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Kaltofen has proposed a new approach in [8] for computing matrix determinants.

The algorithm is based on a baby steps/giant steps construction of Krylov subspaces,

and computes the determinant as the constant term of a characteristic polynomial.

For matrices over an abstract field and by the results of Baur and Strassen [1], the

determinant algorithm, actually a straight-line program, leads to an algorithm with

the same complexity for computing the adjoint of a matrix [8]. However, the latter

is obtained by the reverse mode of automatic differentiation and somehow is not

“explicit”. We study this adjoint algorithm, show how it can be implemented (without

resorting to an automatic transformation), and demonstrate its use on polynomial

matrices.

Kaltofen has proposed in [8] a new approach for computing matrix determinants. This approach has
brought breakthrough ideas for improving the complexity estimate for the problem of computing the de-
terminant without divisions over an abstract ring [8, 11]. The same ideas also lead to the currently best
known bit complexity estimates for some problems on integer matrices such as the problem of computing
the characteristic polynomial [11].

We consider the straigth-line programs of [8] for computing the determinant over abstract fields or rings
(with or without divisions). Using the reverse mode of automatic differentiation (see [12, 13, 14]), a straight-
line program for computing the determinant of a matrix A can be (automatically) transformed into a program
for computing the adjoint matrix A∗ of A [1] (see the application in [8, §1.2] and [11, Theorem5.1]). Since
the latter program is derived by an automatic process, few is known about the way it computes the adjoint.
The only available information seems to be the determinant program itself and the knowledge we have on the
differentiation process. In this paper we study the adjoint programs that would be automatically generated
by differentiation from Kaltofen’s determinant programs. We show how they can be implemented with and
without divisions, and study their behaviour on univariate polynomial matrices.

Our motivation for studying the differentiation and resulting adjoint algorithms is the importance of the
determinant approach of [8, 11] for various complexity estimates. Recent advances around the determinant
of polynomial or integer matrices [5, 11, 15, 16], and the adjoint of a univariate polynomial matrix in the
generic case [7], also justify the study of the general adjoint problem.

1 Kaltofen’s determinant algorithm

Let K be a commutative field. We consider A ∈ K
n×n, u ∈ K

n×1, and v ∈ K
n×1. Kaltofen’s approach extends

the Krylov-based methods of [18, 9, 10]. We introduce the Hankel matrix H = (uAi+j−2v)ij ∈ K
n×n, and

let hk = uAkv for 0 ≤ k ≤ 2n − 1. We assume that H is non-singular. In the applications the latter is
ensured either by construction of A, u, and v [8, 11], or by randomization (see [11] and references therein).
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With baby steps/giant steps parameters r = ⌈2n/s⌉ and s = ⌈√n⌉ (rs ≥ 2n) we consider the following
algorithm (the algorithm without divisions will be described in Section 3).

Algorithm Det [8]

step 1. For i = 0, 1, . . . , r − 1 Do vi := Aiv;

step 2. B = Ar;

step 3. For j = 0, 1, . . . , s − 1 Do uj := uBj ;

step 4. For i = 0, 1, . . . , r − 1 Do
For j = 0, 1, . . . , s − 1 Do hi+jr := ujvi;

step 5. Compute the minimum polynomial f(λ) of the sequence {hk}0≤k≤2n−1;

Return f(0).

2 The ajoint algorithm

The determinant of A is a polynomial in K[a11, . . . , aij , . . . , ann] of the entries of A. If we denote the adjoint
matrix by A∗ such that AA∗ = A∗A = (det A)I, then the entries of A∗ satisfy [1]:

a∗
j,i =

∂∆

∂ai,j

, 1 ≤ i, j ≤ n. (1)

The reverse mode of automatic differentiation (see [1, 12, 13, 14]) allows to transform a program which
computes ∆ into a program which computes all the partial derivatives in (1). We apply the transformation
process to Algorithm Det.

The flow of computation for the adjoint is reversed compared to the flow of Algorithm Det. Hence
we start with the differentiation of Step 5. Consider the n × n Hankel matrices H = (uAi+j−2v)ij and
HA = (uAi+j−1v)ij . Then the determinant f(0) is computed as

∆ = (detHA)/(detH).

Viewing ∆ as a function ∆5 of the hk’s, we show that

∂∆5

∂hk

= (ϕk−1(H
−1
A ) − ϕk(H−1))∆ (2)

where for a matrix M = (mij) we define ϕk(M) = 0+
∑

i+j−2=k mij for 1 ≤ k ≤ 2n−1. Identity (2) gives the
first step of the adjoint algorithm. Over an abstract field, and using intermediate data from Algorithm Det,
its costs is essentially the cost of a Hankel matrix inversion.

For differentiating Step 4, ∆ is seen as a function ∆4 of the vi’s and uj ’s. The entries of vi are involved
in the computation of the s scalars hi, hi+r, . . . , hi+(s−1)r. The entries of uj are used for computing the r
scalars hjr , h1+jr, . . . , h(r−1)+jr. Let ∂vi be the 1×n vector, respectively the n×1 vector ∂uj, whose entries
are the derivatives of ∆4 with respect to the entries of vi, respectively uj . We show that











∂v0

∂v1

...
∂vr−1











= Hv











u0

u1

...
us−1











(3)

and
[

∂u0, ∂u1, . . . ∂us−1

]

=
[

v0, v1, . . . vr−1

]

Hu (4)
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where Hv and Hu are r × s matrices whose entries are selected ∂∆5/∂hk’s. Identities (3) and (4) give the
second step of the adjoint algorithm. Its costs is essentially the cost of two n×√

n by
√

n×√
n (unstructured)

matrix products.
Note that (2), (3) and (4) somehow call to mind the matrix factorizations [3, (3.5)] (our objectives are

similar to Eberly’s ones) and [4, (3.1)].

Steps 3-1 of Det may then be differentiated. For differentiating Step 3 we recursively compute an n×n
matrix ∂B from the δuj ’s. The matrix ∂B gives the derivatives of ∆3 (the determinant seen as a function
of B and the vi’s) with respect to the entries of B.

For Step 2 we recursively compute from δB an n × n matrix δA that gives the derivatives of ∆2 (the
determinant seen as a function of vi’s).

Then the differentiation of Step 1 computes from δA and the δvi’s an update of δA that gives the
derivatives of ∆1 = ∆. From (1) we know that A∗ = (δA)T .

The recursive process for differentiating Step 3 to Step 1 may be written in terms of the differentiation
of the basic operation (or its transposed operation)

q := p × M (5)

where p and q are row vectors of dimension n and M is an n×n matrix. We assume at this point (recursive
process) that column vectors δp and δq of derivatives with respect to the entries of p and q are available. We
also assume that an n×n matrix δM that gives the derivatives with respect to the mij ’s has been computed.
We show that differentiating (5) amounts to updating δp and δM as follows:

{

δp := δp + M × δq,
δM := δM + pT × (δq)T .

(6)

We see that the complexity is essentially preserved between (5) and (6) and corresponds to a matrix by
vector product. In particular, if Step 2 of Algorithm Det is implemented in O(log r) matrix products, then
Step 2 differentiation will cost O(n3 log r) operations (by decomposing the O(n3) matrix product).

Let us call Adjoint the algorithm just described for computing A∗.

3 Application to computing the adjoint without divisions

Now let A be an n×n matrix over an abstract ring R. Kaltofen’s method for computing the determinant of A
without divisions applies Algorithm Det on a well chosen univariate polynomial matrix Z(z) = C+z(A−C)
where C ∈ Z

n×n. The choice of C as well as a dedicated choice for the projections u and v allow the use of
Strassen’s general method of avoiding divisions [17, 8]. The determinant is a polynomial ∆ of degree n, the
arithmetic operations in Det are replaced by operations on power series modulo zn+1. Once the determinant
of Z(z) is computed, (detZ)(1) = det(C + 1 × (A − C)) gives the determinant of A.

In Step 1 and Step 2 in Algorithm Det applied to Z(z) the matrix entries are actually polynomials of
degree at most

√
n. This is a key point for reducing the overall complexity estimate of the problem. Since

the adjoint algorithm has a reversed flow, this key point does not seem to be relevant for Adjoint. For com-
puting detA without divisions, Kaltofen’s algorithm goes through the computation of detZ(z). Adjoint

applied to Z(z) computes A∗ but does not seem to compute Z∗(z) with the same complexity. In particular,
differentiation of Step 3 using (6) leads to products Al(δB)T that are more expensive over power series (one
computes A(z)l(δB(z))T ) than the initial computation in Det Ar (A(z)r on series).

For computing A∗ without divisions only Z∗(1) needs to be computed. We extend algorithm Adjoint

with input Z(z) by evaluating polynomials (truncated power series) partially. With a final evaluation at
z = 1 in mind, a polynomial p(z) = p0 + p1z + . . . + pn−1z

n−1 + pnzn may typically be replaced by
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(p0 + p1 + . . . + pm) + pm+1x
m+1 + . . . + pn−1z

n−1 + pnzn as soon as any subsequent use of p(z) will not
require its coefficients of degree less than m.

4 Fast matrix product and application to polynomial matrices

We show how to integrate asymptotically fast matrix products in Algorithm Ajoint. On univariate poly-
nomial matrices A(z) with power series operations modulo zn, Algorithm Adjoint leads to intermediary
square matrix products where one of the operand has a degree much smaller than the other. In this case we
show how to use fast rectangular matrix products [2, 6] for a (tiny) improvement of the complexity estimate
of general polynomial matrix inversion.

Concluding remarks

Our understanding of the differentiation of Kaltofen’s determinant algorithm has to be improved. We have
proposed an implementation whose mathematical explanation remains to be given. Our work also has to be
generalized to the block algorithm of [11].

Acknoledgements. We thank Erich Kaltofen who has brought reference [14] to our attention.
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