
HAL Id: ensl-00269219
https://ens-lyon.hal.science/ensl-00269219

Submitted on 2 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer and Floating-Point Constant Multipliers for
FPGAs

Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller

To cite this version:
Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller. Integer and Floating-Point Constant
Multipliers for FPGAs. International Conference on Application-Specific Systems, Architectures and
Processors, 2008, IMEC, Jul 2008, Leuven, Belgium. pp.239-244, �10.1109/ASAP.2008.4580184�. �ensl-
00269219�

https://ens-lyon.hal.science/ensl-00269219
https://hal.archives-ouvertes.fr

Integer and Floating-Point Constant Multipliers for FPGAs

Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller∗

LIP (CNRS/INRIA/ENS-Lyon/UCBL)

Université de Lyon

{Nicolas.Brisebarre, Florent.de.Dinechin, Jean-Michel.Muller}@ens-lyon.fr

Abstract

Reconfigurable circuits now have a capacity that allows

them to be used as floating-point accelerators. They of-

fer massive parallelism, but also the opportunity to design

optimised floating-point hardware operators not available

in microprocessors. Multiplication by a constant is an im-

portant example of such an operator. This article presents

an architecture generator for the correctly rounded mul-

tiplication of a floating-point number by a constant. This

constant can be a floating-point value, but also an arbitrary

irrational number. The multiplication of the significands

is an instance of the well-studied problem of constant in-

teger multiplication, for which improvement to existing

algorithms are also proposed and evaluated.

1 Introduction

FPGAs (for field-programmable gate arrays) are high-

density VLSI chips which can be programmed to effi-

ciently emulate arbitrary logic circuits. Where a micro-

processor is programmed at the granularity of instructions

operating on 32 or 64-bit data words, FPGAs are pro-

grammed at the bit and register level. This finer grain

comes at a cost: a circuit implemented in an FPGA is

typically ten times slower than the same circuit imple-

mented as an ASIC (application-specific integrated cir-

cuit). Despite this intrinsic performance gap between FP-

GAs and ASIC, the former are often used as a replace-

ment of the latter for applications which don’t justify the

non-recurring costs of an ASIC, or which have to adapt to

evolving standards.

FPGAs have also been used as configurable accelera-

tors in computing systems. They typically excel in com-

putations which exhibit massive parallelism and require

operations absent from the processor’s instruction set.

∗This work was partly supported by the XtremeData university pro-

gramme, the ANR EVAFlo project and the Egide Brâncuşi programme

14914RL.

The FloPoCo project aims at exploring the implemen-

tation of such non standard operations, especially in the

floating-point realm [4]. This article is a survey of the

issue of multiplication by a constant in this context.

State of the art and contributions

Multiplication by a constant is a pervasive operation. It

often occurs in scientific computating codes, and is at the

core of many signal-processing filters. It is also useful

to build larger operators: previously published architec-

tures for exponential, logarithm and trigonometric func-

tions [8, 7] all involve multiplication by a constant. A sin-

gle unoptimised multiplication by 4/π may account for

about one third the area of a dual sine/cosine operator [7].

The present article essentially reconciles two research

directions that were so far treated separately: on the one

side, the optimisation of multiplication by an integer con-

stant, addressed in section 2, and on the other side the

issue of correct rounding of multiplication or division by

an arbitrary precision constant, addressed in section 4.

Integer constant multiplication has been well studied,

with many good heuristics published [3, 6, 13, 5, 1, 15].

Its theoretical complexity is still an open question: it was

only recently proven sub-linear, although using an ap-

proach which is useless in practice [9, 15]. Our contri-

bution in this domain is essentially a refinement of the ob-

jective function: where all previous works to our knowl-

edge try to minimise the number of additions, we remark

that these additions, measured in terms of full adder cells,

have different sizes (up to a factor 4 for the large multi-

plier by 4/π of [7]), hence variable cost in reconfigurable

logic. Trying to minimise the number of full adders, and

looking for low-latency and easy to pipeline architectures,

we suggest a surprisingly simple algorithm that, for con-

stants up to 64 bits, outperforms the best known algo-

rithms in terms of FPGA area usage and latency. Boullis

and Tisserand [1] also tried to minimise adder size, but as

a post-processing step, after an algorithm minimising the

number of additions.

1

Section 3 describes a multiplier by a floating-point con-

stant of arbitrary size. The architecture is a straightfor-

ward specialisation of the usual floating-point multiplier.

It is actually slightly simpler, because the normalisation

of the result can be removed from the critical path.

Finally, Section 4 deals with the correct rounding of

the multiplication by an arbitrary real constant. Previous

work on the subject [2] has shown that this correct round-

ing requires a floating-point approximation of the constant

whose typical size is twice the mantissa size of the in-

put. This size actually depends on the real constant, and

may be computed using a simple continued fractions algo-

rithm. The other contribution of [2] is the proof of an al-

gorithm which consists of two dependent fused-multiply-

and-add operations. In the FPGA, the implementation will

be much simpler, since it will suffice to instantiate a large

enough FP constant multiplier. Of course, a multiplier by

an arbitrary constant is also capable of computing the di-

vision by an arbitrary constant [14].

What the previous means is that the price of correct

rounding, for a multiplication by an irrational constant

like π or log 2, will be a typical doubling of the number

of bits of the constant that have to be used in significand

multiplication. As the cost of such a multiplication is sub-

linear in the constant size [9], the price of correct rounding

is actually less than this factor 2 in practice.

All these architectures are implemented in the FloPoCo

framework.

2 Multiplication by an integer con-

stant

Several recent papers [1, 9, 15] will provide the interested

reader with a state of the art on this subject.

Let C be a positive integer constant, written in binary

on k bits:

C =
k

∑

i=0

ci2
i with ci ∈ {0, 1}.

Let X a p-bit integer. The product is written CX =
∑k

i=0
2iciX , and by only considering the non-zero ci, it

is expressed as a sum of 2iX . For instance, 17X = X +
24X . In the following, we will note this using the shift

operator<<, which has higher priority than + and −. For

instance 17X = X + X<<4.

If we allow the digits of the constant to be negative

(ci ∈ {−1, 0, 1}) we obtain a redundant representation,

for instance 15 = 01111 = 10001 (16 − 1 written in

signed binary). Among the representations of a given con-

stant C, we will pick up one that minimises the number of

non-zero bits, hence of additions/subtractions.

The well-known canonical signed digits recoding (or

CSD, also called Booth recoding [10]) garantees that at

most k/2 bits are non-zero, and in average k/3.

2.1 Parenthesing and architectures

The CSD recoding of a constant may be translated into a

rectangular architecture[5], an example of which is given

by Figure 1. This architecture corresponds to the follow-

ing parenthesing: 221X = X<<8 + (−X<<5 + (−X<<
2 + X)).

p0 p1 p2 p3 p4 p5 p6 p7

p8

p9

p10

p11

p12

p13

p14

p15

x0

x1

x2

x3

x4

x5

x6

x7

0

0

−X[0..7]

sign extension of −X

Figure 1: Multiplier of an 8-bit input by 221, using the

recoding 100100101

We introduce a new tree adder structure that is con-

structed out of the CSD recoding of the constant as fol-

lows: non-zero bits are first grouped by 2, then by 4, etc.

For instance, 221X = (X<<8−X<<5)+(−X<<2+X).
This new way of parenthesing the sum reduces the critical

path: For k non-zero bits, it is now of ⌈log2 k⌉ additions

instead of k in the linear architecture of Figure 1.

Besides, shifts may also be reparenthesised: 221X =
(X<<3−X)<<5 + (−X<<2 + X). After doing this, the

leaves of the tree are now multiplications by small con-

stants: 3X, 5X, 7X, 9X... Such a smaller constants will

appear many times in a larger constant, but it will have

to be computed only once: the tree now becomes a DAG

(direct acyclic graph), and the number of additions is re-

duced. A larger example is shown on Figure 2.

2.2 Lefèvre’s constant multipliers

We have saved adders by going from a tree to a DAG.

Lefèvre [13] has generalised this idea to an algorithm that

minimises the number of adders: it looks for maximal re-

peating bit patterns in the CSD representation, and gener-

ates them recursively. Lefèvre observed that the number

0 0 0 0 0 0 0 0 00 + 0 + 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 + 0 + − 0 − + + 0 + 0 + + 0 + + + 0

5X5X17X5X−3X 3X9X 127X3X

39854788871587X

884279719003555X

558499X4751061X

−43X1859X 2181X 163X

1768559438007110

<<1

5X5X3X

Figure 2: DAG architecture for a multiplication by

1768559438007110 (the 50 first bits of the mantissa of

π).

of additions, on randomly generated constants of k bits,

grows as O(k0.85). Here is an example of the sequence

produced for the same constant 1768559438007110. This

example was obtained thanks to the program rigo.c

written by Raphal Rigo and Vincent Lefèvre, and avail-

able from Vincent Lefèvre’s web page1:

1: u0 = x

2: u3 = u0<< 19 + u0

3: u3 = u3<< 20

4: u3 = u3<< 4 + u3

5: u7 = u0<< 14 - u0

6: u6 = u7<< 6 + u0

7: u5 = u6<< 10 + u0

8: u1 = u5<< 16

9: u1 = u1 + u3

10: u7 = u0<< 21 - u0

11: u6 = u7<< 18 + u0

12: u5 = u6<< 4 - u0

13: u2 = u5<< 5 + u0

14: u2 = u2<< 1

15: u2 = u2<< 2 - u2

16: u1 = u1 + u2

This code translates to a much more compact DAG than

the one presented on Figure 2, because it looks for pat-

terns in the full constant instead of just exploiting them

when they appear accidentally (and probably only at the

leaves).

Still, this code isn’t targetted to our context and may

actually produce suboptimal results, as synthesis results

in Table 1 show. On the one side, it doesn’t try to balance

the DAG to minimise the latency. On the other size, it only

minimises the number of additions, but not their actual

hardware cost, which depends on their size. Let us now

formalise this last issue.

2.3 DAG definition and cost analysis

Each intermediate variable in a DAG holds the result of

the multiplication of X by an intermediate constant. To

make things clearer, let us name an intermediate variable

after this constant, for instance, V255 holds 255X , and

V1 = X .

1http://www.vinc17.org/research/mulbyconst/

In the Rigo/Lefèvre code, each of these intermediate

variables is positive, and subtraction is allowed. Cost

analysis is slightly simpler if we allow negative interme-

diate constants, but no subtraction. We then need unary

negation to build negative constants. To minimise the use

of negation, which has the same cost as addition on an

FPGA, one may always transform a DAG into one with

only one negation computing V
−1 = −X .

To sum up, a DAG is built out of the following primi-

tives:

Shift: Vz ← Vi<<s (z = 2si),
Neg: Vz ← −Vi (z = −i),

ShiftAdd: Vz ← Vi<<s + Vj (z = 2si + j).

Each variable is a single assignment one, and it is possible

to associate to it

• the maximal size in bits of the result it holds |Vz|,

• the cost in terms of full adder of this computation,

noted cost(Vz).

Thus an optimisation algorithm will maintain a list of

the already computed variables, indexed by the constants.

The size |Vz| is more or less the sum of the size of z and

the size of X: If z ≥ 0 then |Vz| = |X|+ ⌊log2(z − 1)⌋,
where the −1 accounts for powers of 2; If z < 0 then

|z| = 1+ |X|+ ⌊log2(−z−1)⌋: one has to budget an ad-

ditional sign bit for sign extension. This bit will actually

be useful only for multiplying by X = 0, whose multipli-

cation by a negative constant is nevertheless positive. This

detail is worth mentioning as it illustrates the asymmetry

between negative constants and positive ones.

Computing the costs is easy once the |Vz| have been

computed:

• The cost of Vz ← Vi<<s is zero (wiring only).

• The cost of Vz ← −Vi is |Vz|. Again, it is probably

best to use this primitive only to compute V
−1 =

−X .

• The cost of Vz ← Vi << s + Vj is |Vz| − s only:

the lower bits of the result are those of Vj . There is

one exception: if Vi and Vj do not overlap, i.e. if

|Vj | < s, then the addition is free if j is positive: the

higher bits are those of Vi and the lower bits those of

Vj . If j is negative, one needs to sign-extend Vj , and

the cost is again |Vz| − s. This situation may only

happen if the size of the constant is at least twice

that of X , which, strange as it may seem, happens in

several applications: the high-precision polynomial

evaluation that motivated [13] is an example, and the

trigonometric argument reduction of [7] is another

one.

Of course, architecture generation will produce hard-

ware only for the useful parts of the adders (see also Fig-

ure 1). Space is missing to exhibit VHDL produced by

FloPoCo, but readers are invited to try it out.

This cost function describes relatively acurately the

cost of a combinatorial constant multiplier. It has to be

extended to the case of pipelined multipliers: one has to

add the overhead of the registers, essentially for the lower

bits since a registered adder has the same cost as a com-

binatorial one in FPGAs. In principle, one pipeline stage

may contain several DAG levels, at least for the lower lev-

els.

2.4 The IntConstMult class in FloPoCo

FloPoCo currently implements this DAG structure and

outputs VHDL for it. It also implements cost analysis,

but no design space exploration based on it: it currently

only builds the simple DAGs illustrated by Figure 1 and

Figure 2.

For comparison, two sequences produced by rigo.c,

for the significands of π/2 × 250 and π/2 × 2107, were

hand-translated into FloPoCo DAGs. From the synthesis

results of Table 1 (these are FP multipliers, but their area

and delay are largely dominated by the significant mul-

tiplication), one observes that for the 50-bit constant, al-

though the number of additions is smaller, the final area is

larger, as many of these additions are very large. This jus-

tifies the introduction of a new cost function. More work

is needed to actually use it in an optimisation program.

Fair comparison would also require to apply to the DAG

given by rigo.c post-optimisations suggested by [1].

3 Multiplication by a floating-point

constant

For the needs of this article, an FP number is written

(−1)s · 2E · 1, F where 1, F ∈ [1, 2[is a significand and

E is a signed exponent. We shall note wE and wF the

respective sizes of E and F , and F(wE , wF) the set of FP

numbers in a format defined by (wE , wF). We want to

allow for different values of wE and wF for the input X
and the output R:

X = (−1)sX · 2EX · 1, FX ∈ F(wEX
, wFX

)
R = (−1)sR · 2ER · 1, FR ∈ F(wER

, wFR
)

In all the following, the real value of the constant will

be noted C, possibly an irrational number, and we define

C = (−1)sC · 2EC · 1, FC

the unique floating-point2 representation of C such that

1, FC ∈ [1, 2[. Here FC may have an infinite binary rep-

resentation. We note Ck the approximation of C rounded

to the nearest on wFC
= k fraction bits:

Ck = (−1)sC · 2EC · 1, FCk
.

Finally, we also define the real number

1, Fcut =
2

1, FC

∈ [1, 2[.

We now describe a multiplier that computes the correct

rounding Rk of Ck × X . Then, Section 4 will compute

the minimal k ensuring that ∀X ∈ F(wEX
, wFX

), Rk is

the correct rounding of C ×X .

Of course, if C is already a p-bit-significand FP num-

ber, it will be k = p.

The architecture given by Figure 3, and implemented as

the FPConstMult class in FloPoCo, is essentially a simpli-

fication of the standard FP multiplier. The main modifica-

tion is that rounding is simpler. In the standard multiplier,

the product of two significands, each in [1, 2), belongs to

[1, 4). Its normalisation and rounding is decided by look-

ing at the product. In a constant multiplier, it is possi-

ble to predict if the result will be larger or smaller than 2
just by comparing FX with Fcut – in practice, with Fcut

truncated to wFX
bits. This is also slightly faster, as the

rounding decision is moved off the critical path.

Exponent computation consists in adding the constant

exponent, possibly augmented by 1 if FX > Fcut. Sign

computation is also straightforward. Exceptional case

handling is also slighly simpler. For instance, if the con-

stant has a negative exponent, one knows that an overflow

will never occur. Likewise, if it is positive or zero, under-

flow (flush to zero) cannot happen.

4 Correct rounding of the multipli-

cation by a real constant

This section proposes a method for computing the min-

imal value of k = wFC
allowing for correct rounding

(noted ◦) of the product of any input X by C. First, for a

given k, we show how to build a predicate telling if there

exist values of X such that Rk = ◦(CkX) 6= ◦(CX).
This allows us to look for the minimal k verifying this

predicate, knowing that it is generally expected to be close

to 2wFX
.

2As the exponent is constant, the point doesn’t actually float at all.

FloPoCo linear CSD FloPoCo DAG CSD Lefèvre/Rigo

constant + LUTs delay + LUTs delay + LUTs delay

X on 24 bits, π/2 on 50 bits 19 435 30 ns 15 467 14 ns 12 645 16 ns

X on 53 bits, π/2 on 107 bits 38 2018 68 ns 26 1628 21 ns 22 1508 18 ns

Table 1: Synthesis results for floating-point multipliers

shift/roundExn

Exexn

exn

+EC

×1, FC+1

shift right

wF

wFX

1

ER FR

FX

FX > Fcut?

wFC
+ wFX

+ 2

ov

ftz

2

2

Figure 3: Multiplier by an FP constant

4.1 Existence of an X such that ◦(CkX) 6=
◦(CX)

The FP multiplier guarantees the correct rounding of the

result of the multiplication by Ck, that is to say,

∀X ∈ F(wEX
, wFX

), |Rk − CkX|

≤
1

2
ulp (CkX) ≤

1

2
ulp (Rk),

in which “ulp(t)” (unit in the last place) is the weight of

the least significant bit of t.
Moreover, Ck is also the rounded-to-nearest value of

C. Let εa = |Ck − C|, we have

∀X ∈ F(wEX
, wFX

), |Rk−CX| ≤
1

2
ulp (Rk)+X·εa.

We may assume, without any loss of generality, that X
and C belong to [1, 2), i.e. EX = EC = 0. Then we have

∀X ∈ F(wEX
, wFX

), 1 ≤ X < 2,

|Rk − CX| <
1

2
ulp (Rk) + 2εa (1)

If we can prove that for all X , |Rk−CX| ≤ 1

2
ulp (Rk),

then Rk will always be the closest FP number to CX ,

Rk

FP numbers

be found

If CX is here, then ◦(CX) = Rk

Can CX be here?

2εa

Domain where
CX can

2 × εa

1

2
ulp (Rk)

Figure 4: If CX is at a distance greater than 1/2 ulp of

Rk, then it is at a distance lesser than 2εa from the middle

of two consecutive FP numbers.

which is the required property. As shown in Figure 4.1,

if CX satisfies to (1) and is at a distance greater than
1

2
ulp (Rk) from Rk, it is necessarily at a distance lesser

than 2εa from the middle of two consecutive FP num-

bers. Such a point is a rational number of the form

(2A + 1)/(2q), with 2wFR ≤ A ≤ 2wFR
+1 − 1 and

q = 2wFR
+t, where t is equal to 1 if CX has the same

exponent as X (if FX ≤ Fcut), and is equal to 0 other-

wise.

Therefore, to determine if an input X is such that Rk

is not the correct rounding of CX , one can check first if

there exists an approximation to CX by a rational num-

ber of the form (2A + 1)/(2q), such that |CX − (2A +
1)/(2q)| ≤ 2εa.

The mathematical tool for solving this kind of ratio-

nal approximation issues is continued fractions [11]. Us-

ing them, one can design several methods [2] that make

it possible either to guarantee that CX will not be at a

distance lesser than 2εa from the middle of two consec-

utive FP numbers (hence one can guarantee that the cor-

rect rounding of CX is always returned) or to compute

all counter-examples, that is to say values of X such that

CkX rounded to nearest is not the correct rounding of

CX . In the latter case, one can derive from each counter-

example the value by which we should increment k in or-

der to get a correct rounding.

4.2 A predicate for k

We assume in the sequel that FX < Fcut (the case FX >
Fcut is similar). We then have CX ∈ [1, 2). Let MX be

the integer mantissa of X , i.e. MX = 2wFX X . We search

for the integers MX ∈ Z such that
∣

∣

∣

∣

MX

2wFX

C −
2A + 1

2wFR
+1

∣

∣

∣

∣

≤ 2εa.

Depending on the relative values of wFR
and wFX

, we

face two situations:

4.2.1 Case where wFR
+ 1 ≥ wFX

We assume in this case that k = wFR
+ wFX

+ 3. We

search for the integers MX ∈ Z such that

∣

∣MX2wFR
−wFX

+1C − 2A− 1
∣

∣ ≤ 22+wFR εa.

Since εa = |Ck − C| ≤ 2−k−1, we have

∣

∣MX2wFR
−wFX

+1C − 2A− 1
∣

∣ ≤ 2wFR
−k+1.

Note that 2wFR
−k+1 < 1/(2MX) iff 2wFR

−k+2MX <
1. As MX < 2wFX

+1 and 2wFR
+wFX

−k+3 ≤ 1 since we

assumed wFR
+ wFX

+ 3 = k, we have 2wFR
−k+1 <

1/(2MX) for all X ∈ [1, 2[: we compute the continued

fraction expansion of 2wFR
−wFX

+1C that yields (all the)

candidate values X that may possibly satisfy ◦(CX) 6=
◦(CkX). For all such input X , we first check exhaustively

if those rounded values actually differ and we collect all

such X in a list L. Then, we compute the minimal value

η of

∣

∣

∣

MX

2
wFX

C − 2A+1

2
wFR

+1

∣

∣

∣
when X ranges the list L of all

counter-examples and we set k = max(wFR
+ wFX

+
3, ⌈− log2(η)⌉ + 1). The inequality k ≥ ⌈− log2(η)⌉ +
1 imples k > − log2(η) that yields 2εa ≤ 2−k < η,

which guarantees that all inputs X will satisfy ◦(CX) =
◦(CkX).

4.2.2 Case where wFR
+ 2 ≤ wFX

We assume in this case that k = 2wFX
+2. We search for

the integers MX ∈ Z such that

∣

∣MXC − (2A + 1)2wFX
−wFR

−1
∣

∣ ≤ 21+wFX εa.

Here, again, we use εa = |Ck − C| ≤ 2−k−1 to infer

∣

∣MXC − (2A + 1)2wFX
−wFR

−1
∣

∣ ≤ 2wFX
−k.

mult. by π/2, wFX
= 53 + LUTs delay

standard (wFC
= 53) 16 866 20 ns

correct rounding (wFC
= 107) 26 1628 21 ns

Table 2: The price of correct rounding

Here again, from the hypothesis 2wFX
+ 2 ≤ k, we

infer 2wFX
−k < 1/(2MX): the computation of the con-

tinued fraction expansion of C provides a (complete) list

of values X candidate for satisfying ◦(CX) 6= ◦(CkX).
We check exhaustively if those rounded values actually

differ and we collect again all such X in a list L. Let

η be the minimal value of

∣

∣

∣

MX

2
wFX

C − 2A+1

2
wFR

+1

∣

∣

∣
when

X ranges the list L of all counter-examples. We set

k = max(wFR
+ wFX

+ 3, ⌈− log2(η)⌉+ 1). That value

of k will ensure that ◦(CX) = ◦(CkX) for all input X .

These computations are currently performed in Maple,

but will soon be integrated in the constant multiplier gen-

erator.

5 Conclusion and perspectives

One may argue that floating-point multiplication is too

anecdotical to justify so much effort. Yet it illustrates

what we believe is the future of floating-point on FP-

GAs: thanks to their flexibility, they may accomodate

non-standard optimised operators, for example a correctly

rounded multiplication by an irrational constant. It also

makes a good case study for the implementation of such

non-standard operators: they cannot be offered as off-

the-shelf libraries, they have to be optimised for each

application-specific context. This is the object of the

FloPoCo project. Near-term future work will focus on

automatically pipelining these operators for a given tar-

get frequency. Our results also suggest that there is much

room for improvement in the optimisation of integer mul-

tiplication: we have defined a pertinent design space, but

the exploration of this space is yet to implement.

References

[1] N. Boullis and A. Tisserand. Some optimizations of hard-

ware multiplication by constant matrices. IEEE Transac-

tions on Computers, 54(10):1271–1282, Oct. 2005.

[2] N. Brisebarre and J.-M. Muller. Correctly rounded multi-

plication by arbitrary precision constants. IEEE Transac-

tions on Computers, 57(2):165–174, feb 2008.

[3] K. Chapman. Fast integer multipliers fit in FPGAs (EDN

1993 design idea winner). EDN magazine, May 1994.

[4] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and

R. Tudoran. When FPGAs are better at floating-

point than microprocessors. Technical Report ensl-

00174627, École Normale Supérieure de Lyon, 2007.

http://prunel.ccsd.cnrs.fr/ensl-00174627.

[5] F. de Dinechin and V. Lefèvre. Constant multipliers for

FPGAs. In Parallel and Distributed Processing Tech-

niques and Applications, pages 167–173, 2000.

[6] A. Dempster and M. Macleod. Constant integer multi-

plication using minimum adders. Circuits, Devices and

Systems, IEE Proceedings, 141(5):407–413, 1994.

[7] J. Detrey and F. de Dinechin. Floating-point trigono-

metric functions for FPGAs. In Intl Conference on

Field-Programmable Logic and Applications, pages 29–

34. IEEE, Aug. 2007.

[8] J. Detrey, F. de Dinechin, and X. Pujol. Return of the hard-

ware floating-point elementary function. In 18th Sympo-

sium on Computer Arithmetic, pages 161–168. IEEE, June

2007.

[9] V. Dimitrov, L. Imbert, and A. Zakaluzny. Multiplication

by a constant is sublinear. In 18th Symposium on Com-

puter Arithmetic. IEEE, June 2007.

[10] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan

Kaufmann, 2003.

[11] A. Y. Khinchin. Continued Fractions. Dover, 1997.

[12] V. Lefèvre. Developments in Reliable Computing, chapter

An Algorithm That Computes a Lower Bound on the Dis-

tance Between a Segment and Z
2, pages 203–212. Kluwer

Academic Publishers, Dordrecht, 1999.

[13] V. Lefèvre. Multiplication by an integer constant. Techni-

cal Report RR1999-06, Laboratoire de l’Informatique du

Parallélisme, Lyon, France, 1999.

[14] J.-M. Muller, A. Tisserand, B. D. de Dinechin, and

C. Monat. Division by constant for the st100 dsp micro-

processor. In 17th Symposium on Computer Arithmetic,

pages 124–130, Cape Cod, MA., U.S.A, June 2005. IEEE

Computer Society.

[15] Y. Voronenko and M. Püschel. Multiplierless multiple

constant multiplication. ACM Trans. Algorithms, 3(2),

2007.

