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On a time-frequency test of stationarity

Extended English summary

1 Introduction

Whereas the usual concept of stationarity is
a stochastic one that is well-defined (as the
strict invariance of statistical properties with
respect to some absolute time), its practi-
cal use is somewhat different, taking often
into account—though implicitly—observation
scales or frequency bands, as well as accom-
modating for periodicities in deterministic sig-
nals. As for the notion of dimension that may
vary depending on the observation scale [3], it
thus turns out that the very same signal can
be considered as stationary or not, depend-
ing on the way we look at it. A typical ex-
ample is given by speech that is usually con-
sidered as nonstationary (resp. stationary) at
the scale of some seconds (resp. tens of mil-
liseconds), while turning again to nonstation-
ary at the scale of a few milliseconds within
voiced segments. Recognizing this situation
calls therefore for an operational framework
aimed at making of stationarity a relative con-
cept by incorporating the observation scale in
its definition, while encompassing in a com-
mon perspective stochastic and deterministic
descriptions. Revisiting this way the concept
of stationarity, the purpose of this paper is to
go further by designing a meaningful test for
its assessment.

2 General framework

The rationale of the proposed approach is
based on the fact that, in both stochastic and
deterministic contexts, a signature of “station-
arity” is that a well-defined time-varying spec-
trum just reduces to the the ordinary spectrum
at all time instants [1].

2.1 Time-frequency

The first ingredient is therefore a suitable time-
varying spectrum, here chosen as the Wigner-
Ville spectrum estimated by means of multita-
per spectrograms, see eq.(1), for a sake of vari-
ance reduction without some extra time aver-
aging that would possibly smooth out nonsta-
tionarities [6,7].

2.2 Surrogates

Given an observation scale, the basic idea is
to characterize stationarity as the identity be-
tween local features (frequency slices) of the
time-varying spectrum and global ones ob-
tained by marginalization [2,4,5]. In practice,
the difference will never be zero and, to give it a
statistical significance, it is proposed to create
from the data itself a stationarized reference.
This is achieved by the technique of surrogate
data [8,9,10] that essentially amounts to scram-
ble the spectrum phase (in which possible non-
stationarities are coded) of the signal under
test while keeping its magnitude unchanged,
see Figure 1.



2.3 Distances

Differences between local and global spectral
properties are quantified by means of a dissim-
ilarity measure [11], see eq.(2). A companion
study has evidenced that a good choice is to
mix a Kullback-Leibler divergence with a log-
spectral deviation [12].

3 Stationarity test

3.1 Principle

The stationarity test itself is described in
egs.(3)-(6), with the threshold ~ derived from
the empirical distribution attached to the sur-
rogates features.

3.2 Null hypothesis of stationarity

An experimental study shows that the above
mentioned distribution can be fairly well ap-
proximated by a Gamma distribution (see Fig-
ure 2), allowing for a parametric approach. As
evidenced in Figures 3 and 4 for various win-
dow lengths, the maximum likelihood estima-
tion of the two Gamma parameters converge
quickly to an asymptotic value when the num-
ber of surrogates J is increased. As a rule-
of-thumb, the value J ~ 50 can be retained
for a good trade-off between complexity and
accuracy. Recalling that surrogates are sup-
posed to define the null hypothesis of station-
arity, it is worth checking that, in a station-
ary situation, the test behaves as expected
from the viewpoint of the imposed false alarm
rate fixed by the threshold. This is illustrated
in Figure 5 (Monte-Carlo simulation with an
AR(2) model), with a result that is slightly
pessimistic, the observed false alarm being of
about 6.5% for a confidence level fixed to 5%.

3.3 Index and scale of nonstationar-
ity

Beyond its binary nature, the test defined in
eq.(6) also allows for a quantified measure of
a degree of nonstationarity according to eq.(7).
Moreover, since the overall procedure is depen-
dent on the spectrogram window length, it is
also possible to conduct the test for a family of
such window lengths, ending up with a typical
scale of nonstationarity as in eq.(8).

4 Example

Figure 6 provides an example aimed at sup-
porting the effectiveness of the proposed ap-
proach. The analyzed signal consists in the su-
perimposition of two components, one of which
being a tone that can be considered as station-
ary whatever the observation scale is whereas
the second one is a sinus FM whose (non) sta-
tionary character depends on the observation
scale. Running the test in the two correspond-
ing subbands as a function of both the obser-
vation length N, and the relative analysis scale
Np /N, ends up with results in clear agreement
with physical interpretation.

5 Conclusion

A new approach has been proposed for testing
stationarity relatively to an observation scale.
The approach operates in the time-frequency
plane by comparing local and global features,
the null hypothesis of stationarity being char-
acterized by surrogate data directly derived
from the data under test. The method re-
ported here is basically based on distances but
it allows for a number of variations, such as the
recourse to machine learning methods (one-
class SVM [13]) by considering the family of
surrogates as a learning set.



