theorem 9 and Lemma 2. a

Alternatively we can modify the constructions of bounded treewidth graphs expressing formu-
las in [8]. These modifications require more work than the preceding proofs but we obtain smaller
constants since we obtain graphs of W-cliquewidth at most 13/34/26 (instead of 22/45/44) whose
permanent/hamiltonian/sum of weights of perfect matchings are equal to formulas. The proofs
of these constants are given in the Appendix.

Due to our restrictions on how weights are assigned in our definition of bounded W-clique-
width it is not true that weighted graphs of bounded treewidth have bounded W-cliquewidth.
In fact, if one tries to follow the proofs in [5,2] that show that graphs of bounded treewidth
have bounded cliquewidth, then one obtains that a weighted graph G of treewidth k£ has W-
cliquewidth at most 3 - ([Wg| 4+ 1)¥=1 or 3 (A + 1)*~1. Wg denotes the set of weights on the
edges of G and A is the maximum degree of G. Weighted trees still have bounded weighted
cliquewidth (the bound is 3), but we can show that there exists a family of weighted graphs
with treewidth 2 and unbounded W-cliquewidth [11].

We now turn to the upper bound on the complexity of the permanent, hamiltonian, and sum
of weights of perfect matchings of graphs of bounded weighted cliquewidth. We show that in all
three cases the complexity is at most the complexity of VP.

The decision version of the hamiltonian cycle problem has been shown to be polynomial
time solvable in [7] for matrices of bounded cliquewidth. Here we extend these ideas in order to
compute the hamiltonian polynomial efficiently (in VP) for bounded W-m-cliquewidth matrices.

Definition 14. A path cover of a directed graph G is a subset of the edges of G, such that
these edges form disjoint, directed, non-cyclic paths in G. We require that every vertex of G is
in (exactly) one path. For technical reasons we allow “paths” of length 0, by having paths that
start and end in the same vertex. Such constructions do not have the same interpretation as a
loop. The weight of a path cover is the product of weights of all participating edges (in the special
case where there are no participating edges the weight is defined to be 1).

Theorem 11. The hamiltonian of an nxn matriz of bounded W -m-cliquewidth can be expressed
as a circuit of size O(n°M) and thus is in VP.
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Proof. Let M be an n x n matrix of bounded W-m-cliquewidth. By G we denote the underlying,
directed, weighted graph for M. The circuit is constructed based on the parse-tree T for G. By
T: we denote the subtree of T' rooted at t for some node ¢t € T. By G; we denote the subgraph
of G constructed from the parse-tree T;.

The overall idea is to produce a circuit that computes the sum of weights of all hamiltonian
cycles of G. To obtain this there will be non-output gates that compute weights of all path
covers of all G; graphs, and then we combine these subresults. Of course, the total number of
path covers can grow exponentially with the size of G¢, so we will not “describe” path covers
directly by the edges participating in the covers. Instead we describe a path cover of some Gy
graph by the labels associated with the start- and end-vertices of the paths in the cover. Such
a description do not uniquely describe a path cover, because two different path covers of the
same graph can contain the same number of paths and all these paths can have the same labels
associated. However, we do not need the weight of each individual path cover. If multiple path
covers of some graph G; share the same description, then we just compute the sum of weights
of these path covers.

For a leaf in the parse-tree T' of G we construct a single gate of constant weight 1, representing
a path cover consisting of a single “path” of length 0, starting and ending in a vertex with the
given labels. Per definition this path cover has weight 1.

For an internal node ¢ € T' the grammar rule describes which edges to add and how to relabel
vertices. We obtain new path covers by considering a path cover from the left child of ¢ and a
path cover from the right child of ¢: For each such pair of path covers consider all subsets of
edges added at node ¢, and for every subset of edges check if the addition of these edges to the
pair of path covers will result in a valid path cover. If it does, then add a gate that computes
the weight of this path cover, by multiplying the weight of the left path cover, the weight of the
right path cover and the total weight of the newly added edges. After all pairs of path covers
have been processed, check if any of the resulting path covers have the same description - namely
that the number of paths in some path covers are the same, and that these paths have the same
labels for start- and end-vertices. If multiple path covers have the same description then add
addition gates to the circuit and produce a single gate which computes the sum of weights of all
these path covers.

For the root node r of T' we combine path covers from the children of r to produce hamiltonian
cycles, instead of path covers. Finally, the output of the circuit is a summation of all gates
computing weights of hamiltonian cycles.

Proof of correctness: The first step of the proof is by induction over the height of the parse-
tree T. We will show that for each non-root node t of T" there is for every path cover description
of G; a corresponding gate in the circuit that computes the sum of weights of all path covers of
G with that description. For the base cases - leaves of T - it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with edges
at a node t of the parse-tree T'. Edges added at node t are only added in here, and not at any
other nodes in 7T, so every path cover of G can be split into 3 parts: A path cover of Gy, a
path cover of G, and a polynomial number of edges added at node ¢. Consider a path cover
description along with all path covers of GG; that have this description. All of these path covers
can be split into 3 such parts, and by our induction hypothesis the weights of the path covers
of Gy, and Gy, are computed in already constructed gates.

In order to complete the proof of correctness we have to handle the root t of T" in a special
way. At the root we do not compute weights of path covers, but instead compute weights of
hamiltonian cycles. Every hamiltonian cycle of G can (similarly to path covers) be split into 3
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parts: A path cover of Gy,, a path cover of G, and a polynomial number of edges added at the
root of T'. By our induction hypothesis all the needed weights are already computed.

The size of the circuit is polynomial since at each step the number of path cover descriptions
is polynomially bounded once the W-m-cliquewidth is bounded. a

Theorem 12. The sum of weights of perfect matchings of an nxn symmetric matriz of bounded
W -NLCwidth can be expressed as a circuit of size O(n°M) and thus is in VP.

Proof. Let M be an n X n symmetric matrix of bounded W-NLCwidth. By G we denote the
underlying, undirected, weighted graph for M. The circuit is constructed based on the parse-tree
T for G. By T; we denote the subtree of T' rooted at t for some node t € T. By G; we denote the
subgraph of G constructed from the parse-tree T;. Let k& be the W-NLCwidth of G. We assume
without loss of generality that T is a parse-tree on the set of labels {a, ..., ax}.

The overall idea is much similar to that of Theorem 11, namely to produce a circuit that
computes the sum of weights of all perfect matchings of G. To obtain this there will be non-
output gates that compute weights of all matchings of all G; graphs, and then we combine these
subresults. Of course, the total number of matchings can grow exponentially with the size of Gy,
so we will not “describe” matchings directly by the edges participating in the covers. Instead we
describe a matching of some G; graph by the labels associated to the uncovered vertices. More
precisely, for each matching of G; and each label a we give the number of a-vertices which are not
covered by the matching. Such a description do not uniquely describe a matching, because two
different matchings of the same graph can have the same number of uncovered vertices which
have the same labels associated. However, we do not need the weight of each individual matching.
If multiple matchings of some graph G; share the same description, then we just compute the
sum of weights of these matchings. It is clear that the number of description needed is at most
nk.

For a leaf wver,, in the parse-tree T' of G we construct a single terminal gate of con-
stant weight 1, representing an empty matching. The description associated to this gate is
((a1,0),...,(a;, 1), ..., (ar,0)).

For an internal node ¢ € T with operation og(H) we just need to change the description of
terminal gates in the circuit contructed so far. More precisely, if the description of the gate was

((a1,n1),...,(a;,n;), ..., (ak,ng)) then it becomes
(a1, Z i)y, (G, Z ;) (Qhs Z n;)).
a;ER~1(a1) a; ER~1(a;) a;ER~1(ay)

For an internal node ¢t € T with operation H xg H’ the grammar rule describes which edges
to add. We first create a multiplication gate using the values of each couple of terminal gates
of the left child ! of ¢ and the right child r of ¢. It corresponds to the weights of the disjoint
unions of the matchings of [ and 7. There is at most n2* such gates. To each gate, we associate
a left and right description corresponding to the vertices from [ and r. Those gates are the new
terminal gates. We put the following total order a; < as < --+ < ai on the labels and the
corresponding lexicographic order on the couples (a;, a;). We will consider that the edges added
via S are added by blocks corresponding to a couple (a;,a;) (All edges in the same block are
added at the same time) and that all blocks of edges are added sequentially in lexicographic
order. Thus we have at most k? steps of adding edges to consider. Suppose S(a;,a;) = w;;.
For the step corresponding to (a;,a;) we obtain new matchings by considering each terminal
gate go. Let ((a1,m1),...,(ai,ni),..., (ak,nx)) and ((a1,n}),...,(a;,n}),..., (ax,ny)) be the
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left and right description of gg. Let nyin = min{n;,n’j}. For all matching corresponding to gg
and all p between 0 and n,,;, we can obtain (7;) . (%) matchings by adding p edges of weight

w;; between p vertices among n; of G; and p vertices among n; of G,. Hence, for all p # 0 we
add a multiplication gate with inputs go and the constant (’;;) . (7;;) - (w;;)P. This new gate g,
has left and right description ((a1,71), ..., (ai,ni —p),..., (ak,nx)) and ((a1,n}), ..., (a;,n}; —
p), ..., (ag,n})). There are at most 2 - n?**1 such new gates since p < n. Finally we make
an addition tree computing the addition of the gates g, which have the same left and right
description. Each such tree needs at most O((2k + 2)log(n)) new gates and there are at most
2 - n?* trees. The outputs of these trees are the new terminal gates. When all the k2 steps of
adding edges are done we compute the description of each terminal gate as the sum of its left
and right description then we put an addition tree computing the addition of the terminal gates
which have the same global description. The outputs of these trees are the new terminal gates.

Finally, we obtain the output of the circuit at the root node r of T'. It is the output of the
terminal gate with description ((a1,0),...,(a;,0),..., (ak,0)).

Proof of correctness: The first step of the proof is by induction over the height of the parse-
tree T'. We will show that for each node ¢ of T there is for every matching description of G; a
corresponding gate in the circuit that computes the sum of weights of all matchings of G; with
that description. For the base cases - leaves of T - it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected with edges at
a node t of the parse-tree T'. Edges added at node ¢ are only added in here, and not at any other
nodes in T, so every matching of G; can be split into 3 parts: A matching of Gy,, a matching of
G, and a polynomial number of edges added at node t. Consider a matching description along
with all matchings of G; that have this description. All of these matchings can be split into 3
such parts, and by our induction hypothesis the weights of the path covers of G, and G, are
computed in already constructed gates.

The number of new gates added for each operation H xg H' is at most O(k? - n2**+1). Since
the number of these operations is at most n, we obtain a circuit of polynomial size. a

Theorem 13. The permanent of an n X n matriz of bounded W -m-cliquewidth can be expressed
as a circuit of size O(n°M) and thus is in VP.

Proof. Tt is a direct consequence of Theorem 12 and Lemma 2. a
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Appendix

Theorem 14. FEvery arithmetic formula can be expressed as the permanent of a matriz of W -
cliquewidth at most 13 and size polynomial in n, where n is the size of the formula. All entries
in the matriz are either 0, 1, constants of the formula, or variables of the formula.

Proof. Let ¢ be a formula of size n. Due to [8] we know that ¢ can be expressed as the permanent
of a matrix M that has treewidth at most 2 and size at most (n + 1) x (n + 1). Let G be the
underlying graph of M and let T = (Vr, Er) be the 2-tree-decomposition of G. With only a
linear increase in size of T we can assume that T is a binary tree-decomposition.
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Based on the tree-decomposition T' of G we construct a graph G’ of bounded W-cliquewidth
such that (with slight abuse of notation) per(G) = per(G’). A major difference between gram-
mars for bounded treewidth matrices and grammars for bounded cliquewidth matrices is that
we cannot “merge” two vertices into a single vertex when dealing with grammars for bounded
cliquewidth matrices. As a consequence the graphs G and G’ will not be isomorphic, but there
will be a 1 to 1 correspondence between their cycle covers.

For every non-loop edge (u,v) of G there can be multiple nodes ¢t € Vp such that v and v
both are in the set X;. We say that an edge (u, v) of G “belong” to a node t € Vi, if t is the node
closest to the root of T where u and v both are in X; (for every edge such a node is uniquely
defined).

The general idea for the construction of G’ is as follows: We process T in a bottom-up
manner. For a node t € Vp we first construct subgraphs representing the children [ and r of ¢,
then we add the edges belonging to ¢ using a special labeling scheme for the vertices. We do
not have a label in the grammar for each vertex of G because this will not result in a constant
number of labels. Instead, since |X;| < 3 and |X,.| < 3 we use labels to represent vertices in X;
and X, and reuse these labels during the processing of 7.

A vertex v of G is represented through multiple vertices in G’, but only two of them are
“active” at any time during the construction of G’: One vertex of indegree 0 is managing edges
leaving v in G, and one vertex of outdegree 0 is managing edges entering v in G. Since X; and X,
both have size at most 3 we then need the following labels for this scheme: left-a-in, left-a-out,
left-b-in, left-b-out, left-c-in and left-c-out (and 6 similar labels for right). In addition to that we
also need a sink label, giving a total of 13 labels needed to construct G'.

Processing T to construct G’: For a leaf ¢ of T we construct 6 vertices (or 4, if |X;| = 2),
with the labels left-a-in, left-a-out, left-b-in, left-b-out, left-c-in and left-c-out (assuming ¢ is the
left child of its parent). For non-loop edges belonging to node t, e.g. a directed edge from the
vertex represented with labels left-b-in/out to the vertex represented with labels left-a-in/out
of weight w, we then add edges (actually just a single edge is added because both of the labels
are only assigned to one vertex of G’) from vertices with label left-b-out to vertices with label
left-a-in of weight w. Next, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not
present in X, (p being the parent of ¢ in T'), then we add an edge of weight 1 from left-b-in to
left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w from
left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.

For an internal node ¢t € Vp (including the root of T') we first consider vertices of G that
are in both X; and X, e.g. left-a-in/out and right-b-in/out represent the same vertex of G. We
assume that ¢ is the left child of its parent in 7. We add a loop of weight 1 to each of right-
b-in and right-b-out. Then we add an edge of weight 1 from right-b-in to left-a-in and an edge
of weight 1 from left-a-out to right-b-out. Then right-b-in and right-b-out are renamed to sink.
Next we add two vertices to G’ for every vertex in X; that are not in X; nor X,.. There will be
“available” in/out labels for these two vertices, since in this case at least two other vertices were
renamed to sink during processing of each child of ¢. Next we consider all edges of G belonging
to t. Assume there is a directed edge from the vertex represented by right-c-in/out to the vertex
represented by left-b-in/out of weight w, then we add an edge of weight w from right-c-out to
left-b-in. Last, if a vertex of G, e.g. the vertex represented by left-b-in/out, is not present in X,
(p being the parent of ¢ in T') or if ¢ is the root of T' then we add an edge of weight 1 from left-b-in
to left-b-out. Furthermore, if that vertex has a loop of weight w we add an edge of weight w
from left-b-out to left-b-in. In both cases we then rename left-b-out and left-b-in to sink.
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Proof of correctness: A vertex v of G is represented through two disjoint sets of vertices
in G’: One set of vertices managing edges entering v in G, and one set of vertices managing
edges leaving v in GG. We denote these sets of vertices in G’ as v;;, and veyu¢. A vertex of G’
belong to v, if at some point during the processing of 1" it were assigned an in label which was
representing v in G. By our construction it is clear that every vertex of G’ belong to either v,
Or Vot for exactly 1 vertex v of G, and the set v;, form a directed tree where all non-loop edges
lead towards the root and have weight 1. All non-root vertices in this tree have a loop of weight
1. The set v,y has equivalent properties, with the exception that non-loop edges lead towards
the leaves instead of the root.

Now consider two vertices v and v of G along with a directed edge of weight w from u to v,
and consider the trees oy and vy, in G'. At some point in the construction of G’ an edge of
weight w was added from a vertex in ugy; to a vertex in vy, in G’, so there is a path of weight
w from the root of uey: to the root of v, and all vertices of u,,: and vy, not in this path have
a loop of weight 1. So in a cycle cover of G where we include the edge from u to v we then have
an equivalent path in G’ and all remaining vertices in uyy: and v, are then covered by loops.
In order to “continue” the construction of the path in G’ we then also have an edge of weight 1
from the root of v, to the root of v,ys. In order to simulate loops in cycle covers of G’ we have
added an edge from the root of v,,: back to the root of v;, of same weight as the loop in G. So
a loop in G corresponds to a cycle of length 2 in G, and then all other nodes in both v;, and
Vout are covered by loops of weight 1.

It is then easy to verify that cycle covers in G’ are in bijection with cycle covers of G and
the corresponding pairs of cycle covers have same weight. Finally, note that between any two
vertices of G’ there is at most 1 edge so we can find a matrix M’ such that the underlying graph
of M’ is equivalent to G’ and then per(M') = per(M). O

Theorem 15. FEvery arithmetic formula can be expressed as the hamiltonian of a matriz of W -
cliquewidth at most 84 and size polynomial in n, where n is the size of the formula. All entries
in the matriz are either 0, 1, or constants of the formula, or variables of the formula.

Proof. Let ¢ be a formula of size n. Due to [8] we know that ¢ can be expressed as the hamil-
tonian of a matrix M that has treewidth at most 6 and size at most (2n + 1) x (2n 4 1). Let
G be the underlying, weighted, directed graph for the matrix M and let T = (Vr, Er) be the
binary 6-tree-decomposition of G. With only a linear increase in size of T" we can assume that
T is a binary tree-decomposition.

The overall idea is the same as in Theorem 14 - namely to process the tree-decomposition T'
of G. Since all | X;| < 7 in this tree-decomposition we instead need at least 2-14 + 1 = 29 labels
during the processing of T' to construct G’.

However, if we just use the exact same idea as in Theorem 9, then for every cycle cover in the
produced graph many vertices are covered through loops. Instead of introducing such loops we
“eliminate” them using the same idea as in [13] used for showing universality of the hamiltonian
polynomial.

We need 5 additional labels for this construction: left-h1, left-h2, right-h1, right-h2 and temp,
for a total of 34 labels. For a leaf t of T" we start the processing of ¢ by constructing two vertices
and label them left-h1 and left-h2 (assuming ¢ is the left child of its parent in T'), and add an
edge of weight 1 from left-h1 to left-h2. Remaining processing of ¢ is done as before.

For an internal node ¢t of T" we first add an edge of weight 1 from left-h2 to right-h1, rename
left-h2 and right-h1 to sink, and rename right-h2 to left-h2 (assuming t is the left child of its
parent in 7). Some vertices, e.g. the vertex with label right-c-in, may have a loop added during
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the processing of ¢t. Instead of adding such a loop we do the following: Add a new vertex with
label temp, add an edge of weight 1 from left-h2 to right-c-in, add an edge of weight 1 from
right-c-in to temp, add an edge of weight 1 from left-h2 to temp, rename left-h2 to sink, rename
temp to left-h2. Remaining processing of ¢ is done as before.

When we reach the root r of T" we consider any vertex of X,., e.g. the vertex represented
by labels left-a-in/out. In the final step, instead of adding an edge of weight 1 from left-a-in
to left-a-out, we add an edge of weight 1 from left-a-in to left-h1 and an edge of weight 1 from
left-h2 to left-a-out. Now, for every hamiltonian cycle of G we break up the equivalent cycle of
G’ and visit any remaining vertices of G’ along a path of total weight 1. O

Theorem 16. Fvery arithmetic formula can be expressed as the sum of weights of perfect match-
ings of a symmetric matriz of W -cliquewidth at most 26 and size polynomial in n, where n is
the size of the formula. All entries in the matriz are either 0, 1, constants of the formula, or
variables of the formula.

Proof. Tt is a direct consequence of Theorem 14 and Lemma 2. a
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