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is an annotation that limits its use. For instance, an object f of type A → B, written f : A → B represents a function and can only be applied to an object of type A to produce an object of type B. In our development we will write, for instance, a : Agent to say that a is an Agent and s : Inf Strategy to say that s is an infinite strategy. In what follows, a node (written iNode) in a infinite strategy is something that takes an agent, a choice, a finite strategy and an infinite strategy and produces an infinite strategy has a type, in more precise words it has the type, iNode : Agent → Choice → F inStrategy → Inf Strategy → Inf Strategy.

The Curry-Howard correspondence says also that types are propositions and insists essentially on the computational content of proofs and establishes the bases of the so-called constructive logic. Indeed since a proof works as a computation, an object can be taken into consideration only if it can be constructed and an existential proof is accepted if it allows constructing the object it claims the existence of. For instance, in an infinite extensive game we assert that there exists a utility for an agent a that can be associated with an infinite strategy, but this works if we prove it exists, i.e., provide a way to construct this utility, since assuming the existence without the construction is not enough.

The following formal development in Coq has been built in this framework and checked on a computer and is attached to proof scripts available on the web site of the author 2 . In this article we try to describe and comment the content of the scripts without entering in their full technicality, but the reader is anyway strongly encouraged to have a look at the scripts to convince himself of the materiality of the proofs and moreover, if he has access to a Coq implementation, he should try to run them on a computer.

Natural deduction

The proof systems we describe is based on natural deduction, which is one of the main system to formalize logic. Natural deduction has been formalized by Gerhard Gentzen [START_REF] Gentzen | Untersuchungen über das logische Schließen[END_REF] in 1935 (see also [START_REF] Prawitz | Natural Deduction: A Proof Theoretical Study[END_REF][START_REF] Van Dalen | Logic and Structure[END_REF]). Its adjective "natural" comes form the fact that its creators considered that it is just the natural way to formalize logic. It is based on the fact that to conduct a proof, one works under hypotheses and one tries to draw a conclusion. One considers that a theorem has been proved when all the hypotheses have been discharged.

The basic concept of natural deduction is this of sequent. A sequent is a pair of a context Γ and a proposition ϕ, which is written Γ ⊢ ϕ and which means that ϕ is a logical consequence of the set of hypotheses Γ. A context is a set of propositions and when we write Γ, ϕ we mean that the sequent Γ is enriched by the proposition ϕ, in other terms this is a notation for the union of sets of propositions. In this calculus there is one axiom and several rules. The axiom is and the elimination rule:

Γ ⊢ a : A Γ ⊢ ∀x : A, P (x) Γ ⊢ P (a)
Through the Curry-Howard correspondence, natural deduction is strongly connected to type theory and computation.

COQ

In this paper we are not describing all the details of the proof assistant Coq and the book [START_REF] Bertot | Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions[END_REF] is excellent source of information. Basically in Coq, proofs are mathematical objects in natural deduction and are considered as first class citizen that can be printed, be exchanged as objects between people, and overall be checked by a proof checker (a specific software) that examines it in full detail. As building proofs is a tedious process, the software Coq offers tools to build them. Basically a Coq development is made of several not fully separated phases: the user defines data structures (in our case: games and strategies), then he defines predicates, relations and functions on those structures (in our case: conversion, utilities and equilibria) and finally he proves theorems about those structures and predicates (in our case: a theorem that says that subgame perfect equilibria are Nash equilibria). Typically a script presents a set of sections in which a subdevelopment is presented, this section may invoke other sections; it is a sequence of declaration of variables, axioms, or hypothesis, followed by definitions and theorems with their proofs. To check that a script is correct, it is highly recommended to run it on a Coq implementation.

Induction, Coinduction, and Fixed point

Induction is a tool to reason over infinite sets of objects, provided those objects are finitely based. On the opposite, coinduction [START_REF] Bertot | Coinduction in Coq. Open archives[END_REF] has been designed to reason on infinite objects, like games with infinite paths. However infinite objects may have parts that are finite like finite paths in infinite games and induction can also be used on infinite objects, specifically on their finite subparts. In particular, if the paths are finite, one can compute the utility. Moreover in infinite games we can define finite relations, called convertibility. Therefore finite concepts are interleaved with infinite ones.

Beside games, we can define other finite or infinite objects, further we consider the following inductive (finite) objects: 1) finite games, 2) finite strategies (or strategy profiles), 3) the predicate eventually right that says when applied to a path of a game that the path in question goes eventually to the right, 4) the two convertibility congruences among strategies, namely among finite strategies, but also among infinitely strategy (we indeed claim this latter congruence can be described finitely provided we restrict it to appropriate strategies). 5) Nash equilibrium on finite games, 6) backward induction predicate and 7) Nash equilibrium on infinite games are also finite inductive concepts.

In this paper the archetype of a coinductive object is an infinite game. Obviously the associated concept of infinite strategy is coinductive. The function i2u that associates a utility with a strategy is also coinductive since the infinite strategies are. The predicate SGPE which tells whether an infinite strategy is a subgame perfect equilibrium is a coinductive object since the strategy is. In what follows we will define predicates that say that a property is "always" satisfied along a path, those properties on infinite objects are coinductively defined.

Roughly speaking inductive definitions are like equations and correspond to define the concept as least fixed points and the properties of this concept are derived of this minimality. On another hand, coinductive definitions correspond to greatest fixed points and the properties of this concept are derived from the maximality. Handling infinite objects (actual infinity vs potential infinity) is tricky and the Coq user does not escape this rule. Notice that Coq offers tools to verify along a proof that the one one builds will be accepted by the checker.

In this paper, we analyze games in extensive form. Informally such games are presented as trees. Each node of the tree is a situation in the game where a player has to take a decision. For reason of simplicity, following Vestergaard [START_REF] Vestergaard | A constructive approcah to sequential Nash equilibria[END_REF], we studied binary games where the players have only two choices. This seems a reasonable design decision, since we can reduce a choice among n to a binary choice between the n th and the set {1, ..., n -1} followed by the binary choice between the (n -1) th and the set {1, ..., n -2} etc... We do not loose any generality in term of modeling, and in term of abstraction this is the same as n choices at each node. A reader interested by an implementation based on more than two choices, i.e., on polyadic trees, is advised to consult Stéphane Le Roux PhD [START_REF] Le | Abstraction and Formalization in Game Theory[END_REF]. By considering binary games, we hope to be more didactic.

First we will consider finite binary games. Those games are somewhat connected with games with finite horizon, but in addition to offer choices to a finite depth, they are also finitely branching. Such a game is either a leaf, that is a game which ends and attributes the utilities, or a node where an agent has to take a decision. This leads typically to an inductive description. Like a natural is either 0 or the successor of a natural, or a binary tree is either a leaf with a content or a node made of two binary subtrees, a finite game is either a leaf with a function that associates a utility to each agent or a node with an agent and two subgames, namely a left subgame and a right subgame. With a finite game, we associate strategies. A strategy has the same structure as the game it is associated with, except that to each (internal) node we give a direction left or right, which corresponds to the choice made by the agent in this particular situation. In other words, a strategy is either a leaf associated with a utility, exactly like for games, or a node with an agent, a choice (left or right), and two substrategies.

The main goal of the study presented in this paper is infinite games, more specifically we describe deductions and formal reasoning on those games. Again for reason of simplicity, we study infinite games that looks like "centipedes", in other words binary games with a unique infinite path. The basic concept of those games is a node made of three components: an agent, a left subgames which is itself an infinite subgame, and a right subgame which is a finite subgame. This means that we "recycle" the formal development made for finite subgames for the right branch. Since the game is infinite its formalization relies no more on induction, but on coinduction. Like for finite binary games, the attached concept of strategy relies on a node with four components: an agent, a choice (left or right), an infinite left substrategy, and a finite right strategy.

Equilibria on finite Games

As an introduction to the Coq development, let us study equilibria on finite games.

Agent and Utility

First we set two basic concepts namely Agent and Utility. In Coq, this is done by the following declaration:

Variable Agent : Set. Variable Utility: Set.

In addition we set a preference as a binary relation on Utility and we make this preference a preorder, which we write =< , Utility fun is the type of the utility functions, in other words the type of the objects belonging to Agent → Utility.

Finite Games

A finite binary game, which we call a FinGame, in Coq, is built by induction, this means that this is either a leaf or this is a game with two subgames that are themselves binary games, we encapsulate these three items under the label gNode. In Coq, such a data structure will be written:

Inductive FinGame : Set := -gLeaf : Utility fun → FinGame -gNode : Agent → FinGame → FinGame → FinGame.
where Inductive is the key word to introduce any inductive definition. FinGame is a data structure, but elsewhere the same Inductive keyword will be used to define a predicate. An inductive definition creates a deduction rule that allows us to reason by induction, namely in the case of FinGame, the term FinGame ind is created by Coq: ∀ P : FinGame → Prop, (∀ u : Utility fun, P (gLeaf u)) → (∀ (a : Agent ) (f0 :FinGame), P f0 → ∀ f1 : FinGame, P f1 → P (gNode a f0 f1 ) ) → ∀ f1 : FinGame, P f1

It can be written as the rule ∀u : Utility fun, P(gLeaf u)

[∀f0 : FinGame, P f0 ∧ ∀f1 : FinGame, P f1] → ∀a : Agent, P (gNode a f0 f1)

∀f : FinGame, P f in other words, to prove that some properties holds for all the finite binary games, one has to prove it to hold for leaves and to prove that if it holds for two games then it holds for the game obtained by pairing those two games under the "control" of an agent.

Finite Strategies

As we said, a finite strategy3 has a structure which is very similar to a finite game, the only difference is that we add a "choice" at each node.

Inductive FinStrategy : Set := -sLeaf : Utility fun → FinStrategy -sNode : Agent → Choice → FinStrategy → FinStrategy → FinStrategy.

With a strategy we provide a function that associates with every strategy a utility function. The Coq keyword to define such a function is Fixpoint. A syntactic construction called match allows using a pattern matching mechanism. This reads as if the strategy s is a leaf, i.e., sLeaf uf (where uf is a utility function), then one returns uf, otherwise one returns the utility function associated with the left substrategy, if the choice is left, or the right substrategy if the choice is right.

Now we define on finite strategies a relation, which we call a-convertibility, and which we write s<<-a->>s'.

Labeled with a, it is associated with the agent a and says that Two leaves associated with the same utility function are a-convertible, Two sNodes, (sNode a c s1 s2 ) and (sNode a c' s1' s2' ), associated with the same agent a are aconvertible if s1 <<-a->>s1' and s2 <<-a->>s2'. Notice that c and c' do not have to be the same, Two sNodes, (sNode a' c s1 s2 ) and (sNode a' c s1' s2' ), associated with another agent a' are a-convertible if s1 <<-a->>s1' and s2 <<-a->>s2'. Notice that in this case c has to be the same.

We prove in Coq (a first interesting exercise) that the a-convertibility is an equivalence relation i.e., it is reflexive, symmetric and transitive. We are now equipped to define the predicate Nash equilibrium on finite strategy (in Coq the predicate FinNashEq on FinStrategy):

Inductive FinNashEq: FinStrategy → Prop := -NE : ∀ (s:FinStrategy), (∀ (a:Agent ) (s' :FinStrategy), s<<-a->>s' → (f2u s' a =< f2u s a)) → FinNashEq s.

It says that s is a Nash equilibrium if for all strategy s' that is a-convertible to s, f2u s' a =< f2u s a, in other words, the utility for a computed for s' is less than the utility for a computed for s. This is nothing more than the traditional definition of Nash equilibrium for extensive game, written in the formalism of Coq.

Beside the predicate Nash equilibrium, we define the predicate BI which says whether the strategy s can be obtained by the so-called backward induction. In Coq, it is written: In other words, BI holds for leaves, if BI holds for sl and sr and f2u sl a =< f2u sr a then BI holds for sNode a left sl sr (BINode left principle), the BINode right principle is symmetric, it says, that if BI holds for sl and for sr and f2u sr a =< f2u sl a then is BI holds for sNode a right sl sr. This is the formalization of backward induction for finite horizon games as described in textbooks [START_REF] Osborne | A Course in Game Theory[END_REF][START_REF] Osborne | An Introduction to Game Theory[END_REF][START_REF] Gintis | Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction[END_REF].

Then we are able to prove in Coq the theorem:

Theorem BI is FinNashEq : ∀ s, BI s → FinNashEq s.

The theorem relies on the following fact: the inductive definition of BI is a somewhat equational definition that says that BI is the least fixed point of that equation. Therefore if we can prove that if FinNashEq is another fixed point, this other fixed point is implied by BI and we are set. This can be done by three lemmas.

• FinNashEq satisfies the statement given by BILeaf :

Lemma FinNashEq Leaf : ∀ (uf :Utility fun), FinNashEq (sLeaf uf ).

• FinNashEq satisfies the statement given by BINode left :

Lemma FinNashEq fixpt left : ∀ (a:Agent ) (s1 s2 : FinStrategy), FinNashEq s1 → FinNashEq s2 → (f2u s2 a =< f2u s1 a) → FinNashEq (sNode a left s1 s2 ).

• FinNashEq satisfies the statement given by BINode right : Lemma FinNashEq fixpt right : ∀ (a:Agent ) (s1 s2 : FinStrategy), FinNashEq s1 → FinNashEq s2 → (f2u s1 a =< f2u s2 a) → FinNashEq (sNode a right s1 s2 ).

Then we conclude than FinNashEq satisfies the same equation as BI. Since BI is the least fixed point, BI s implies FinNashEq s.

Coinduction

Coinduction is the partner of induction, but whereas the induction defines objects or predicates as the least fixed point of some equations and therefore specifies finite objects and presents them from basic objects, coinduction defines infinite objects or infinite and finite objects as greatest fixed point of some equation. If one has in mind to define infinite objects only, there is no need to specify basic objects (i.e., objects meant to be the basis on which to define finite object). The typical infinite object is

CoInductive InfGame : Set := -igNode : Agent → InfGame → FinGame → InfGame.
In other words, an infinite binary game is made of an agent, an infinite binary subgame, and a finite binary subgame. On the same model as for finite binary games, we define infinite strategies the same way, i.e., as a coinductive:

CoInductive InfStrategy : Set := -iNode : Agent → Choice → InfStrategy → FinStrategy → InfStrategy.
7 Equilibria on Infinite Games

Decomposing Infinite Games

Since the strategies are infinite we can define total functions iAgent (which gives the agent at the root of the game), SubGameLeft (the infinite game on the left) and SubGameRight (the finite game on the right) with the lemma:

Lemma InfGame Decomposition: ∀ (g:InfGame), igNode (iAgent g) (SubGameLeft g) (SubGameRight g) = g.
that says that a game can be uniquely decomposed into an agent, a left subgame and a right subgame.

Generalizing the notion of horizon

In classical extensive game theory, the concept of backward induction relies on this of finite horizon, our experience in mechanizing the proof has shown us that finite horizon is not exactly the right notion, we prefer the notion of limited horizon, which means that the horizon of the agents is not bounded by a number, but that however it cannot go to infinity. In the frame of binary games, this means that we forbid paths that go always to the left, we want to consider the paths that eventually go to the right so that one can compute the utility of each agent. Since the games are now infinite, a total function that associates, by computation, a utility to a strategy can no more be defined, one can only define a relation between a strategy and a utility. If the path of the choice goes always to the left (on the backbone) the utility cannot be defined, but if the path goes "eventually to the right", the utility of a strategy makes sense. We therefore define a predicate EvtRight which says whether the path of the given strategy goes eventually to the right. The basic case for this predicate is that it holds for the game iNode a right sl sr. The induction case says that if EvtRight sl then EvtRight (iNode a left sl sr ). The predicate EvtRight is typical of an inductive predicate. We get two lemmas which show the existence and the uniqueness of a utility for a strategy that goes eventually to the right, therefore in that case, the association of the utility to the strategy is functional. Since most of the time we want this functional association, we require the predicate "eventually right" to hold.

Lemma Existence i2u: ∀ (a:Agent ) (s:InfStrategy), EvtRight s → ∃ u:Utility, i2u a u s.

Lemma Uniqueness i2u: ∀ (a:Agent ) (u v :Utility) (s:InfStrategy), EvtRight s → i2u a u s → i2u a v s → u=v.

Going eventually to the right is not enough. In some cases, when dealing with subgames, more specifically with subgame perfect equilibria, one wants to be able to compute utilities in subgames. Therefore one wants to be sure that even further in subgames one will go eventually to the right. Hence we define another predicate that ensures that we will always go eventually to the right. This predicate AlwEvtRight reminds us the same kind of predicate defined in the frame of temporal logic (see [START_REF] Bertot | Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions[END_REF] chap. 13 and [5]). Since AlwEvtRight has to traverse the whole infinite game, it has to be coinductive. It says that AlwEvtRight (iNode a c sl sr ) holds, if AlwEvtRight sl and EvtRight sr hold, in other words, a strategy goes always eventually to the right if its left substrategy goes always eventually to the right and if its right substrategy (which is finite) goes eventually to the right.

Convertibility of infinite strategies

The definition of the convertibility s < --a -->s' of two strategies s and s' is inductive. Its base case is the reflexivity of the convertibility. In other words, s < --a -->s' if: s = s', or if s1 < --a -->s1' and s2 <<-a->>s2' and s is iNode a c s1 s2 and s' is iNode a c' s1' s2' (c may be different, but a has to be the same), or if s1 < --a -->s1' and s2 <<-a->>s2' and s is iNode a' c s1 s2 and s' is iNode a' c s1' s2' (different agents, but same c).

Equilibria

To define Nash Equilibria on infinite games, one must be able to compare utilities. For that, one must be able to compute those utilities. Hence one restricts to strategies that go eventually to the right.

Inductive InfNashEq: InfStrategy → Prop := -INE : ∀ (s: InfStrategy), EvtRight s → (∀ (a:Agent ) (s' :InfStrategy) (u u' : Utility), EvtRight s' → s' < --a -->s → (i2u a u' s' ) → (i2u a u s) → (u' =< u)) → InfNashEq s.
On infinite strategies one defines a predicate Subgame Perfect Equilibrium. Because one has to be able to compute utilities on subgames, the Subgame Perfect Equilibrium predicate, written SGPE, is defined on strategies which go always eventually to the right. Notice that Subgame Perfect Equilibria are defined on a smaller class of strategies than Nash Equilibria, but also that the definition of SGPE is coinductive, since its definition requires to traverse the whole infinite subgame. One can show that InfNashEq is a fixed point of this definition. To prove the lemma SGPE s → InfNashEq s, one needs to perform a proof by induction, this cannot be an induction on the definition SGPE which is coinductive. To enable a proof by induction, we impose an additional requirement, namely that somewhere in the game a maximal utility is reached for all agents. We give a statement of this requirement through the following predicate EvtMaxU : It has two parts.

The game fulfills the maximal utility requirement for every agent,

The left subgame does.

Then we can set and prove the main theorem:

Theorem SGPE is InfNashEq : ∀ s:InfStrategy, EvtMaxU s → SGPE s → InfNashEq s.

If every agent reaches a maximal utility somewhere in the game, then a subgame perfect equilibrium is a Nash equilibrium. [START_REF] Girard | of Cambridge Tracts in Theoret Computer Science[END_REF] The "Illogic of Conflict Escalation" revisited Now we may want to apply those general results on a specific infinite subgame. Consider the following game proposed by Shubik [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF]. Recall its principle. Two agents Alice and Bob compete in an auction for an object of a value, say 2 , in this statement. The two agents bid 2 , one after the other. If one agent gives up, the highest bidder gets the object, but the second bidder pays also for his bid. As Shubik noted this game may never cease.

Let us take as the utility ordering, the order ≥ on the nat (the natural numbers or non negative integers), in other words, if u and v are two utilities, u and v are of type nat and u =< v means u ≥ v, i.e., the larger the bid, the smaller the utility.

Strategy Never give up

Let us consider the function enlarge left left n on strategies, that takes a strategy and returns another one and that can be described by the following picture, where the thick arrows give the choice at each node.

Alice Bob 2n+1,2n 2n+1,2n+2

We define the strategy never give up (in short ngu) as the strategy where the agents always keep bidding. It requires to define first a strategy that starts with the value n as the solution of ngu n = enlarge left left (ngu (S n)).

ngu n is an infinite strategy and we can prove that for n, (ngu n) is not a Nash equilibrium. In this proof, reasoning has a flavor of temporal logic.

Strategy Always give up

Here we consider the function enlarge right right n on strategies.

Alice Bob 2n+1,2n 2n+1,2n+2

Again agu n is an infinite strategy and we can prove the lemma:

Lemma SGPEAGU : ∀ (n:nat ), SGPE Ag12 nat ge (agu n).

which says that that this strategy is a Subgame Perfect Equilibrium.

Conclusion

The experiment presented in this paper is in a very stage. Its goal is to make clear that, in games, especially in infinite games, the reasoning can be mechanized despite it is not obvious; it evidences with no surprise some subtlety. To mimic it, humans elaborate rather complex deductions. One of the main statement we can make is that true classical logic is never used. More specifically, we noticed no use of the excluded middle or proofs by double negations. We hope this experiment opens a discussion and shows how far humans are from the somewhat ideal mechanized reasoning. We wish to pursue this research by trying other modelings and concepts and going further in the proofs, for instance finding other conditions for SGPE s → InfNashEq s and deeper results on the example of "Illogic Conflict of Escalation".

Fixpoint

  f2u (s:FinStrategy) : Utility fun := match s with -(sLeaf uf ) ⇒ uf -(sNode a left sl sr ) ⇒ (f2u sl ) -(sNode a right sl sr ) ⇒ (f2u sr ) end.

Inductive

  BI : FinStrategy → Prop := -BILeaf : ∀ uf :Utility fun, BI (sLeaf uf ) -BINode left : ∀ (a:Agent ) (sl sr : FinStrategy), BI sl → BI sr → (f2u sr a =< f2u sl a) → BI (sNode a left sl sr ) -BINode right : ∀ (a:Agent ) (sl sr : FinStrategy), BI sl → BI sr → (f2u sl a =< f2u sr a) → BI (sNode a right sl sr ).

CoInductive

  SGPE : InfStrategy → Prop := -SGPEnode left : ∀ (a:Agent )(u:Utility) (sl : InfStrategy) (sr : FinStrategy), AlwEvtRight sl → SGPE sl → BI sr → i2u a u sl → (f2u sr a =< u) → SGPE (iNode a left sl sr ) -SGPEnode right : ∀ (a:Agent ) (u:Utility) (sl : InfStrategy) (sr : FinStrategy), AlwEvtRight sl → SGPE sl → BI sr → i2u a u sl → (u =< f2u sr a) → SGPE (iNode a right sl sr ).

Inductive

  EvtMaxU : InfStrategy → Prop := -EUM basis: ∀ (s:InfStrategy), (∀ (a:Agent )(u u' :Utility)(s' :InfStrategy), s< --a -->s' → i2u a u' s' → i2u a u s → (u' =< u)) → EvtMaxU s -EUM gen: ∀ (a:Agent )(c:Choice)(sl :InfStrategy)(sr :FinStrategy), EvtMaxU sl → EvtMaxU (iNode a c sl sr ).

Γ ⊢ ϕ if ϕ ∈ ΓThere are two kinds of rules for each connector, namely introduction rule and elimination rule. For instance, for the implication →, the introduction rule isΓ, ϕ ⊢ ψ Γ ⊢ ϕ → ψ whereas the elimination rule is Γ ⊢ ϕ → ψ Γ ⊢ ϕ Γ ⊢ ψalso known as the modus ponens. We are now giving only the rule for the universal quantifier, the introduction rule Γ, x : A ⊢ P (x) Γ ⊢ ∀x : A, P (x)2 http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/

Actually we should probably say a strategy profile, but, for convenience and conciseness, we call this data structure just a strategy.