Gilles Villard

DIFFERENTIATION OF KALTOFEN'S DIVISION-FREE DETERMINANT ALGORITHM Abstract

. However, the latter is obtained by the reverse mode of automatic differentiation and somehow is not "explicit". We study this adjoint algorithm, show how it can be implemented (without resorting to an automatic transformation), and demonstrate its use on polynomial matrices.

Kaltofen has proposed in [START_REF] Kaltofen | On computing determinants without divisions[END_REF] a new approach for computing matrix determinants. This approach has brought breakthrough ideas for improving the complexity estimate for the problem of computing the determinant without divisions over an abstract ring [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF]. The same ideas also lead to the currently best known bit complexity estimates for some problems on integer matrices such as the problem of computing the characteristic polynomial [START_REF] Kaltofen | On the complexity of computing determinants[END_REF].

We consider the straigth-line programs of [START_REF] Kaltofen | On computing determinants without divisions[END_REF] for computing the determinant over abstract fields or rings (with or without divisions). Using the reverse mode of automatic differentiation (see [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF][START_REF] Linnainmaa | Taylor expansion of the accumulated rounding errors[END_REF][START_REF] Ostrowski | Über die Berechnung von Ableitungen (in German)[END_REF]), a straightline program for computing the determinant of a matrix A can be (automatically) transformed into a program for computing the adjoint matrix A * of A [START_REF] Baur | The complexity of partial derivatives[END_REF] (see the application in [8, §1.2] and [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]Theorem 5.1]). Since the latter program is derived by an automatic process, few is known about the way it computes the adjoint. The only available information seems to be the determinant program itself and the knowledge we have on the differentiation process. In this paper we study the adjoint programs that would be automatically generated by differentiation from Kaltofen's determinant programs. We show how they can be implemented with and without divisions, and study their behaviour on univariate polynomial matrices.

Our motivation for studying the differentiation and resulting adjoint algorithms is the importance of the determinant approach of [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF] for various complexity estimates. Recent advances around the determinant of polynomial or integer matrices [START_REF] Giesbrecht | Fast computations of integer determinants[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF][START_REF] Storjohann | High-order lifting and integrality certification[END_REF][START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF], and the adjoint of a univariate polynomial matrix in the generic case [START_REF] Jeannerod | Asymptotically fast polynomial matrix algorithms for multivariable systems[END_REF], also justify the study of the general adjoint problem.

Kaltofen's determinant algorithm

Let K be a commutative field. We consider A ∈ K n×n , u ∈ K n×1 , and v ∈ K n×1 . Kaltofen's approach extends the Krylov-based methods of [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF][START_REF] Kaltofen | Processor efficient parallel solution of linear systems over an abstract field[END_REF][START_REF] Kaltofen | On Wiedemann's method of solving sparse linear systems[END_REF]. We introduce the Hankel matrix H = (uA i+j-2 v) ij ∈ K n×n , and let h k = uA k v for 0 ≤ k ≤ 2n -1. We assume that H is non-singular. In the applications the latter is ensured either by construction of A, u, and v [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF], or by randomization (see [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] and references therein).

1 With baby steps/giant steps parameters r = ⌈2n/s⌉ and s = ⌈ √ n⌉ (rs ≥ 2n) we consider the following algorithm (the algorithm without divisions will be described in Section 3).

Algorithm Det [START_REF] Kaltofen | On computing determinants without divisions[END_REF] step 1. For i = 0, 1, . . . , r -1 Do v i := A i v; step 2. B = A r ; step 3. For j = 0, 1, . . . , s -1 Do u j := uB j ; step 4. For i = 0, 1, . . . , r -1 Do For j = 0, 1, . . . , s -1 Do h i+jr := u j v i ;

step 5. Compute the minimum polynomial f (λ) of the sequence {h k } 0≤k≤2n-1 ; Return f (0).

The ajoint algorithm

The determinant of A is a polynomial in K[a 11 , . . . , a ij , . . . , a nn] of the entries of A. If we denote the adjoint matrix by A * such that AA * = A * A = (det A)I, then the entries of A * satisfy [1]:

a * j,i = ∂∆ ∂a i,j , 1 ≤ i, j ≤ n. (1)
The reverse mode of automatic differentiation (see [START_REF] Baur | The complexity of partial derivatives[END_REF][START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF][START_REF] Linnainmaa | Taylor expansion of the accumulated rounding errors[END_REF][START_REF] Ostrowski | Über die Berechnung von Ableitungen (in German)[END_REF]) allows to transform a program which computes ∆ into a program which computes all the partial derivatives in [START_REF] Baur | The complexity of partial derivatives[END_REF]. We apply the transformation process to Algorithm Det.

The flow of computation for the adjoint is reversed compared to the flow of Algorithm Det. Hence we start with the differentiation of Step 5. Consider the n × n Hankel matrices H = (uA i+j-2 v) ij and

H A = (uA i+j-1 v) ij . Then the determinant f (0) is computed as ∆ = (det H A)/(det H).
Viewing ∆ as a function ∆ 5 of the h k 's, we show that

∂∆ 5 ∂h k = (ϕ k-1 (H -1 A) -ϕ k (H -1))∆ (2)
where for a matrix M = (m ij) we define

ϕ k (M) = 0+ i+j-2=k m ij for 1 ≤ k ≤ 2n-1. Identity (2)
gives the first step of the adjoint algorithm. Over an abstract field, and using intermediate data from Algorithm Det, its costs is essentially the cost of a Hankel matrix inversion.

For differentiating

Step 4, ∆ is seen as a function ∆ 4 of the v i 's and u j 's. The entries of v i are involved in the computation of the s scalars h i , h i+r , . . . , h i+(s-1)r . The entries of u j are used for computing the r scalars h jr , h 1+jr , . . . , h (r-1)+jr . Let ∂v i be the 1 × n vector, respectively the n × 1 vector ∂u j , whose entries are the derivatives of ∆ 4 with respect to the entries of v i , respectively u j . We show that

     ∂v 0 ∂v 1 . . . ∂v r-1      = H v      u 0 u 1 . . . u s-1      (3)
and

∂u 0 , ∂u 1 , . . . ∂u s-1 = v 0 , v 1 , . . . v r-1 H u (4)
where H v and H u are r × s matrices whose entries are selected ∂∆ 5 /∂h k 's. Identities (3) and (4) give the second step of the adjoint algorithm. Its costs is essentially the cost of two n× √ n by √ n× √ n (unstructured) matrix products. Note that (2), (3) and (4) somehow call to mind the matrix factorizations [3, (3.5)] (our objectives are similar to Eberly's ones) and [4, (3.1)].

Steps 3-1 of Det may then be differentiated. For differentiating Step 3 we recursively compute an n × n matrix ∂B from the δu j 's. The matrix ∂B gives the derivatives of ∆ 3 (the determinant seen as a function of B and the v i 's) with respect to the entries of B.

For Step 2 we recursively compute from δB an n × n matrix δA that gives the derivatives of ∆ 2 (the determinant seen as a function of v i 's).

Then the differentiation of Step 1 computes from δA and the δv i 's an update of δA that gives the derivatives of ∆ 1 = ∆. From (1) we know that A * = (δA) T .

The recursive process for differentiating Step 3 to Step 1 may be written in terms of the differentiation of the basic operation (or its transposed operation)

q := p × M (5
)
where p and q are row vectors of dimension n and M is an n × n matrix. We assume at this point (recursive process) that column vectors δp and δq of derivatives with respect to the entries of p and q are available. We also assume that an n × n matrix δM that gives the derivatives with respect to the m ij 's has been computed. We show that differentiating (5) amounts to updating δp and δM as follows:

δp := δp + M × δq, δM := δM + p T × (δq) T . (6)
We see that the complexity is essentially preserved between (5) and (6) and corresponds to a matrix by vector product. In particular, if Step 2 of Algorithm Det is implemented in O(log r) matrix products, then

Step 2 differentiation will cost O(n 3 log r) operations (by decomposing the O(n 3) matrix product).

Let us call Adjoint the algorithm just described for computing A * .

Application to computing the adjoint without divisions

Now let A be an n×n matrix over an abstract ring R. Kaltofen's method for computing the determinant of A without divisions applies Algorithm Det on a well chosen univariate polynomial matrix Z(z) = C + z(A-C) where C ∈ Z n×n . The choice of C as well as a dedicated choice for the projections u and v allow the use of Strassen's general method of avoiding divisions [START_REF] Strassen | Vermeidung von Divisionen[END_REF][START_REF] Kaltofen | On computing determinants without divisions[END_REF]. The determinant is a polynomial ∆ of degree n, the arithmetic operations in Det are replaced by operations on power series modulo z n+1 . Once the determinant of Z(z) is computed, (det Z)(1) = det(C + 1 × (A -C)) gives the determinant of A.

In Step 1 and Step 2 in Algorithm Det applied to Z(z) the matrix entries are actually polynomials of degree at most √ n. This is a key point for reducing the overall complexity estimate of the problem. Since the adjoint algorithm has a reversed flow, this key point does not seem to be relevant for Adjoint. For computing det A without divisions, Kaltofen's algorithm goes through the computation of det Z(z). Adjoint applied to Z(z) computes A * but does not seem to compute Z * (z) with the same complexity. In particular, differentiation of Step 3 using (6) leads to products A l (δB) T that are more expensive over power series (one computes A(z) l (δB(z)) T) than the initial computation in Det A r (A(z) r on series).

For computing A * without divisions only Z * (1) needs to be computed. We extend algorithm Adjoint with input Z(z) by evaluating polynomials (truncated power series) partially. With a final evaluation at z = 1 in mind, a polynomial p(z) = p 0 + p 1 z + . . . + p n-1 z n-1 + p n z n may typically be replaced by (p 0 + p 1 + . . . + p m) + p m+1 x m+1 + . . . + p n-1 z n-1 + p n z n as soon as any subsequent use of p(z) will not require its coefficients of degree less than m.

Fast matrix product and application to polynomial matrices

We show how to integrate asymptotically fast matrix products in Algorithm Ajoint. On univariate polynomial matrices A(z) with power series operations modulo z n , Algorithm Adjoint leads to intermediary square matrix products where one of the operand has a degree much smaller than the other. In this case we show how to use fast rectangular matrix products [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF][START_REF] Huang | Fast rectangular matrix multiplications and improving parallel matrix computations[END_REF] for a (tiny) improvement of the complexity estimate of general polynomial matrix inversion.

Concluding remarks

Our understanding of the differentiation of Kaltofen's determinant algorithm has to be improved. We have proposed an implementation whose mathematical explanation remains to be given. Our work also has to be generalized to the block algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF].

Acknoledgements. We thank Erich Kaltofen who has brought reference [14] to our attention.