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Abstract

The genetic control of common traits is rarely deterministic, with many genes contributing only to the chance of developing
a given phenotype. This incomplete penetrance is poorly understood and is usually attributed to interactions between
genes or interactions between genes and environmental conditions. Because many traits such as cancer can emerge from
rare events happening in one or very few cells, we speculate an alternative and complementary possibility where some
genotypes could facilitate these events by increasing stochastic cell-to-cell variations (or ‘noise’). As a very first step towards
investigating this possibility, we studied how natural genetic variation influences the level of noise in the expression of a
single gene using the yeast S. cerevisiae as a model system. Reproducible differences in noise were observed between
divergent genetic backgrounds. We found that noise was highly heritable and placed under a complex genetic control.
Scanning the genome, we mapped three Quantitative Trait Loci (QTL) of noise, one locus being explained by an increase in
noise when transcriptional elongation was impaired. Our results suggest that the level of stochasticity in particular
molecular regulations may differ between multicellular individuals depending on their genotypic background. The complex
genetic architecture of noise buffering couples genetic to non-genetic robustness and provides a molecular basis to the
probabilistic nature of complex traits.
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Introduction

Two fascinating area of research on gene expression have been

conducted intensively and independently during the past couple of

years. A large community of geneticists has contributed to the

identification of genetic sources underlying expression differences

between individuals. Such expression Quantitative Trait Loci

(eQTL) were first mapped in maize[1], yeast[2] and mouse[3] and

consecutively identified in many organisms including worms[4], A.

thaliana [5] and humans[6,7]. All these studies shared three

important conclusions: gene expression levels differ greatly among

individuals of a species, their genetic control is complex, and despite

the high number of statistical tests required, genetic mapping of

regulators is feasible on a genome6transcriptome scale. In addition,

promising methods have emerged to extract causal relationships

among molecular regulations[8–10], illustrating how expression data

can power genetic linkage or association studies. Recently, the

genetics of gene expression appeared even more complex when

discovering the high degree of variation in human transcript isoforms

[11]. This complexity of molecular regulations, which very likely

underlies the genetics of complex traits, is now anticipated and

integrated in many designs. However, like the large majority of

molecular regulations described to date, these observations were

made on samples of many (104–109) cells and therefore reflect only

averages of cellular states. This limitation can be very frustrating

when studying traits such as cancer that can emerge from a single or

very few cells.

Simultaneously, another large community of scientists from

various disciplines has been investigating the sources and

properties of stochastic fluctuations in gene expression. These

investigations were powered by the development of single-cell

reporter assays. Following previous terminology, we will refer here

to noise in gene expression as the stochastic variation of a protein

concentration among isogenic cells, grown homogeneously in a

common environment. This noise was demonstrated to contribute

to non-genetic cellular individuality[12–16]. Although non-

deterministic fluctuations in gene expression can be detrimental

to cellular physiology, they can also provide a mechanism of

single-cell memory[17–19] and shape differentiation during

development[20]. Notably, high noise was observed in old mice

hearts suggesting that age-related health decline could result from

such stochastic fluctuations[21]. Genetic sources of noise in gene

expression were also investigated. So far, the list of factors shown

experimentally to contribute to noise includes the SWI/SNF,

INO80 and SAGA chromatin modification complexes[22],

TATA-box mutations[22,23], MAP Kinases implicated in the

response to yeast pheromones[24], the Swi4 transcriptional

activator[25], DNA topology[13] and ribosomal activity in

bacteria[26]. This list will very likely increase dramatically in the

near future as investigations of single-cell expression levels are
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becoming more and more popular. In addition, the topology of gene

regulatory networks has clearly been shown to drive various levels of

instabilities, for example via the presence/absence of functional

feedback loops[17].

We present here a study bridging these two fields of

investigations, by considering noise in gene expression as a

quantitative trait. We quantified noise of a representative reporter

system in various strains of S. cerevisiae and found reproducible

differences among strains. Genetic segregation of noise values

revealed a complex genetic control, and Quantitative Trait Loci

mapping allowed the identification of three loci modulating noise

levels. One locus led to the identification of transcriptional

elongation as an additional source of noise. Based on these

observations from a yeast model, we propose a new interpretation

of the incomplete penetrance observed for common traits that are

triggered by single cells in higher eukaryotes.

Results

Natural Genetic Variation of Noise in Gene Expression
To investigate the natural genetic diversity of noise in the

expression of a representative gene, we integrated in the genome

of five distant S. cerevisiae strains a reporter construct where the

green fluorescent protein (GFP) was regulated by the inducible

promoter of the MET17 (YLR303W) gene. The strains used were

three unrelated laboratory strains (S288c, FL200 and CEN.PK), a

wine strain from California (RM11-1a), and a wine strain from

Japan (Y9J_1). In each case the construct was integrated at the

same HIS3 chromosomal locus. We then quantified the level of

expression in individual living cells by flow cytometry. Figure 1A

shows representative experiments where 15,000 cells were

recorded for each background after two hours of moderate

induction. We found that although mean induction was similar

between backgrounds, the variance of gene expression level

differed. This observation was reproduced when the experiments

were repeated at various dates (Figure 1B). This suggested the

presence of genetic variation that might control noise without

necessarily affecting mean expression of the cell population. To see

if the difference in noise between S288c and RM11-1a was specific

to the chromosomal environment of the HIS3 locus, we integrated

the same reporter system at the LYS2 locus located on another

chromosome (Figure S1). Noise and mean expression values were

comparable to the results obtained when targeting HIS3, showing

that the difference in noise between the two strains could not be

accounted for by differences at the integration locus only.

Noise as a Complex Trait
If strain-to-strain difference in noise levels is under genetic

control, it should be heritable. To determine if this was the case,

we integrated the PMET17-GFP construct at the HIS3 genomic

locus of 61 segregants issued from a cross between S288c and

RM11-1a, two backgrounds displaying different noise levels. Noise

was estimated from triplicate experiments for each segregant. This

showed that noise segregated as a quantitative phenotype, with

evidence of a polygenic control (Figure 1C–D). Heritability was

high (81%) and the continuous, Gaussian-like distribution of noise

values among segregants excluded simple Mendelian inheritance.

In addition, a few segregants showed noise values outside the

range of parental values (transgression), suggesting segregation of

alleles with opposite effects. Importantly, mean expression (the

average fluorescence of the population of cells) also segregated

continuously, and the two traits (noise and mean) were correlated

(R2 = 0.51, P = 5610211 from linear regression). This scaling

between mean expression and noise level is consistent with

previous observations[14,27,28]. In the case of our genetic design,

this scaling of segregant values indicate the presence of genetic loci

acting on both mean and noise, although mean values did not

differ between the parental backgrounds. This apparent discrep-

ancy can be explained by alleles with opposite effects that comp-

ensate mean expression in the parental strains (higher transgres-

sion for mean than for noise).

To examine further the natural genetic segregation of noise, we

analyzed a cross from another pair of unrelated backgrounds. We

crossed GY43 with GY44, two strains carrying the HIS3:PMET17-

GFP insertion and derived from FL200 and CEN.PK, respectively.

Random spores were generated and were considered further only

if they were auxotroph to uracil, to avoid the presence of diploid

contaminants. Noise was measured in 55 of these spores, and the

distribution obtained also showed high heritability (88%) with a

continuous genetic segregation and evidence of transgression

(Figure 1E–F). In addition, noise values of GY43xGY44 segregants

were enriched for low levels and were not centered at the mid-

parental value. This is probably not a bias from our selective

choice of ura3 segregants because average noise was also globally

low among spores of dissected tetrads (Figure S2). This asymmetry

towards low noise is more likely due to the presence of interacting

alleles, a particular combination of which being required to confer

high noise (epistasis).

Quantitative Trait Locus Mapping of Noise
We then sought to map genetic variations underlying noise

differences between S288c and RM11-1a, which we did by two

methods. Firstly, using the noise values of the 61 segregants from

S288cxRM11-1a and their genotypes at 3042 marker posi-

tions[29], we screened the genome for Quantitative Trait Loci

(QTL). Two QTL were found (position 79091 on chromosome III

and position 449639 on chromosome XIV) at a genome-wide

significance of 1% (Figure 2A). Secondly, we introgressed the high-

noise phenotype of RM11-1a into the S288c background, and

searched for alleles that had been conserved from RM11-1a in the

resulting strains (see Materials and Methods). This approach

Author Summary

Although most inter-individual phenotypic variabilities are
largely attributable to DNA differences, a wealth of
examples illustrate how a single biological system can
vary stochastically over time and between individuals.
Identical twins are not identical, and similarly, clonal
microbial cells differ in many aspects even when grown
simultaneously in a common environment. Using yeast as
a model system, we show that a population of isogenic
cells all carrying genotype A showed higher cell-to-cell
heterogeneity in gene expression than a population of
isogenic cells of genotype B. We considered this level of
intra-clonal heterogeneity as a quantitative trait and
performed genetic linkage (on AxB) to search for
regulators of it. This led to the demonstration that
transcriptional elongation impairment increases stochastic
variation in gene expression in vivo. Our results show that
the two levels of inter-individual diversity, genetic and
stochastic, are connected by a complex control of the
former on the latter. We invite the community to revisit the
interpretation of incomplete penetrance, which defines
cases where a mutation does not cause the associated
phenotype in all its carriers. We propose that, in the case of
cancer or other diseases triggered by single cells, such
mutations might increase stochastic molecular fluctuations
and thereby the fraction of deviant cellular phenotypes in
a human body.

Noise as a Complex Trait
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Figure 1. Strain-to-strain variation and complex genetic segregation of noise. A) Five representative flow-cytometry experiments on strains
GY51, GY43, GY44, GY53 and GY445 derived from S288c, FL200, CEN.PK, RM11-1a and Y9J_1 respectively, each showing the distribution of PMET17-GFP
expression levels in 15,000 individual cells (events) after two hours of moderate induction. Raw fluorescent values were corrected for cell size and
granularity as described in Materials and Methods. Mean expression levels were similar between strains, while variances differed. B) Boxplot
representation of flow-cytometry experiments repeated n times in the same conditions as in A), showing reproducible noise differences between
genetic backgrounds. C–D) Genetic segregation of PMET17-GFP noise in a cross between S288c and RM11-1a backgrounds. Colored dots in C)
represent independent flow-cytometry experiments performed on strain GY51 (red) or strain GY53 (blue). Each open circle represents the average
values of three experiments performed on one S288c6RM11-1a segregant. The distribution of noise values in these segregants is shown in D), with
the average noise of GY51 and GY53 represented as red and blue crosses, respectively. The arrow points to segregant GY157 displaying extremely
high noise. E–F) Genetic segregation of PMET17-GFP noise in a cross between FL200 and CEN.PK backgrounds. Representation is similar as in C) and D),
with repeated experiments on strain GY43 and GY44 shown in green and magenta, respectively. One flow-cytometry experiment was performed on
each segregant obtained by crossing GY43 and GY44 (open circles). All segregants analyzed possessed the ura3-52 mutation of GY44, and their
differences must therefore result from allelic variations residing in other genes.
doi:10.1371/journal.pgen.1000049.g001
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identified a region on chromosome V (from position 116530 to

207819) as a candidate region for conferring high-noise level

(Figure 2B). To validate or refute this locus as a QTL, we

backcrossed GY157, the S288c6RM11-1a segregant showing

highest noise, with an S288c derivative. Fifty five random spores

from this cross were analyzed by flow cytometry to quantify their

level of HIS3:PMET17-GFP noise. We took advantage of the

presence of the ura3D0 auxotrophic marker within the region of

interest to genotype the 55 spores by plating them on URA-plates.

A significant linkage was found between these genotypes and noise

levels (Wilcoxon-Mann Whitney test, P = 3.561023) (Figure 3C),

which validated the locus as a third QTL. The three QTL

identified showed the following characteristics: Firstly, in all three

cases, the molecular control of noise involves trans-regulations (a

polymorphism in one gene affecting noise level of another gene)

because none of the QTL were located at or near the HIS3

integration site nor the MET17 endogenous regulatory region.

Secondly, QTL1 and QTL2 but not QTL3 were also in genetic

linkage with the mean expression levels of the samples (Figure 3).

Consistently, QTL1 was already detected as an expression QTL

(eQTL) locus controlling MET17 mRNA levels in a previous study

where only mean expression was measured[29]. This indicated

-lo
g1

0(
P

) 
lin

ka
ge

 s
co

re

0

2

4

6

8

genome (marker index)

0 500 1000 1500 2000 2500 3000

genome (marker index)

0 500 1000 1500 2000 2500 3000

A

B

Both genotypes
are S288c

Both genotypes
are RM11-1a

One genotype
is RM11-1a

III

XIV

V
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genome S288c, from chromosome I to chromosome XVI. At every marker, the y-axis represents the -log10(P) linkage score, where P is the nominal P-
value of the test. The dashed line indicates the 1% genome-wide significance threshold. Two significant signals (QTL1 and QTL2) were found on
chromosome III and XIV, respectively. B) Cumulative genotypes of two introgressed strains. Haploid strains GY159 and GY174 were constructed by
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doi:10.1371/journal.pgen.1000049.g002
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that regulatory variation could scale noise levels by acting on

mean expression, raising the possibility that other eQTL identified

by ‘genetical genomics’[30] are likely to influence noise as well.

Thirdly, and surprisingly, the effects of QTL1 and QTL2 were

opposite to the effects expected from the parental difference: alleles

from the high-noise background RM11-1a conferred low noise

(Figure 3A–B). This was consistent with the transgressive

segregation visible on Figure 1C and it supported the presence of

additional QTL (such as QTL3) where RM11-1a alleles conferred

high noise. Finally, QTL3 effect was extremely low in the panel of

S288cxRM11-1a segregants (P = 0.4 from linear regression). From

these observations, we conclude that the difference in noise

between S288c and RM11-1a backgrounds can not be attributed to

one or a few loci but rather results from the cumulative effects of

numerous QTL, several of which remain to be identified.

Noise Increase Resulting From Uracil Metabolism
Impairment

The presence of ura3D0 at QTL3 prompted us to test if this

mutation was responsible for noise modulation. When introduced

in the S288c background, a significant increase in HIS3:PMET17-

GFP noise was observed (Figure 4A–B). Consistently, restoring

wild-type URA3 in the resulting mutant or in RM11-1a

significantly reduced noise (Figure 4A–C), and another null allele

(ura3-52) could also increase noise (Figure S3A), as well as

treatment with 6-azauracil, a drug inhibitor of the URA3 gene

product (Figure 4D). Since random spores of the FL2006CENPK

cross mentioned above displayed low noise despite bearing the

ura3-52 mutation, we examined additional spores from tetrads and

found that, as expected, Ura+ spores from this cross displayed even

lower noise (Figure S2). Surprisingly, increasing the concentration

of uracil in the culture medium did not reduce noise of a ura3D0

strain (Figure S3B). This might be due to limiting steps of the

import mechanism. Finally, the ura1D and ura2D mutations were

also found to increase noise levels (Figure S3C). Altogether, these

observations validated ura3 as a responsible gene for QTL3 with

ura3D0 accounting for most (74%) of the locus effect seen in

segregants (Figure 3C and 4A). So if additional noise regulators

resided at QTL3, we expect their contribution to be minor. The

ura3D0 allele is not natural but was introduced in RM11-1a for

laboratory purposes unrelated to this study[2]. However, null ura3

alleles exist in nature: ura3-52 results from a Ty transposable

element insertion[31], and when searching the Saccharomyces

Genome Resequencing Project[32] we found three additional

severe mutations (G-.GA, G-.GA, and TTG-.TAG(stop) at

183, 219 and 94 nucleotides from ATG, respectively) in two

unrelated natural isolates (NCYC361 from an Irish brewery and

UWOPS87_2421 from a cladode in Hawaii). Also, ura3 mutations

are not the sole source of natural genetic variation in noise, since

high noise was found in the Y9J_1 background (a prototrophic

strain with functional URA3), and since ura3D0 accounted for only

37% of the total noise difference between S288c and RM11-1a

(Figure 4C and Materials and Methods).

Transcriptional Elongation Is Involved in the Control of
Noise

Inhibition of uracil synthesis is known to reduce the intracellular

pool of nucleotides available for RNA synthesis and this shortage is

known to affect transcriptional elongation[33]. To directly test if

transcriptional elongation was involved in the control of noise, we

measured noise levels in a dst1D mutant strain lacking TFIIS

activity. A dramatic increase of noise was observed, with no
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detectable difference in mean expression (Figure 4D). This

increase was suppressed when the mutation was complemented

by integrating the wild-type DST1 (YGL043W) gene at the HO

locus (Figure 4E). Even higher noise levels were obtained when

dst1D cells were treated with 6-azauracil (Figure 4D), highlighting

the gradual noise increase with gradual transcriptional elongation
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defects. To see which of several known partners of elongating

RNA PolII were involved in noise modulation, we measured

PMET17-GFP noise in strains lacking specific elongation factors

(Figure 4E). A pronounced noise increase was observed in spt4D
mutant, and in mutants lacking the Leo1p or Cdc73p subunits of

the Paf1 complex. This suggested that recruitment of Paf1 to

elongating RNA PolII (a step requiring Spt4p[34]), was involved in

noise control. However, full integrity of the Paf1 complex was not

essential since noise remained low in the absence of the Ccr4p

subunit. Finally, noise remained low in set2D and eaf3D mutants,

showing that methylation of lysine 36 of histone H3 and

recruitment of Rpd3S[35] for histone deacetylation were not

involved. Thus, noise appeared to be strongly connected to the

facilitation of transcriptional elongation but not to the subsequent

resetting of chromatin to an inactive state.

Discussion

We showed that noise in gene expression can be subjected to

natural genetic variation with a complex inheritance pattern in

yeast. In agreement with previous studies[27,28] we observed that

natural genetic variation of noise tended to scale with the genetic

control of mean expression. However, two divergent backgrounds

could differ only in noise while their cross generated segregants

varying in both noise and mean. This supports the presence of two

classes of alleles: those acting on both traits (such as QTL1 and

QTL2) and those acting specifically on noise (such as ura3 and

dst1).

We demonstrated that impairing the progression of transcrip-

tional elongation can increase the level of noise in gene expression.

When elongating RNA polymerase II is stalled because of such

defects, expression of the corresponding messenger in this

particular cell is blocked until transcriptional initiation takes place

again. It is therefore not surprising that this stalling increases

stochasticity, as compared to a wild-type context where elongation

can resume rapidly, and our results are consistent with a previous

numerical model of elongation defects[36].

The complex genetic control of noise makes it a potentially

evolvable trait. Although our study did not address whether this

genetic control correlates with any adaptive mechanism, the results

can be discussed in the context of selection. Living systems

maintain a delicate balance between robustness and flexibility[37].

The former ensures stability of ‘normal’ physiology, and the latter

provides adaptability to environmental changes. Thus, fluctuating

environments might maintain flexibility. One consequence of the

propagation of many alleles contributing to noise is the production

of few individuals in which regulations are highly noisy, the term

‘individual’ here referring to a human being, a yeast strain or a

congenic animal or plant breed. The individuals displaying high

noise are likely to have reduced fitness in ‘standard’ environments

but they may be readily adapted to new environmental conditions.

One possible advantage provided by genetic complexity is to

generate this ‘reservoir’ of individuals without perturbing the bulk

of the population, because most individuals harbour only few of

the alleles conferring high noise levels. However, whether

evolution in fluctuating environments can shape the genetics of

noise control remains to be demonstrated.

Finally we propose to revisit the interpretation of incomplete

penetrance for traits that arise from one or very few cells in higher

eukaryotes. Despite intense investigations on the genetic predis-

position to common traits, it remains unclear why the underlying

alleles express their effects in only a fraction of carriers[38]. For

example, a fortunate ,20% of women carrying BRCA2 mutations

associated with high-risk of breast cancer do not develop the

disease[39]. In default of any clear explanation, this incomplete

penetrance is usually interpreted as the result of interactions that

remain to be discovered. This assumes that causative genes

manifest their effect only if the carrier is exposed to specific

environmental conditions (gene6environment interactions) or if

the carrier possesses particular alleles at additional genes, yet

undiscovered, which unbuffer the effect of the causative gene

(gene6gene interactions). This explanation probably holds for

many cases of incomplete penetrance, but since the underlying

interactions are currently extremely difficult to identify, their

involvement generally remains hypothetical.

Many common traits such as cancer, developmental defects,

autoimmunity, or infection can result from rare cellular events.

Considering the huge number of cells constituting a human body,

these traits can emerge from a very slight increase in the

probability of such events. It is therefore possible that cases of

genetic predisposition to these traits are caused by low-penetrance

alleles that simply increase the chances of such events, without

driving them deterministically, and therefore increase the

frequency of peculiar cells. Under such a scenario, incomplete

penetrance would naturally result from the probabilistic nature of

the traits, without necessarily requiring complex genetic interac-

tions.

One way to increase, even slightly, the probability of rare

cellular events is to increase stochastic fluctuations in their

underlying molecular mechanism. Our study showed that in

yeast, natural allelic differences can influence the level of noise in a

particular molecular regulation. It is likely that similar scenarios

are present in higher eukaryotes. An exciting area of investigation

would be to re-examine disease-predisposing alleles in terms of

their probabilistic effects among single cells of the tissue they

target.

Materials and Methods

Plasmids
The NatMX cassette was amplified from the integrative plasmid

pFvL99 (kindly provided by F. van Leeuwen and D. Gottschling,

FHCRC, Seattle) using primers 59-GCAAGCGATCCGTCC-

TAAGAAACCATTATTTAAATGGATGGCGGCGTTAGTA-

TC-39 and 59-ATCCGCTTACAGACAAGCTGTGACCGTCT

CGACATGGAGGCCCAGAATAC-39 and cloned by gap-repair

recombination into pUG23 (a centromeric plasmid carrying

yEGFP3[40] under the control of the MET17 promoter, from

J.Hegemann, Düsseldorf, Germany) linearized at BsmBI to

generate plasmid pGY6. The ScaI fragment containing replicative

and centromeric sequences of pGY6 was replaced by the ScaI

fragment of pFvL99 to create pGY8. To generate plasmid pGY12,

the HIS3 gene of pGY6 was replaced by LYS2 flanking sequences

by transforming strain BY4742[41] with pGY6 linearized at NheI

with PCR fragment LYS2-UD and recovering the gap-repaired

pGY9 resulting plasmid from HIS-NATR colonies. The LYS2-UD

PCR product was obtained by fusing two PCR products, each

obtained by amplifying genomic DNA from BY4716[41] with

primers 59-GCATCAGAGCAGATTGTACTGAGAGTGCAC-

CATAAATTCCTAGGAAGCGGTCAGCAAGAAGAAA-39,

59-AATATAAGCGGCCGCTCGAGTTTATACAGTACCTT-

TTTGAACTTCGTC-39 and primers 59-TGTATAAACTCG-

AGCGGCCGCTTATATTCATCATGCTGCGAAGAACT-

A-39, 59-TCCTTACGCATCTGTGCGGTATTTCACACCGC-

ATAGATCCGTCCATGTACAATAATTAAATATGAATTA-

GG-39, respectively. The ScaI fragment of pGY9 containing

replicative and centromeric sequences was replaced by the ScaI

fragment of pFvL99 to create pGY12. For the complementation
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test of dst1D, the DST1 gene of strain BY4716 was amplified using

primers 59-GCGAGCTCTCATTTTATCGTTTTCGT-39 and

59-CGGAGCTCTTCTTTAGTTCTGACCGA-39, the product

was digested with SacI and cloned into the SacI site of plasmid

pHO-poly-KanMX4-HO[42] to give plasmid pHO::DST1.

Strains
The strains used in this study are listed in Table S1. Plasmid pGY8

was linearized at NheI and integrated at the HIS3 locus of FL200,

CEN.PK113-5D, BY4716 (isogenic to S288c), YEF1685 (a non-

clumpy derivative of RM11-1a), Y9J_1 and in 61 F1 segregants from

BY47166RM11-1a described in Brem et al. 2005 to create GY43,

GY44, GY51, GY53, GY445 and the set of S288cxRM11-1a

HIS3:PMET17-GFP strains, respectively. At every transformation, cells

were separated in three tubes just after heat shock so that recovery in

YPD medium and cell division occurred independently before

plating each fraction on a separate NAT plate. This way, three

independent transformants were obtained each time. Plasmid

pGY12 was linearized at XhoI and integrated at the LYS2 locus of

BY4709 and YEF1946 to generate GY122 and GY125 strains,

respectively. To introgress the RM11-1a alleles conferring high noise

into a global S288c background, GY53 and BY4716 were crossed, a

resulting spore with high noise but similar mean was selected and

crossed with BY4719, a resulting spore with high noise but similar

mean was selected and crossed with FYC20-2A, a resulting spore

with high noise but similar mean was selected and crossed with

BY4713, and a resulting spore with high noise but similar mean was

selected and called GY159. To repeat this procedure in a totally

independent way, GY51 and YEF1946 were crossed, a spore with

high noise but similar mean was selected and crossed with FY67, a

resulting spore with high noise but similar mean was selected and

crossed with BY4712, a resulting spore with high noise but similar

mean was selected and crossed with BY4715, and a resulting spore

with high noise but similar mean was selected and called GY174.

Thus, GY159 and GY174 theoretically contained only 6.25% of

RM11-1a genome but had retained high-noise levels of the PMET17-

GFP construct. The 55 spores used to validate QTL3 were obtained

by crossing GY157 with BY4714. The strains used to demonstrate

the effect of ura3D0 on noise were GY244, GY246, GY333 and

GY601. GY244 and GY246 were random spores from a cross

between GY51 and BY4741. GY333 was obtained by transforming

GY246 with a NotI restriction fragment from plasmid HO-hisG-

URA3-hisG-poly-HO described in Voth et al. [42]. GY601 was

obtained by amplifying the URA3 gene of BY4716 with primers 59-

AGGGAAGACAAGCAACGAAACGT-39 and 59-CCAGCCCA-

TATCCAACTTCCAAT-39 and transforming GY53 with this

product. Strain GY321 was obtained by crossing GY172 (which

was a spore from GY516BY4710) with the dst1 strain FY1671 kindly

provided by F. Winston. We followed the kinetics of GY321 and

GY51 growth in the physiological conditions of PMET17-GFP noise

measurements and found identical growth rates (data not shown).

For the complementation test of dst1D, the 4.6kb NotI fragment of

plasmid pHO::DST1 was transformed in strain GY321 to give strain

GY361. The corresponding negative control strain GY358 was

obtained by transforming GY321 with the NotI fragment of the

empty plasmid pHO-poly-KanMX4-HO. To test the effect of the

ura3-52 mutation on noise, strains GY51 and FY1679-18D were

crossed and two random spores were selected: GY241 and GY243.

To test the effect of ura1D and ura2D mutations, strain GY329 was

obtained by amplifying the ura1D::KanR mutation from the

EUROSCARF strain YKL216W with primers 59-CGGACGA-

TAAACTTCGAAACAATTC-39 and 59-GGCACTTAACAAT-

GTTTCGGAACTC-39, and transforming strain GY51 with this

amplicon; strain GY325 was obtained by amplifying the ura2D::KanR

mutation from the EUROSCARF strain YJL130C with primers 59-

GCGTATTTTAGTATCTGGGCGTGG-39 and 59-CGGACCT-

GATGTTACCTCCTTACTG-39 and transforming strain GY51

with this amplicon. Similarly, strains GY602 to GY608 were

constructed by amplifying the deletion mutation from the corre-

sponding EUROSCARF strain with about 400bp flanking sequence,

transforming GY51 with the amplicon, and checking proper

integration by PCR with at least one primer designed outside the

mutagenic fragment. We verified that Y9J_1 beard a functional URA3

allele by amplifying it with primers 59-AGGGAAGACAAGCAAC-

GAAACGT-39 and 59-CCAGCCCATATCCAACTTCCAAT-39

and transforming a ura3D0 strain, which led to complementation of

the ura-phenotype. We also checked that ura3D0 and dst1D mutations

did not change the fraction of cells in G1 by staining population of cells

with propidium iodide as previously described[43], and analyzing

distributions of DNA content by flow-cytometry (Figure S5).

Flow Cytometry
4ml of YPD medium was inoculated with an isolated colony, and

incubated overnight at 30uC with 220 rpm shaking. This starter

culture was used to inoculate at OD600 = 0.1 4ml of autoclaved SD-

MET medium [Yeast Nitrogen Base 6.7 g/L, Glucose 2%, Dropout

Mix 2 g/L, adjusted to pH = 5.8 with NaOH] supplemented with

1 mM methionine (repressed condition). The Dropout Mix was a

powder made of 2 g of uracil , 4 g of leucine, 1g of adenine, and 2 g

of each of the following amino-acids: A, R, D, N, C, E, Q, G, H, I, K,

F, P, S, T, W, Y, V. The culture was incubated at 30uC for exactly

3 hours with shaking, centrifuged at 11006g for 5 minutes, and cells

were resuspended in 4 ml of SD-MET medium supplemented with

50 mM methionine (moderate induction). Other methionine

concentrations were tested in the experiments of Figure 4C–E (0,

20, 50, 100 and 200 mM). In the case of 6-AU treatments, the drug

was added at this step to a final concentration of 100 mg/ml. In the

case of increased uracil concentrations, uracil was added at both

repressed and induced steps from a 2 mg/ml stock solution. The

induced culture was incubated at 30uC for exactly 2 hours with

shaking and a few micro-liters were analyzed on a FACSCAN

(Beckton Dickinson) cytometer to record optical parameters of

15,000 living cells. The parameters were: Forward Scatter (FSC) on

a linear scale, Side Scatter (SSC) on a linear scale, and GFP

fluorescence (FL1) on a log scale. Raw data were read either directly

from the original listmode data files using the RflowCyt package

from Bioconductor (www.bioconductor.org), or from ASCII text

files obtained after running MFI (Martz, Eric. 1992–2001. MFI: a

flow cytometry list mode data analysis program optimized for batch

processing under MS-DOS. http://www.umass.edu/microbio/

mfi).

Data Analysis
All computational analysis was done using the R statistical

package (www.r-project.org). Because the distribution of FSC and

SSC values differed slightly between the divergent genetic

backgrounds, we did not gate the data but applied the following

correction for cellular granularity and size: yiRȳ+ei, where yi is the

observed FL1value of the ith cell and ei is the ith residual of linear

regression FL1 = ȳ+b*log(FSC)+c*log(SSC). The conclusions of

the study remained if gating was applied instead of this correction

(Figure S4). Noise was then defined as the coefficient of variation

(standard deviation/mean ratio) of the corrected values.

QTL Mapping
We searched for QTL by two complementary approaches:

genome scanning and introgression. For genome scanning, the

three noise values of each S288c6RM11-1a segregant were
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averaged and genetic linkage was searched at every marker

position as follows: segregants were divided in two groups

according to the marker genotype, noise difference between the

two groups was tested using the Wilcoxon Mann-Whitney test.

The genome-wide significance of the corresponding nominal P-

values was determined by permuting the segregant indexes, re-

scanning the genome and recording the smallest P-value obtained

at each run. P,2.761025 was reached in only 5 of the 500

permutation runs, thus defining the 1% genome-wide significance.

For introgression, strains GY159 and GY174 were obtained by

consecutive backcrosses with S288c derivatives, selecting spores

with high-noise levels at each generation. GY159 and GY174 were

then genotyped using oligonucleotide microarrays: their genomic

DNA was extracted, digested, labeled and hybridized to YGS98

AffymetrixH Yeast Genome microarrays as described previous-

ly[44]. The genotype of each strain was obtained at 3015 marker

positions by adding the corresponding raw .CEL data file to the

dataset of Yvert et al. 2003[45] and by applying the same

algorithm as previously described in Brem et al. 2002[2]. We then

screened the markers for those harboring the RM11-1a genotype

in the two introgressed strains (GY159 and GY174) as well as in

the S288c6RM11-1a segregant displaying the highest noise level

(GY157). A total of 230 markers were selected this way, 32 of them

being clustered at one locus on chromosome V (Figure 2B). To

determine if the other 198 markers, which were scattered across

the genome, truly reflected RM11-1a genotypes, we directly

assessed them by PCR and sequencing or RFLP. We found that

most of these markers were in fact of the S288c genotype in at least

one of the two introgressed strains and we did not consider them

further. The locus on chromosome V was then validated as a QTL

of PMET17-GFP noise by analyzing an independent cross as

described in text.

Estimation of ura3D0 Contribution to Noise Decoupled
from Mean Effects

Because noise scaled with mean expression, we used various

induction levels of the reporter construct by varying the

concentration of the repressor (methionine). The data presented

on Figure 4C was then treated as follows: a linear model was fitted

to S288c values (red), and noise values from the two other strains

(blue) were corrected by subtracting the expected noise value from

the model. Corrected noise values were then averaged for each

strain, estimating at 3.5% the difference between S288c and

RM11-1a, and at 2.2% the difference between S288c and the

URA3-rescued RM11-1a strain (note that here the phenotype itself

is measured as a percentage since it is a coefficient of variation).

The ura3D0 mutation therefore contributed to (3.5–2.2)/

3.5 = 37% of the total difference between the parental back-

grounds.

Supporting Information

Figure S1 Genetic variation of noise when integrating the

reporter construct at the LYS2 locus. Strains GY122 and GY125

carried the PMET17-GFP construct at the LYS2 locus instead of

the HIS3 locus and were derived from S288c and RM11-1a,

respectively. Results were strictly comparable to the ones obtained

from HIS3:PMET17-GFP strains, with a similar difference in

noise between the two backgrounds and no particular variation of

mean expression level.

Found at: doi:10.1371/journal.pgen.1000049.s001 (0.27 MB EPS)

Figure S2 High noise levels in ura3 spores from CEN.PK6FL200.

Tetrads were dissected from a GY43xGY44 hybrid strain, and were

analyzed by flow cytometry for PMET17-GFP noise levels. Spores

that inherited the ura3 mutation from GY44 (triangles) showed

higher noise than their siblings (crosses). Dashed and continuous

lines represent linear fit to Ura+ and Ura2 data points, respectively.

Found at: doi:10.1371/journal.pgen.1000049.s002 (0.27 MB EPS)

Figure S3 A) Comparison of PMET17-GFP noise and mean

expression levels between strains GY241 and GY243 that were

isogenic except for the specified ura3 genotypes. The ura3-52

mutation is associated to higher noise (P = 0.04) without affecting

mean expression. B) Strain GY53 was analyzed by flow cytometry

in media containing increasing concentration of uracil. C)

Comparison of PMET17-GFP noise and mean expression levels

between strains GY51, GY329 and GY325 that were isogenic

except for the specified ura1 and ura2 genotypes.

Found at: doi:10.1371/journal.pgen.1000049.s003 (0.30 MB EPS)

Figure S4 Noise differences observed from cells of similar size.

A) FSC/SSC scatter plot of two representative experiments of

strain GY51 (red) and GY53 (blue). Two gates were visually

chosen and cells falling in each gate were extracted from the

dataset (which corresponded to about 200 cells for each

experiments). B) same representation as in A) but from two

representative experiments of strains GY246 (red) and GY244

(blue). C) same representation as in A) and B) but from two

representative experiments of strains GY321 (red) and GY51

(blue). D–E) Boxplots displaying PMET17-GFP noise estimates

(standard deviation/mean of raw fluorescence values) from the

gated cells selected in A). F–G) Boxplots displaying PMET17-GFP

noise estimates (standard deviation/mean of raw fluorescence

values) from the gated cells selected in B). H–I) Boxplots displaying

PMET17-GFP noise estimates (standard deviation/mean of raw

fluorescence values) from the gated cells selected in C). The genetic

variation of noise is visible from all gated subdatasets.

Found at: doi:10.1371/journal.pgen.1000049.s004 (14.00 MB

EPS)

Figure S5 ura3 and dst1 mutations do not perturb cell-cycle

progression distributions. Cells were cultured as for PMET17-GFP

noise measurements and were fixed and stained with propidium

iodide (PI) to quantify their DNA content (FL2-A channel). The

distribution of PI fluorescence is shown for strains GY246 (A),

GY244 (B), GY321 (D) and GY51 (E). Bottom panels show

quantile-quantile plots (red) comparing the two above distribu-

tions. Dashed diagonal line represents identity. C) Comparison of

ura3&#xFFFD;?0 strain GY246 to URA3 wild-type strain

GY244. D) Comparison of dst1&#xFFFD;? strain GY321 to

DST1 wild-type strain GY51. The distributions do not differ

significantly within the G1-S-G2/M window (framed by dashed

vertical lines across the panels).

Found at: doi:10.1371/journal.pgen.1000049.s005 (3.06 MB EPS)

Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1000049.s006 (0.13 MB

DOC)
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