
HAL Id: ensl-00260279
https://ens-lyon.hal.science/ensl-00260279v2

Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adversary lower bounds for nonadaptive quantum
algorithms

Pascal Koiran, Jürgen Landes, Natacha Portier, Penghui Yao

To cite this version:
Pascal Koiran, Jürgen Landes, Natacha Portier, Penghui Yao. Adversary lower bounds for non-
adaptive quantum algorithms. WoLLIC 2008 15th Workshop on Logic, Language, Information and
Computation, Jul 2008, Edinburgh, United Kingdom. �ensl-00260279v2�

https://ens-lyon.hal.science/ensl-00260279v2
https://hal.archives-ouvertes.fr


en
sl

-0
02

60
27

9,
 v

er
si

on
 2

 -
 9

 A
pr

 2
00

8

Adversary lower bounds for nonadaptive

quantum algorithms

Pascal Koiran1, Jürgen Landes2, Natacha Portier1, and Penghui Yao3

1 LIP†, Ecole Normale Supérieure de Lyon, Université de Lyon
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Abstract We present general methods for proving lower bounds on the
query complexity of nonadaptive quantum algorithms. Our results are
based on the adversary method of Ambainis.

1 Introduction

In this paper we present general methods for proving lower bounds on
the query complexity of nonadaptive quantum algorithms. A nonadap-
tive algorithm makes all its queries simultaneously. By contrast, an un-
restricted (adaptive) algorithm may choose its next query based on the
results of previous queries. In classical computing, classes of problems
for which adaptivity does not help have been identified [4,10] and it
is known that this question is connected to a longstanding open prob-
lem [15] (see [10] for a more extensive discussion). In quantum computing,
the study of nonadaptive algorithms seems especially relevant since some
of the best known quantum algorithms (namely, Simon’s algorithms and
some other hidden subgroup algorithms) are nonadaptive. This is never-
theless a rather understudied subject in quantum computing.

The paper that is most closely related to the present work is [14] (and [8]
is another related paper). In [14] the authors use an “algorithmic argu-
ment” (this is a kind of Kolmogorov argument) to give lower bounds
on the nonadaptive quantum query complexity of ordered search, and
of generalizations of this problem. The model of computation that they
consider is less general than ours (more on this in section 2).

The two methods that have proved most successful in the quest for quan-
tum lower bounds are the polynomial method (see for instance [5,2,11,12])
and the adversary method of Ambainis. It is not clear how the polyno-
mial method might take the nonadaptivity of algorithms into account.
Our results are therefore based on the adversary method, in its weighted
version [3]. We provide two general lower bounds which yield optimal
results for a number of problems: search in an ordered or unordered list,
element distinctness, graph connectivity or bipartiteness. To obtain our
first lower bound we treat the list of queries performed by a nonadaptive
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algorithm as one single “super query”. We can then apply the adver-
sary method to this 1-query algorithm. Interestingly, the lower bound
that we obtain is very closely related to the lower bounds on adaptive

probabilistic query complexity due to Aaronson [1], and to Laplante and
Magniez [13]. Our second lower bound requires a detour through the
so-called minimax (dual) method and is based on the fact that in a
nonadaptive algorithm, the probability of performing any given query is
independent of the input.

2 Definition of the Model

In the black box model, an algorithm accesses its input by querying a
function x (the black box) from a finite set Γ to a (usually finite) set Σ. At
the end of the computation, the algorithm decides to accept or reject x,
or more generally produces an output in a (usually finite) set S′. The goal
of the algorithm is therefore to compute a (partial) function F : S → S′,
where S = ΣΓ is the set of black boxes. For example, in the Unordered

Search problem Γ = [N ] = {1, . . . , N}, Σ = {0, 1} and F is the OR

function: F (x) =
∨

1≤i≤N

x(i).

Our second example is Ordered Search. The sets Γ and Σ are as in the
first example, but F is now a partial function: we assume that the black
box satisfies the promise that there exists an index i such that x(j) = 1
for all j ≥ i, and x(j) = 0 for all j < i. Given such an x, the algorithm
tries to compute F (x) = i.
A quantum algorithm A that makes T queries can be formally de-
scribed as a tuple (U0, . . . , UT ), where each Ui is a unitary operator.
For x ∈ S we define the unitary operator Ox (the “call to the black
box”) by Ox|i〉|ϕ〉|ψ〉 = |i〉|ϕ⊕ x(i)〉|ψ〉. The algorithm A computes the
final state UTOxUT−1 . . . U1OxU0|0〉 and makes a measurement of some
of its qubits. The result of this measure is by definition the outcome of
the computation of A on input x. For a given ε, the query complexity of a
function F , denoted Q2,ε, is the smallest query complexity of a quantum
algorithm computing F with probability of error at most ε.
In the sequel, the quantum algorithms as described above will also be
called adadaptive to distinguish them from nonadaptive quantum algo-
rithms. Such an algorithm performs all its queries at the same time. A
nonadaptive black-box quantum algorithm A that makes T queries can
therefore be defined by a pair (U, V ) of unitary operators. For x ∈ S we
define the unitary operator OT

x by

OT
x |i1, . . . , iT 〉|ϕ1, . . . , ϕT 〉|ψ〉 = |i1, . . . , iT 〉|ϕ1⊕x(i1), . . . , ϕT⊕x(iT )〉|ψ〉.

The algorithm A computes the final state V OT
x U |0〉 and makes a mea-

surement of some of its qubits. As in the adaptive case, the result of
this measure is by definition the outcome of the computation of A on
input x. For a given ε, the nonadaptive query complexity of a function F ,
denoted Qna

2,ε, is the smallest query complexity of a nonadaptive quantum
algorithm computing F with probability of error at most ε. Our model
is more general than the model of [14]. In that model, the |ϕ〉 register



must remain set to 0 after application of U . After application of OT
x , the

content of this register is therefore equal to |x(i1), . . . , x(iT )〉 rather than
|ϕ1 ⊕ x(i1), . . . , ϕT ⊕ x(iT )〉.
It is easy to verify that for every nonadaptive quantum algorithm A
of query complexity T there is an adaptive quantum algorithm A′ that
makes the same number of queries and computes the same function, so
that Q2,ε ≤ Qna

2,ε. Indeed, consider for every k ∈ [T ] the unitary operator
Ak which maps the state |i1, . . . , iT 〉|ϕ1, . . . , ϕT 〉 to

|ik〉|ϕk〉|i1, . . . , ik−1, ik+1, . . . iT 〉|ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕT 〉.

If the nonadaptive algorithm A is defined by the pair of unitary operators
(U, V ), then the adaptive algorithm A′ defined by the tuple of unitary
operators

(U0, . . . , UT ) = (A1U,A2A
−1
1 , . . . , ATA

T−1
T−1, V A

−1
T )

computes the same function.

3 A Direct Method

3.1 Lower Bound Theorem and Applications

The main result of this section is Theorem 3. It yields an optimal Ω(N)
lower bound on the nonadaptive quantum query complexity of Unordered
Search and Element Distinctness. First we recall the weighted adversary
method of Ambainis and some related definitions. The constant Cε =
(1 − 2

√

ε(1 − ε))/2 will be used throughout the paper.

Definition 1. The function w : S2 → R+ is a valid weight function
if every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satisfies w(x, y) = 0 whenever F (x) = F (y). We then

define for all x ∈ S and i ∈ Γ : wt(x) =
∑

y
w(x, y) and v(x, i) =

∑

y: x(i) 6=y(i) w(x, y).

Definition 2. The pair (w, w′) is a valid weight scheme if:

– Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satisfies w(x, y) = 0 whenever F (x) = F (y).

– Every triple (x, y, i) ∈ S2 × Γ is assigned a non-negative weight

w′(x, y, i) that satisfies w′(x, y, i) = 0 whenever x(i) = y(i) or F (x) =
F (y), and w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i with x(i) 6=
y(i).

We then define for all x ∈ S and i ∈ Γ wt(x) =
∑

y
w(x, y) and v(x, i) =

∑

y
w′(x, y, i).

Of course these definitions are relative to the partial function F .

Remark 1. Let w be a valid weight function and define w′ such that if
x(i) 6= y(i) then w′(x, y, i) = w(x, y) and w′(x, y, i) = 0 otherwise. Then
(w,w′) is a valid weight scheme and the functions wt and v defined for
w in Definition 1 are exactly those defined for (w,w′) in Definition 2.



Theorem 1 (weighted adversary method of Ambainis [3]) Given

a probability of error ε and a partial function F , the quantum query com-

plexity Q2,ε(F ) of F as defined in section 2 satisfies:

Q2,ε(F ) ≥ Cε max
(w,w′) valid

min
x,y,i

w(x,y)>0
x(i) 6=y(i)

√

wt(x)wt(y)

v(x, i)v(y, i)
.

A probabilistic version of this lower bound theorem was obtained by
Aaronson [1] and by Laplante and Magniez [13].

Theorem 2 Fix the probability of error to ε = 1/3. The probabilistic

query complexity P2(F ) of F satisfies the lower bound P2(F ) = Ω(LP (F )),
where

LP (F ) = max
w

min
x,y,i

w(x,y)>0
x(i) 6=y(i)

max

(

wt(x)

v(x, i)
,
wt(y)

v(y, i)

)

.

Here w ranges over the set of valid weight functions.

We now state the main result of this section.

Theorem 3 (nonadaptive quantum lower bound, direct method)
The nonadaptive query complexity Qna

2,ε(F ) of F satisfies the lower bound

Qna
2,ε(F ) ≥ C2

εL
na
Q (F ), where

Lna
Q (F ) = max

w
max
s∈S′

min
x,i

F (x)=s

wt(x)

v(x, i)
.

Here w ranges over the set of valid weight functions.

The following theorem, which is an unweighted adversary method for
nonadaptive algorithm, is a consequence of Theorem 3.

Theorem 4 Let F : ΣΓ → {0; 1}, X ⊆ F−1(0), Y ⊆ F−1(1) and let

R ⊂ X × Y be a relation such that:

– for every x ∈ X there are at least m elements y ∈ Y such that

(x, y) ∈ R,

– for every y ∈ Y there are at least m′ elements x ∈ X such that

(x, y) ∈ R,

– for every x ∈ X and every i ∈ Γ there are at most l elements y ∈ Y
such that (x, y) ∈ R and x(i) 6= y(i),

– for every y ∈ X and every i ∈ Γ there are at most l′ elements x ∈ X
such that (x, y) ∈ R and x(i) 6= y(i).

Then Qna
2,ε(F ) ≥ C2

ε max(
m

l
,
m′

l′
).



Proof. As in [3] and [13] we set w(x, y) = w(y, x) = 1 for all (x, y) ∈ R.
Then wt(x) ≥ m for all x ∈ A, wt(y) ≥ m′ for all y ∈ B, v(x, i) ≤ l and
v(y, i) ≤ l′. �

For the Unordered Search problem defined in Section 2 we have m = N
and l = l′ = m′ = 1. Theorem 4 therefore yields an optimal Ω(N) lower
bound. The same bound can be obtained for the Element Distinctness
problem. Here the set X of negative instances is made up of all one-to-
one functions x : [N ] → [N ] and Y contains the functions y : [N ] → [N ]
that are not one-to-one. We consider the relation R such that (x, y) ∈ R
if and only if there is a unique i such that x(i) 6= y(i). Then m = 2, l =
1, m′ = N(N − 1) and l′ = N − 1.
As pointed out in [13], the Ω(max(m/l,m′/l′)) lower bound from The-
orem 4 is also a lower bound on P2(F ). There is a further connection:

Proposition 1. For any function F we have LP (F ) ≥ Lna
Q (F ). That is,

ignoring constant factors, the lower bound on P2(F ) given by Theorem 2

is at least as high as the lower bound on Qna
2,ε(F ) given by Theorem 3.

Proof. Pick a weight function wQ which is optimal for the “direct method”
of Theorem 3. That is, wQ achieves the lower bound Lna

Q (F ) defined in
this theorem. Let sQ be the corresponding optimal choice for s ∈ S′.
We need to design a weight function wP which will show that LP (F ) ≥
Lna

Q (F ). One can simply define wP by: wP (x, y) = wQ(x, y) if F (x) = sQ

or F (y) = sQ; wP (x, y) = 0 otherwise. Indeed, for any i and any pair
(x, y) such that wP (x, y) > 0 we have F (x) = sQ or F (y) = sQ, so that
max(wt(x)/v(x, i), wt(y)/v(y, i)) ≥ Lna

Q (F ). �

The nonadaptive quantum lower bound from Theorem 3 is therefore
rather closely connected to adaptive probabilistic lower bounds: it is
sandwiched between the weighted lower bound of Theorem 2 and its un-
weighted max(m/l,m′/l′) version. Proposition 1 also implies that The-
orem 3 can at best prove an Ω(logN) lower bound on the nonadaptive
quantum complexity of Ordered Search. Indeed, by binary search the
adaptive probabilistic complexity of this problem is O(logN). In sec-
tion 4 we shall see that there is in fact a Ω(N) lower bound on the
nonadaptive quantum complexity of this problem.

Remark 2. The connection between nonadaptive quantum complexity
and adaptive probabilistic complexity that we have pointed out in the
paragraph above is only a connection between the lower bounds on these
quantities. Indeed, there are problems with a high probabilistic query
complexity and a low nonadaptive quantum query complexity (for in-
stance, Simon’s problem [16,10]). Conversely, there are problems with
a low probabilistic query complexity and a high nonadaptive quantum
query complexity (for instance, Ordered Search).

3.2 Proof of Theorem 3

As mentioned in the introduction, we will treat the tuple (i1, . . . , ik) of
queries made by a nonadaptive algorithm as a single “super query” made



by an ordinary quantum algorithm (incidentally, this method could be
used to obtain lower bounds on quantum algorithm that make several
rounds of parallel queries as in [8]). This motivates the following defini-
tion.

Definition 3. Let Σ, Γ and S be as in section 2. Given an integer

k ≥ 2, we define:

– kΣ = Σk, kΓ = Γ k and kS =
(

Σk
)Γ k

.

– To the black box x ∈ S we associate the “super box” kx ∈ kS such

that if I = (i1, . . . , ik) ∈ Γ k then kx(I) = (x(i1), . . . , x(ik)).
– kF (kx) = F (x).
– If w is a weight function for F we define a weight function W for

kF by W (kx,k y) = w(x, y).

Assume for instance that Σ = {0; 1}, Γ = [3], k = 2, and that x is defined
by: x(1) = 0, x(2) = 1 and x(3) = 0. Then we have 2x(1, 1) = (0, 0),
2x(1, 2) = (0, 1), 2x(1, 3) = (0, 0) . . .

Lemma 1. If w is a valid weight function for F then W is a valid

weight function for kF and the minimal number of queries of a quantum

algorithm computing kF with error probability ε satisfies:

Q2,ε(
kF ) ≥ Cε · min

kx,ky,I

W (kx,ky)>0
kx(I) 6=ky(I)

√

WT (kx)WT (ky)

V (kx, I)V (ky, I)
.

Proof. Every pair (x, y) ∈ S2 is assigned a non-negative weightW (kx,k y) =
W (ky,k x) = w(x, y) = w(y, x) that satisfies W (kx,k y) = 0 whenever
F (x) = F (y). Thus we can apply Theorem 1 and we obtain the an-
nounced lower bound. �

Lemma 2. Let x be a black-box and w a weight function. For any integer

k and any tuple I = (i1, . . . , ik) we have

WT (kx)

V (kx, I)
≥

1

k
min
j∈[k]

wt(x)

v(x, ij)
.

Proof. Let m = minj∈[k]
wt(x)

v(x,ij)
. We have WT (kx) = wt(x) and:

V (kx, I) =
∑

ky:kx(i) 6=ky(i)

W (kx,k y)

≤
∑

y:x(i1) 6=y(i1)

w(x, y) + · · · +
∑

y:x(ik) 6=y(ik)

w(x, y)

= v(x, i1) + · · · + v(x, ik) ≤ kmax
j∈[k]

v(x, ij). �

Lemma 3. If w is a valid weight function:

Qna
2,ε(F ) ≥ C2

ε min
x,y

F (x) 6=F (y)

max

(

min
i

wt(x)

v(x, i)
,min

i

wt(y)

v(y, i)

)

.



Proof. Let w be an arbitrary valid weight function and k be an integer
such that

k < C2
ε min

x,y
F (x) 6=F (y)

max

(

min
i

wt(x)

v(x, i)
,min

i

wt(y)

v(y, i)

)

.

We show that an algorithm computing kF with probability of error ≤ ε
must make strictly more one than query to the “super box” kx. This will
prove that for every such k we have Qna

2,ε(F ) > k and thus our result.
For every x and I we have

WT (kx)

V (kx, I)
≥ 1

and thus by lemma 2 for every x, y and I = (i1, . . . , ik):

WT (kx)

V (kx, I)

WT (ky)

V (kx, I)
= min

(

WT (kx)

V (kx, I)
,
WT (ky)

V (kx, I)

)

max

(

WT (kx)

V (kx, I)
,
WT (ky)

V (kx, I)

)

≥ max

(

WT (kx)

V (kx, I)
,
WT (ky)

V (kx, I)

)

≥
1

k
max

(

min
j∈[k]

wt(x)

v(x, ij)
,min

l∈[k]

wt(y)

v(x, il)

)

.

In order to apply Lemma 1 we observe that:

min
kx,ky,I

W (kx,ky)>0
kx(I) 6=ky(I)

WT (kx)WT (ky)

V (kx, I)V (ky, I)
≥

1

k
min

x,y,i1,...,ik
w(x,y)>0

∃m x(im) 6=y(im)

max

(

min
j∈[k]

wt(x)

v(x, ij)
,min

l∈[k]

wt(y)

v(x, il)

)

≥
1

k
min
x,y

F (x) 6=F (y)

max

(

min
i

wt(x)

v(x, i)
,min

i

wt(y)

v(x, i)

)

By hypothesis on k, this expression is greater than 1/C2
ε . Thus according

to Lemma 1 we have Q2,ε(
kF ) > 1, and Qna

2,ε(F ) > k. �

We can now complete the proof of Theorem 3. Suppose without loss of
generality that F (S) = [m] and define for every l ∈ [m]:

al = C2
ε min

x,i
F (x)=l

wt(x)

v(x, i)
.

Suppose also without loss of generality that a1 ≤ · · · ≤ am. It follows
immediately from the definition that

a2 = C2
ε min

x,y
F (x) 6=F (y)

max

(

min
i

wt(x)

v(x, i)
,min

i

wt(y)

v(x, i)

)

,

and

am = C2
ε max

l∈F (S)
min
x,i

F (x)=l

wt(x)

v(x, i)
.



By Lemma 3 we have Qna
2,ε(F ) ≥ a2, but we would like to show that

Qna
2,ε(F ) ≥ am. We proceed by reduction from the case when there are

only two classes (i.e., m = 2). Let G be defined by

G(1) = · · · = G(m− 1) = 1

and G(m) = m. Applying Lemma 3 toGoF , we obtain that Qna
2,ε(GoF ) ≥

am. But because the function GoF is obviously easier to compute than F ,
we have Qna

2,ε(F ) ≥ Qna
2,ε(GoF ) and thus Qna

2,ε(F ) ≥ am as desired.

4 From the Dual to the Primal

Our starting point in this section is the minimax method of Laplante
and Magniez [13,17] as stated in [9]:

Theorem 5 Let p : S×Σ → R
+ be the set of |S| probability distributions

such that px(i) is the average probability of querying i on input x, where

the average is taken over the whole computation of an algorithm A. Then

the query complexity of A is greater or equal to:

Cε max
x,y

F (x) 6=F (y)

1
∑

i
x(i) 6=y(i)

√

px(i)py(i)
.

Theorem 5 is the basis for the following lower bound theorem. It can be
shown that up to constant factors, the lower bound given by Theorem 6
is always as good as the lower bound given by Theorem 3.

Theorem 6 (nonadaptive quantum lower bound, primal-dual method)
Let F : S → S′ be a partial function, where as usual S = ΣΓ is the set

of black-box functions. Let

DL(F ) = min
p

max
x,y

F (x) 6=F (y)

1
∑

i
x(i) 6=y(i)

p(i)

and

PL(F ) = max
w

∑

x,y

w(x, y)

max
i

∑

x,y
xi 6=yi

w(x, y)

where the min in the first formula is taken over all probability distribu-

tions p over Γ , and the max in the second formula is taken over all valid

weight functions w. Then DL(F ) = PL(F ) and we have the following

nonadaptive query complexity lower bound:

Q2,ε(F ) ≥ CεDL(F ) = CεPL(F ).



Proof. We first show that Q2,ε(F ) ≥ CεDL(F ). Let A be a nonadaptive
quantum algorithm for F . Since A is nonadaptive, the probability px(i)
of querying i on input x is independent of x. We denote it by p(i).
Theorem 5 shows that the query complexity of A is greater or equal to

Cε max
x,y

F (x) 6=F (y)

1
∑

i
x(i) 6=y(i)

p(i)
.

The lower bound Q2,ε(F ) ≥ CεDL(F ) follows by minimizing over p.
It remains to show that DL(F ) = PL(F ). Let

L(F ) = min
p

max
x,y

F (x) 6=F (y)

∑

i
x(i)=y(i)

p(i).

We observe that L(F ) is the optimal solution of the following linear
program: minimize µ subject to the constraints

∀x, y such that f(x) 6= f(y) : µ−
∑

i
x(i) 6=y(i)

p(i) ≥ 0,

and to the constraints

N
∑

i=1

p(i) = 1 and ∀i ∈ [N ] : p(i) ≥ 0.

Clearly, its solution set is nonempty. Thus L(f) is the optimal solution
of the dual linear program: maximize ν subject to the constraints

∀i ∈ [N ] : ν −
∑

x,y
xi=yi

w(x, y) ≤ 0

∀x, y : w(x, y) ≥ 0, and w(x, y) = 0 if F (x) = F (y)

and to the constraint
∑

x,y

w(x, y) = 1.

Hence L(F ) = max
w

min
i

∑

xi=yi

w(x, y)

∑

x,y

w(x, y)
and DL(F ) = 1

1−L(F )
= PL(F ). �

4.1 Application to Ordered Search and Connectivity

Proposition 1 For any error bound ε ∈ [0, 1
2
) we have

Qna
2,ε(Ordered Search) ≥ Cε(N − 1).

Proof. Consider the weight function w(x, y) =

{

1 if |F (y) − F (x)| = 1,

0 otherwise.

Thus w(x, y) = 1 when the leftmost 1’s in x and y are adjacent. Hence
∑

x,y

w(x, y) = 2(N − 2) + 2. Moreover, if w(x, y) 6= 0 and xi 6= yi then

{F (x), F (y)} = {i, i+1}. Therefore, max
i

∑

x,y
xi 6=yi

w(x, y) = 2 and the result

follows from Theorem 6. �



Our second application of Theorem 6 is to the graph connectivity prob-
lem. We consider the adjacency matrix model: x(i, j) = 1 if ij is an edge
of the graph. We consider undirected, loopless graph so that we can as-
sume j < i. For a graph on n vertices, the black box x therefore has
N = n(n− 1)/2 entries. We denote by Gx the graph represented by x.

Theorem 7 For any error bound ε ∈ [0, 1
2
), we have

Qna
2,ε(Connectivity) ≥ Cεn(n− 1)/8.

Proof. We shall use essentially the same weight function as in ([6], The-
orem 8.3). Let X be the set of all adjacency matrices of a unique cycle,
and Y the set of all adjacency matrices with exactly two (disjoint) cy-
cles. For x ∈ X and y ∈ Y , we set w(x, y) = 1 if there exist 4 vertices
a, b, c, d ∈ [n] such that the only differences between Gx and Gy are that:
1. ab, cd are edges in Gx but not in Gy .
2. ac, bd are edges in Gy but not in Gx.

We claim that

max
ij

∑

x∈X,y∈Y
x(i,j) 6=y(i,j)

w(x, y) =
8

n(n− 1)

∑

x∈X,y∈Y
x(i,j) 6=y(i,j)

w(x, y). (1)

The conclusion of Theorem 7 will then follow directly from Theorem 6.
By symmetry, the function that we are maximizing on the left-hand side
of (1) is in fact independent of the edge ij. We can therefore replace the
max over ij by an average over ij: the left-hand side is equal to

1

N

∑

x∈X,y∈Y

w(x, y)|{ij; x(i, j) 6= y(i, j)}|.

Now, the condition x(i, j) 6= y(i, j) holds true if and only if ij is one
of the 4 edges ab, cd, ac, bd defined at the beginning of the proof. This
finishes the proof of (1), and of Theorem 7. �

A similar argument can be used to show that testing whether a graph is
bipartite also requires Ω(n2) queries.

5 Some Open Problems

For the “1-to-1 versus 2-to-1” problem, one would expect a higher quan-
tum query complexity in the nonadaptive setting than in the adap-
tive setting. This may be difficult to establish since the adaptive lower
bound [2] is based on the polynomial method. Hidden Translation [7]
(a problem closely connected to the dihedral hidden subgroup problem)
is another problem of interest. No lower bound is known in the adap-
tive setting, so it would be natural to look first for a nonadaptive lower
bound. Finally, one would like to identify some classes of problems for
which adaptivity does not help quantum algorithms.
Acknowledgements: This work has benefited from discussions with
Sophie Laplante, Troy Lee, Frédéric Magniez and Vincent Nesme.
Email addresses: [Pascal.Koiran,Natacha.Portier]@ens-lyon.fr,
juergen_landes@yahoo.de, phyao1985@gmail.com.

[Pascal.Koiran,Natacha.Portier]@ens-lyon.fr
juergen_landes@yahoo.de
phyao1985@gmail.com


References

1. S. Aaronson. Lower bounds for local search by quantum arguments.
In Proc. STOC 2004, pages 465–474. ACM, 2004.

2. S. Aaronson and Y. Shi. Quantum Lower Bounds for the Colli-
sion and the Element Distinctness Problems. Journal of the ACM,
51(4):595–605, July 2004.

3. Andris Ambainis. Polynomial degree vs. quantum query complexity.
J. Comput. Syst. Sci., 72(2):220–238, 2006.

4. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling Algorithms:
lower bounds and applications. In Proc. STOC 2001, pages 266–275.
ACM, 2001.

5. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quan-
tum lower bounds by polynomials. Journal of the ACM, 48(4):778–
797, 2001.
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