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Introduction

In this paper we present general methods for proving lower bounds on the query complexity of nonadaptive quantum algorithms. A nonadaptive algorithm makes all its queries simultaneously. By contrast, an unrestricted (adaptive) algorithm may choose its next query based on the results of previous queries. In classical computing, classes of problems for which adaptivity does not help have been identified [START_REF] Bar-Yossef | Sampling Algorithms: lower bounds and applications[END_REF][START_REF] Koiran | On the probabilistic query complexity of transitively symmetric problems[END_REF] and it is known that this question is connected to a longstanding open problem [START_REF] Rosenberg | On the time required to check properties of graphs: A problem[END_REF] (see [START_REF] Koiran | On the probabilistic query complexity of transitively symmetric problems[END_REF] for a more extensive discussion). In quantum computing, the study of nonadaptive algorithms seems especially relevant since some of the best known quantum algorithms (namely, Simon's algorithms and some other hidden subgroup algorithms) are nonadaptive. This is nevertheless a rather understudied subject in quantum computing. The paper that is most closely related to the present work is [START_REF] Nishimura | An algorithmic argument for nonadaptive query complexity lower bounds on advised quantum computation (extended abstract)[END_REF] (and [START_REF] Lov | Quantum search for multiple items using parallel queries[END_REF] is another related paper). In [START_REF] Nishimura | An algorithmic argument for nonadaptive query complexity lower bounds on advised quantum computation (extended abstract)[END_REF] the authors use an "algorithmic argument" (this is a kind of Kolmogorov argument) to give lower bounds on the nonadaptive quantum query complexity of ordered search, and of generalizations of this problem. The model of computation that they consider is less general than ours (more on this in section 2). The two methods that have proved most successful in the quest for quantum lower bounds are the polynomial method (see for instance [START_REF] Beals | Quantum lower bounds by polynomials[END_REF][START_REF] Aaronson | Quantum Lower Bounds for the Collision and the Element Distinctness Problems[END_REF][START_REF] Koiran | A quantum lower bound for the query complexity of Simon's problem[END_REF][START_REF] Koiran | The quantum query complexity of abelian hidden subgroup problems[END_REF]) and the adversary method of Ambainis. It is not clear how the polynomial method might take the nonadaptivity of algorithms into account. Our results are therefore based on the adversary method, in its weighted version [START_REF] Ambainis | Polynomial degree vs. quantum query complexity[END_REF]. We provide two general lower bounds which yield optimal results for a number of problems: search in an ordered or unordered list, element distinctness, graph connectivity or bipartiteness. To obtain our first lower bound we treat the list of queries performed by a nonadaptive algorithm as one single "super query". We can then apply the adversary method to this 1-query algorithm. Interestingly, the lower bound that we obtain is very closely related to the lower bounds on adaptive probabilistic query complexity due to Aaronson [START_REF] Aaronson | Lower bounds for local search by quantum arguments[END_REF], and to Laplante and Magniez [START_REF] Laplante | Lower bounds for randomized and quantum query complexity using Kolmogorov arguments[END_REF]. Our second lower bound requires a detour through the so-called minimax (dual) method and is based on the fact that in a nonadaptive algorithm, the probability of performing any given query is independent of the input.

Definition of the Model

In the black box model, an algorithm accesses its input by querying a function x (the black box) from a finite set Γ to a (usually finite) set Σ. At the end of the computation, the algorithm decides to accept or reject x, or more generally produces an output in a (usually finite) set S ′ . The goal of the algorithm is therefore to compute a (partial) function F : S → S ′ , where S = Σ Γ is the set of black boxes. For example, in the Unordered Search problem Γ = [N ] = {1, . . . , N }, Σ = {0, 1} and F is the OR function:

F (x) = 1≤i≤N x(i).
Our second example is Ordered Search. The sets Γ and Σ are as in the first example, but F is now a partial function: we assume that the black box satisfies the promise that there exists an index i such that x(j) = 1 for all j ≥ i, and x(j) = 0 for all j < i. Given such an x, the algorithm tries to compute F (x) = i. A quantum algorithm A that makes T queries can be formally described as a tuple (U0, . . . , UT ), where each Ui is a unitary operator. For x ∈ S we define the unitary operator Ox (the "call to the black box") by Ox|i |ϕ |ψ = |i |ϕ ⊕ x(i) |ψ . The algorithm A computes the final state UT OxUT -1 . . . U1OxU0|0 and makes a measurement of some of its qubits. The result of this measure is by definition the outcome of the computation of A on input x. For a given ε, the query complexity of a function F , denoted Q2,ε, is the smallest query complexity of a quantum algorithm computing F with probability of error at most ε. In the sequel, the quantum algorithms as described above will also be called adadaptive to distinguish them from nonadaptive quantum algorithms. Such an algorithm performs all its queries at the same time. A nonadaptive black-box quantum algorithm A that makes T queries can therefore be defined by a pair (U, V ) of unitary operators. For x ∈ S we define the unitary operator O T

x by O T x |i1, . . . , iT |ϕ1, . . . , ϕT |ψ = |i1, . . . , iT |ϕ1⊕x(i1), . . . , ϕT ⊕x(iT ) |ψ .

The algorithm A computes the final state V O T x U |0 and makes a measurement of some of its qubits. As in the adaptive case, the result of this measure is by definition the outcome of the computation of A on input x. For a given ε, the nonadaptive query complexity of a function F , denoted Q na 2,ε , is the smallest query complexity of a nonadaptive quantum algorithm computing F with probability of error at most ε. Our model is more general than the model of [START_REF] Nishimura | An algorithmic argument for nonadaptive query complexity lower bounds on advised quantum computation (extended abstract)[END_REF]. In that model, the |ϕ register must remain set to 0 after application of U . After application of O T

x , the content of this register is therefore equal to |x(i1), . . . , x(iT ) rather than |ϕ1 ⊕ x(i1), . . . , ϕT ⊕ x(iT ) . It is easy to verify that for every nonadaptive quantum algorithm A of query complexity T there is an adaptive quantum algorithm A ′ that makes the same number of queries and computes the same function, so that Q2,ε ≤ Q na 2,ε . Indeed, consider for every k ∈ [T ] the unitary operator A k which maps the state |i1, . . . , iT |ϕ1, . . . , ϕT to

|i k |ϕ k |i1, . . . , i k-1 , i k+1 , . . . iT |ϕ1, . . . , ϕ k-1 , ϕ k+1 , . . . , ϕT .
If the nonadaptive algorithm A is defined by the pair of unitary operators (U, V ), then the adaptive algorithm A ′ defined by the tuple of unitary operators

(U0, . . . , UT ) = (A1U, A2A -1 1 , . . . , AT A T -1 T -1 , V A -1 T )
computes the same function.

A Direct Method

Lower Bound Theorem and Applications

The main result of this section is Theorem 3. It yields an optimal Ω(N ) lower bound on the nonadaptive quantum query complexity of Unordered Search and Element Distinctness. First we recall the weighted adversary method of Ambainis and some related definitions. The constant Cε = (1 -2 ε(1 -ε))/2 will be used throughout the paper.

Definition 1. The function w : S 2 → R+ is a valid weight function if every pair (x, y) ∈ S 2 is assigned a non-negative weight w(x, y) = w(y, x) that satisfies w(x, y) = 0 whenever F (x) = F (y). We then define for all x ∈ S and i ∈ Γ : wt(x) = y w(x, y) and v(x, i) = y: x(i) =y(i) w(x, y).

Definition 2. The pair (w, w ′ ) is a valid weight scheme if:

-Every pair (x, y) ∈ S 2 is assigned a non-negative weight w(x, y) = w(y, x) that satisfies w(x, y) = 0 whenever F (x) = F (y). -Every triple (x, y, i) ∈ S 2 × Γ is assigned a non-negative weight w ′ (x, y, i) that satisfies w ′ (x, y, i) = 0 whenever x(i) = y(i) or F (x) = F (y), and w ′ (x, y, i)w ′ (y, x, i) ≥ w 2 (x, y) for all x, y, i with x(i) = y(i). We then define for all x ∈ S and i ∈ Γ wt(x) = y w(x, y) and v(x, i) = y w ′ (x, y, i).

Of course these definitions are relative to the partial function F . Remark 1. Let w be a valid weight function and define w ′ such that if x(i) = y(i) then w ′ (x, y, i) = w(x, y) and w ′ (x, y, i) = 0 otherwise. Then (w, w ′ ) is a valid weight scheme and the functions wt and v defined for w in Definition 1 are exactly those defined for (w, w ′ ) in Definition 2.

Theorem 1 (weighted adversary method of Ambainis [START_REF] Ambainis | Polynomial degree vs. quantum query complexity[END_REF]) Given a probability of error ε and a partial function F , the quantum query complexity Q2,ε(F ) of F as defined in section 2 satisfies:

Q2,ε(F ) ≥ Cε max (w,w ′ ) valid min x,y,i w(x,y)>0 x(i) =y(i) wt(x)wt(y) v(x, i)v(y, i) .
A probabilistic version of this lower bound theorem was obtained by Aaronson [START_REF] Aaronson | Lower bounds for local search by quantum arguments[END_REF] and by Laplante and Magniez [START_REF] Laplante | Lower bounds for randomized and quantum query complexity using Kolmogorov arguments[END_REF].

Theorem 2 Fix the probability of error to ε = 1/3. The probabilistic query complexity P2(F ) of F satisfies the lower bound P2(F ) = Ω(LP (F )), where

LP (F ) = max w min x,y,i w(x,y)>0 x(i) =y(i) max wt(x) v(x, i) , wt(y) v(y, i) .
Here w ranges over the set of valid weight functions.

We now state the main result of this section.

Theorem 3 (nonadaptive quantum lower bound, direct method)

The nonadaptive query complexity

Q na 2,ε (F ) of F satisfies the lower bound Q na 2,ε (F ) ≥ C 2 ε L na Q (F ),
where

L na Q (F ) = max w max s∈S ′ min x,i F (x)=s wt(x) v(x, i) .
Here w ranges over the set of valid weight functions.

The following theorem, which is an unweighted adversary method for nonadaptive algorithm, is a consequence of Theorem 3.

Theorem 4 Let F : Σ Γ → {0; 1}, X ⊆ F -1 (0), Y ⊆ F -1 (1)
and let R ⊂ X × Y be a relation such that:

for every x ∈ X there are at least m elements y ∈ Y such that (x, y) ∈ R, for every y ∈ Y there are at least m ′ elements x ∈ X such that (x, y) ∈ R, for every x ∈ X and every i ∈ Γ there are at most l elements y ∈ Y such that (x, y) ∈ R and x(i) = y(i), for every y ∈ X and every i ∈ Γ there are at most l ′ elements x ∈ X such that (x, y) ∈ R and x(i) = y(i).

Then Q na 2,ε (F ) ≥ C 2 ε max( m l , m ′ l ′ ).
Proof. As in [START_REF] Ambainis | Polynomial degree vs. quantum query complexity[END_REF] and [START_REF] Laplante | Lower bounds for randomized and quantum query complexity using Kolmogorov arguments[END_REF] we set w(x, y) = w(y, x) = 1 for all (x, y) ∈ R.

Then wt(x) ≥ m for all x ∈ A, wt(y) ≥ m ′ for all y ∈ B, v(x, i) ≤ l and v(y, i) ≤ l ′ .

For the Unordered Search problem defined in Section 2 we have m = N and l = l ′ = m ′ = 1. Theorem 4 therefore yields an optimal Ω(N ) lower bound. The same bound can be obtained for the Element Distinctness problem. Here the set X of negative instances is made up of all one-toone functions x : [N ] → [N ] and Y contains the functions y :

[N ] → [N ]
that are not one-to-one. We consider the relation R such that (x, y) ∈ R if and only if there is a unique i such that

x(i) = y(i). Then m = 2, l = 1, m ′ = N (N -1) and l ′ = N -1.
As pointed out in [START_REF] Laplante | Lower bounds for randomized and quantum query complexity using Kolmogorov arguments[END_REF], the Ω(max(m/l, m ′ /l ′ )) lower bound from Theorem 4 is also a lower bound on P2(F ). There is a further connection:

Proposition 1. For any function F we have LP (F ) ≥ L na Q (F ).
That is, ignoring constant factors, the lower bound on P2(F ) given by Theorem 2 is at least as high as the lower bound on Q na 2,ε (F ) given by Theorem 3.

Proof. Pick a weight function wQ which is optimal for the "direct method" of Theorem 3. That is, wQ achieves the lower bound L na Q (F ) defined in this theorem. Let sQ be the corresponding optimal choice for s ∈ S ′ . We need to design a weight function wP which will show that LP (F ) ≥ L na Q (F ). One can simply define wP by: wP (x, y) = wQ(x, y) if F (x) = sQ or F (y) = sQ; wP (x, y) = 0 otherwise. Indeed, for any i and any pair (x, y) such that wP (x, y) > 0 we have

F (x) = sQ or F (y) = sQ, so that max(wt(x)/v(x, i), wt(y)/v(y, i)) ≥ L na Q (F ).
The nonadaptive quantum lower bound from Theorem 3 is therefore rather closely connected to adaptive probabilistic lower bounds: it is sandwiched between the weighted lower bound of Theorem 2 and its unweighted max(m/l, m ′ /l ′ ) version. Proposition 1 also implies that Theorem 3 can at best prove an Ω(log N ) lower bound on the nonadaptive quantum complexity of Ordered Search. Indeed, by binary search the adaptive probabilistic complexity of this problem is O(log N ). In section 4 we shall see that there is in fact a Ω(N ) lower bound on the nonadaptive quantum complexity of this problem.

Remark 2. The connection between nonadaptive quantum complexity and adaptive probabilistic complexity that we have pointed out in the paragraph above is only a connection between the lower bounds on these quantities. Indeed, there are problems with a high probabilistic query complexity and a low nonadaptive quantum query complexity (for instance, Simon's problem [START_REF] Simon | On the power of quantum computation[END_REF][START_REF] Koiran | On the probabilistic query complexity of transitively symmetric problems[END_REF]). Conversely, there are problems with a low probabilistic query complexity and a high nonadaptive quantum query complexity (for instance, Ordered Search).

Proof of Theorem 3

As mentioned in the introduction, we will treat the tuple (i1, . . . , i k ) of queries made by a nonadaptive algorithm as a single "super query" made by an ordinary quantum algorithm (incidentally, this method could be used to obtain lower bounds on quantum algorithm that make several rounds of parallel queries as in [START_REF] Lov | Quantum search for multiple items using parallel queries[END_REF]). This motivates the following definition.

Definition 3. Let Σ, Γ and S be as in section 2. Given an integer k ≥ 2, we define:

-k Σ = Σ k , k Γ = Γ k and k S = Σ k Γ k . -To the black box x ∈ S we associate the "super box" k x ∈ k S such that if I = (i1, . . . , i k ) ∈ Γ k then k x(I) = (x(i1), . . . , x(i k )). -k F ( k x) = F (x).
-If w is a weight function for F we define a weight function W for k F by W ( k x, k y) = w(x, y).

Assume for instance that Σ = {0; 1}, Γ = [3], k = 2, and that x is defined by: x(1) = 0, x(2) = 1 and x(3) = 0. Then we have 2 x(1, 1) = (0, 0), 2 x(1, 2) = (0, 1), 2 x(1, 3) = (0, 0) . . .

Lemma 1.

If w is a valid weight function for F then W is a valid weight function for k F and the minimal number of queries of a quantum algorithm computing k F with error probability ε satisfies:

Q2,ε( k F ) ≥ Cε • min k x, k y,I W ( k x, k y)>0 k x(I) = k y(I) W T ( k x)W T ( k y) V ( k x, I)V ( k y, I) .
Proof. Every pair (x, y) ∈ S 2 is assigned a non-negative weight

W ( k x, k y) = W ( k y, k x) = w(x, y) = w(y, x) that satisfies W ( k x, k y) = 0 whenever F (x) = F (y).
Thus we can apply Theorem 1 and we obtain the announced lower bound.

Lemma 2. Let x be a black-box and w a weight function. For any integer k and any tuple I = (i1, . . . , i k ) we have

W T ( k x) V ( k x, I) ≥ 1 k min j∈[k] wt(x) v(x, ij) . Proof. Let m = min j∈[k] wt(x)
v(x,i j ) . We have W T ( k x) = wt(x) and:

V ( k x, I) = k y: k x(i) = k y(i) W ( k x, k y) ≤ y:x(i 1 ) =y(i 1 ) w(x, y) + • • • + y:x(i k ) =y(i k ) w(x, y) = v(x, i1) + • • • + v(x, i k ) ≤ k max j∈[k] v(x, ij ).
Lemma 3. If w is a valid weight function:

Q na 2,ε (F ) ≥ C 2 ε min x,y F (x) =F (y) max min i wt(x) v(x, i) , min i wt(y) v(y, i) .
Proof. Let w be an arbitrary valid weight function and k be an integer such that

k < C 2 ε min x,y F (x) =F (y) max min i wt(x) v(x, i) , min i wt(y) v(y, i) .
We show that an algorithm computing k F with probability of error ≤ ε must make strictly more one than query to the "super box" k x. This will prove that for every such k we have Q na 2,ε (F ) > k and thus our result. For every x and I we have

W T ( k x) V ( k x, I) ≥ 1
and thus by lemma 2 for every x, y and I = (i1, . . . , i k ):

W T ( k x) V ( k x, I) W T ( k y) V ( k x, I) = min W T ( k x) V ( k x, I) , W T ( k y) V ( k x, I) max W T ( k x) V ( k x, I) , W T ( k y) V ( k x, I) ≥ max W T ( k x) V ( k x, I) , W T ( k y) V ( k x, I) ≥ 1 k max min j∈[k] wt (x) v(x, ij) , min l∈[k] wt(y) v(x, i l ) . 
In order to apply Lemma 1 we observe that:

min k x, k y,I W ( k x, k y)>0 k x(I) = k y(I) W T ( k x)W T ( k y) V ( k x, I)V ( k y, I) ≥ 1 k min x,y,i 1 ,...,i k w(x,y)>0 ∃m x(im) =y(im) max min j∈[k] wt(x) v(x, ij ) , min l∈[k] wt(y) v(x, i l ) ≥ 1 k min x,y F (x) =F (y) max min i wt(x) v(x, i) , min i wt(y) v(x, i)
By hypothesis on k, this expression is greater than 1/C 2 ε . Thus according to Lemma 1 we have Q2,ε( k F ) > 1, and Q na 2,ε (F ) > k.

We can now complete the proof of Theorem 3. Suppose without loss of generality that F (S) = [m] and define for every l ∈ [m]:

a l = C 2 ε min x,i F (x)=l wt(x) v(x, i) .
Suppose also without loss of generality that a1 ≤ • • • ≤ am. It follows immediately from the definition that

a2 = C 2 ε min x,y F (x) =F (y) max min i wt(x) v(x, i) , min i wt(y) v(x, i) ,
and am = C 2 ε max l∈F (S) min x,i F (x)=l wt(x) v(x, i)
.

By Lemma 3 we have Q na 2,ε (F ) ≥ a2, but we would like to show that Q na 2,ε (F ) ≥ am. We proceed by reduction from the case when there are only two classes (i.e., m = 2). Let G be defined by

G(1) = • • • = G(m -1) = 1
and G(m) = m. Applying Lemma 3 to GoF , we obtain that Q na 2,ε (GoF ) ≥ am. But because the function GoF is obviously easier to compute than F , we have Q na 2,ε (F ) ≥ Q na 2,ε (GoF ) and thus Q na 2,ε (F ) ≥ am as desired.

4 From the Dual to the Primal

Our starting point in this section is the minimax method of Laplante and Magniez [START_REF] Laplante | Lower bounds for randomized and quantum query complexity using Kolmogorov arguments[END_REF][START_REF] Spalek | All quantum adversary methods are equivalent[END_REF] as stated in [START_REF] Hoyer | Lower bounds on quantum query complexity[END_REF]:

Theorem 5 Let p : S×Σ → R + be the set of |S| probability distributions such that px(i) is the average probability of querying i on input x, where the average is taken over the whole computation of an algorithm A. Then the query complexity of A is greater or equal to:

Cε max x,y F (x) =F (y) 1 i x(i) =y(i) px(i)py(i) .
Theorem 5 is the basis for the following lower bound theorem. It can be shown that up to constant factors, the lower bound given by Theorem 6 is always as good as the lower bound given by Theorem 3. where the min in the first formula is taken over all probability distributions p over Γ , and the max in the second formula is taken over all valid weight functions w. Then DL(F ) = P L(F ) and we have the following nonadaptive query complexity lower bound:

Q2,ε(F ) ≥ CεDL(F ) = CεP L(F ).
Proof. We first show that Q2,ε(F ) ≥ CεDL(F ). Let A be a nonadaptive quantum algorithm for F . Since A is nonadaptive, the probability px(i) of querying i on input x is independent of x. We denote it by p(i).

Theorem 5 shows that the query complexity of A is greater or equal to Cε max x,y F (x) =F (y)

1 i x(i) =y(i) p(i)
.

The lower bound Q2,ε(F ) ≥ CεDL(F ) follows by minimizing over p.

It remains to show that DL(F ) = P L(F ). Let

L(F ) = min p max x,y F (x) =F (y) i x(i)=y(i) p(i).
We observe that L(F ) is the optimal solution of the following linear program: minimize µ subject to the constraints ∀x, y such that f (x) = f (y) : µ - Our second application of Theorem 6 is to the graph connectivity problem. We consider the adjacency matrix model: x(i, j) = 1 if ij is an edge of the graph. We consider undirected, loopless graph so that we can assume j < i. For a graph on n vertices, the black box x therefore has N = n(n -1)/2 entries. We denote by Gx the graph represented by x.

Theorem 7 For any error bound ε ∈ [0, 1 2 ), we have

Q na 2,ε (Connectivity) ≥ Cεn(n -1)/8.
Proof. We shall use essentially the same weight function as in ( [START_REF] Dürr | Quantum query complexity of some graph problems[END_REF], Theorem 8.3). Let X be the set of all adjacency matrices of a unique cycle, and Y the set of all adjacency matrices with exactly two (disjoint) cycles. For x ∈ X and y ∈ Y , we set w(x, y) = 1 if there exist 4 vertices a, b, c, d ∈ [n] such that the only differences between Gx and Gy are that: 1. ab, cd are edges in Gx but not in Gy.

2. ac, bd are edges in Gy but not in Gx.

We claim that max ij x∈X,y∈Y x(i,j) =y(i,j) w(x, y) = 8 n(n -1) x∈X,y∈Y x(i,j) =y(i,j) w(x, y).

(

) 1 
The conclusion of Theorem 7 will then follow directly from Theorem 6. By symmetry, the function that we are maximizing on the left-hand side of ( 1) is in fact independent of the edge ij. We can therefore replace the max over ij by an average over ij: the left-hand side is equal to 1 N

x∈X,y∈Y w(x, y)|{ij; x(i, j) = y(i, j)}|. Now, the condition x(i, j) = y(i, j) holds true if and only if ij is one of the 4 edges ab, cd, ac, bd defined at the beginning of the proof. This finishes the proof of (1), and of Theorem 7.

A similar argument can be used to show that testing whether a graph is bipartite also requires Ω(n 2 ) queries.

Some Open Problems

For the "1-to-1 versus 2-to-1" problem, one would expect a higher quantum query complexity in the nonadaptive setting than in the adaptive setting. This may be difficult to establish since the adaptive lower bound [START_REF] Aaronson | Quantum Lower Bounds for the Collision and the Element Distinctness Problems[END_REF] is based on the polynomial method. Hidden Translation [START_REF] Friedl | Hidden translation and orbit coset in quantum computing[END_REF] (a problem closely connected to the dihedral hidden subgroup problem) is another problem of interest. No lower bound is known in the adaptive setting, so it would be natural to look first for a nonadaptive lower bound. Finally, one would like to identify some classes of problems for which adaptivity does not help quantum algorithms.

Theorem 6 (

 6 nonadaptive quantum lower bound, primal-dual method) Let F : S → S ′ be a partial function, where as usual S = Σ Γ is the set of black-box functions. Let DL(F ) = min p max x,y F (x) =F (y)

  i x(i) =y(i) p(i) ≥ 0, and to the constraints N i=1 p(i) = 1 and ∀i ∈ [N ] : p(i) ≥ 0. Clearly, its solution set is nonempty. Thus L(f ) is the optimal solution of the dual linear program: maximize ν subject to the constraints ∀i ∈ [N ] : νx,y x i =y i w(x, y) ≤ 0 ∀x, y : w(x, y) ≥ 0, and w(x, y) = 0 if F (x) = F (y) and to the constraint (F ) = P L(F ).

4. 1

 1 Application to Ordered Search and ConnectivityProposition 1 For any error bound ε ∈ [0,1 2 ) we haveQ na 2,ε (Ordered Search) ≥ Cε(N -1).Proof. Consider the weight function w(x, y) = 1 if |F (y) -F (x)| = 1, 0 otherwise. Thus w(x, y) = 1 when the leftmost 1's in x and y are adjacent. Hence x,y w(x, y) = 2(N -2) + 2. Moreover, if w(x, y) = 0 and xi = yi then {F (x), F (y)} = {i, i+1}. Therefore, max i x,y x i =y i w(x, y) = 2 and the result follows from Theorem 6.
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