Peter Kornerup

Christoph Lauter

Nicolas Louvet

Vincent Lefèvre

Jean-Michel Muller

Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic *

We introduce several algorithms for accurately evaluating powers to a positive integer in floating-point arithmetic, assuming a fused multiply-add (fma) instruction is available. We aim at always obtaining correctly-rounded results in round-to-nearest mode, that is, our algorithms return the floating-point number that is nearest the exact value.

Introduction

We deal with the implementation of the integer power function in floating-point arithmetic. In the following, we assume a radix-2 floating-point arithmetic that follows the IEEE-754 standard for floating-point arithmetic. We also assume that a fused multiplyand-add (fma) operation is available, and that the input as well as the output values of the power function are not subnormal numbers, and are below the overflow threshold (so that we can focus on the powering of the significands only).

An fma instruction allows one to compute ax ± b, where a, x and b are floating-point numbers, with one final rounding only. Examples of processors with an fma are the IBM PowerPC and the Intel/HP Itanium [START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF].

An important case dealt with in the paper is the case when an internal format, wider than the target format, is available. For instance, to guarantee -in some cases -correctly rounded integer powers in double precision arithmetic using our algorithms based on iterated products, we will have to assume that a double-extended precision is available. The examples will consider that it has a 64-bit precision, which is the minimum required by the IEEE-754 standard.

The only example of currently available processor with an fma and a double-extended precision format is Intel and HP's Itanium Processor [START_REF] Li | The libm library and floatingpoint arithmetic in HP-UX for Itanium 2[END_REF][START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF]. And yet, since the fma operation will be specified in the revised version of the IEEE-754 standard [1], it is very likely that more processors in the future will offer that combination of features.

The original IEEE-754 standard [START_REF]IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard[END_REF] for radix-2 floating-point arithmetic (as well as its follower, the IEEE-854 radix-independent standard [START_REF]IEEE Standard for Radix Independent Floating-Point Arithmetic, ANSI/IEEE Standard[END_REF], and the forthcoming revised standard) require that the four arithmetic operations and the square root should be correctly rounded. In a floating-point system that follows the standard, the user can choose an active rounding mode from:

• rounding towards -∞: RD (x) is the largest machine number less than or equal to x;

• rounding towards +∞: RU (x) is the smallest machine number greater than or equal to x;

• rounding towards 0: RZ (x) is equal to RD (x) if x ≥ 0, and to RU (x) if x < 0;

• rounding to nearest: RN (x) is the machine number that is the closest to x (with a special convention if x is exactly between two machine numbers: the chosen number is the "even" one, i.e., the one whose last significand bit is a zero).

When a • b is computed, where a and b are floating-point numbers and • is +, -, × or ÷, the returned result is what we would get if we computed a • b exactly, with "infinite" precision and rounded it according to the active rounding mode. The default rounding mode is round-to-nearest. This requirement is called correct rounding. Among its many interesting properties, one can cite the following result (due to Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]).

Theorem 1 (Fast2Sum algorithm) Assume the radix r of the floating-point system being considered is 2 or 3, and that the used arithmetic provides correct rounding with rounding to nearest. Let a and b be floating-point numbers, and assume that the exponent of a is larger than or equal to that of b. The following algorithm computes two floatingpoint numbers s and t that satisfy:

• s + t = a + b exactly;
• s is the floating-point number that is closest to a + b. Note that the information "the exponent of a is larger than or equal to that of b" cannot be checked efficiently, but if |a| ≥ |b|, then the exponent of a will be larger than or equal to that of b.

If no information on the relative orders of magnitude of a and b is available, there is an alternative algorithm due to Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF] and Møller [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], called 2Sum. It requires 6 operations instead of 3 for the Fast2Sum algorithm, but on any modern computer, the 3 additional operations cost significantly less than a comparison followed by a branching: on current pipelined architectures, an if statement with an wrong branch prediction may cause the instruction pipeline to drain.

Algorithm 2 (2Sum(a,b))

s = RN (a + b); b ′ = RN (s -a); a ′ = RN (s -b ′); δ b = RN (b -b ′); δ a = RN (a -a ′); t = RN (δ a + δ b).
The fma instruction allows one to design convenient software algorithms for correctly rounded division and square root. It also has the following interesting property. From two input floating-point numbers a and b, the following algorithm computes c and d such that c + d = ab, and c is the floating-point number that is nearest ab.

Algorithm 3 (Fast2Mult(a,b))

c := RN (ab);

d := RN (ab -c);
Performing a similar calculation without a fused multiply-add operation is possible with an algorithm due to Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF], but this requires 17 floating-point operations instead of 2.

Transformations such as 2Sum, Fast2Sum and Fast2Mult were called error-free transformations by Rump [START_REF] Ogita | Accurate sum and dot product[END_REF].

In the sequel of the paper, we examine various methods for getting very accurate (indeed: correctly rounded, in round-to-nearest mode) integer powers. We first deal with methods based on repeated multiplications (that is, we simply use the fact that

x n is x × x × • • • × x)
, where the arithmetic operations are performed with a larger accuracy using algorithms such as Fast2Sum and Fast2Mult. We then investigate methods based on the identity

x n = 2 n log 2 (x) ,
and that use techniques we have developed when building the CRlibm library of correctly rounded mathematical functions [START_REF] Daramy-Loirat | Cr-libm, a library of correctly-rounded elementary functions in double-precision[END_REF][START_REF] De Dinechin | Fast and correctly rounded logarithms in double-precision[END_REF].

On correct rounding of functions

V. Lefèvre introduced a new method for finding hardest-to-round cases for evaluating a regular unary function [START_REF] Lefèvre | Moyens Arithmétiques Pour un Calcul Fiable[END_REF][START_REF] Lefèvre | Developments in Reliable Computing, chapter An Algorithm That Computes a Lower Bound on the Distance Between a Segment and Z 2[END_REF][START_REF] Lefèvre | New results on the distance between a segment and Z 2 . Application to the exact rounding[END_REF]. That method allowed Lefèvre and Muller to give such cases for the most familiar elementary functions [START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF]. Recently, Lefèvre adapted his software to the case of functions x n , where n is an integer; this consisted in supporting a parameter n.

Let us briefly summarize Lefèvre's method. The tested domain is split into intervals, where the function can be approximated by a polynomial of a quite small degree and an accuracy of about 90 bits. The approximation does not need to be very tight, but it must be computed quickly; that is why Taylor's expansion is used. For instance, by choosing intervals of length 1/8192 of a binade, the degree is 3 for n = 3, it is 9 for n = 70, and 12 to 13 for n = 500. These intervals are split into subintervals where the polynomial can be approximated by polynomials of smaller degrees, down to 1. How intervals are split exactly depends on the value of n (the parameters can be chosen empirically, thanks to timing measures). Determining the approximation for the following subinterval can be done using fixed-point additions in a precision up to a few hundreds of bits, and multiplications by constants. A filter of sub-linear complexity is applied on each degree-1 polynomial, eliminating most input arguments. The remaining arguments (e.g., one over 2 32) are potential worst cases, that need to be checked in a second step by direct computation in a higher accuracy.

Because of a reduced number of input arguments, the second step is much faster than the first step and can be run on a single machine. The first step (every computation up to the filter) is parallelized. The intervals are independent, so that the following conventional solution has been chosen: A server distributes intervals to the clients running on a small network of desktop machines.

All approximation errors are carefully bounded, either by interval arithmetic or by static analysis. Additional checks for missing or corrupt data are also done in various places. So, the final results are guaranteed (up to undetected software bugs and errors in paper proofs1).

Concerning the particular case of x n , one has (2x) n = 2 n x n . Therefore if two numbers x and y have the same significand, their images x n and y n also have the same significand. So only one binade needs to be tested2 , [1, 2) in practice.

For instance, in double-precision arithmetic, the hardest to round case for the function x 458 corresponds to which means that x n is extremely close to the exact middle of two consecutive doubleprecision numbers. There is a run of 61 consecutive zeros after the rounding bit. This case is the worst case for all values of n between 3 and 733.

This worst case has been obtained by an exhaustive search using the method described above, after a total of 646300 hours of computation for the first step (sum of the times on each CPU core). The time needed to test a function x n increases with n, as the error on the approximation by a degree-1 polynomial on some fixed interval increases. On the current network (when all machines are available), for n ≃ 600, it takes between 7 and 8 hours for each power function. On a reference 2.2-Ghz AMD Opteron machine, one needs an estimated time of 90 hours per core to test x n with n = 10, about 280 hours for n = 40, and around 500 hours for any n between 200 and 600.

Table 1 gives the longest runs of identical bits after the rounding bit for 3 ≤ n ≤ 733.

n k 32 76, 81, 85, 200, 259, 314, 330, 381, 456, 481, 514, 584, 598, 668 9, 15, 16, 31, 37, 47, 54, 55, 63, 65, 74, 80, 83, 86, 105, 109, 126, 130, 148, 156, 165, 168, 172, 179, 180, 195, 213, 214, 218, 222, 242, 255, 257, 276, 303, 306, 317, 318, 319, 325, 329, 342, 345, 346, 353, 358, 362, 364, 377, 383, 384, 403, 408, 417, 429, 433, 436, 440, 441, 446, 452, 457, 459, 464, 491, 494, 500, 513, 522, 524, 538, 541, 547, 589, 592, 611, 618, 637, 646, 647, 655, 660, 661, 663, 673, 678, 681, 682, 683, 692, 698, 703, 704 10, 14, 17, 19, 20, 23, 25, 33, 34, 36, 39, 40, 43, 46, 52, 53, 72, 73, 75, 78, 79, 82, 88, 90, 95, 99, 104, 110, 113, 115, 117, 118, 119, 123, 125, 129, 132, 133, 136, 140, 146, 149, 150, 155, 157, 158, 162, 166, 170, 174, 185, 188, 189, 192, 193, 197, 199, 201, 205, 209, 210, 211, 212, 224, 232, 235, 238, 239, 240, 241, 246, 251, 258, 260, 262, 265, 267, 272, 283, 286, 293, 295, 296, 301, 302, 308, 309, 324, 334, 335, 343, 347, 352, 356, 357, 359, 363, 365, 371, 372, 385, 390, 399, 406, 411, 412, 413, 420, 423, 431, 432, 445, 447, 450, 462, 465, 467, 468, 470, 477, 482, 483, 487, 490, 496, 510, 518, 527, 528, 530, 534, 543, 546, 548, 550, 554, 557, 565, 567, 569, 570, 580, 582, 585, 586, 591, 594, 600, 605, 607, 609, 610, 615, 616, 622, 624, 629, 638, 642, 651, 657, 665, 666, 669, 671, 672, 676, 680, 688, 690, 694, 696, 706, 707, 724, 725, 726, 730 3, 5, 7, 8, 22, 26, 27, 29, 38, 42, 45, 48, 57, 60, 62, 64, 68, 69, 71, 77, 92, 93, 94, 96, 98, 108, 111, 116, 120, 121, 124, 127, 128, 131, 134, 139, 141, 152, 154, 161, 163, 164, 173, 175, 181, 182, 183, 184, 186, 196, 202, 206, 207, 215, 216, 217, 219, 220, 221, 223, 225, 227, 229, 245, 253, 256, 263, 266, 271, 277, 288, 290, 291, 292, 294, 298, 299, 305, 307, 321, 322, 323, 326, 332, 349, 351, 354, 366, 367, 369, 370, 373, 375, 378, 379, 380, 382, 392, 397, 398, 404, 414, 416, 430, 437, 438, 443, 448, 461, 471, 474, 475, 484, 485, 486, 489, 492, 498 194,198,204,228,243,244,249,250,261,268,275,280,281,285,297,313,320,331,333,340,341,344,350,361,368,386,387,395,401,405,409,415,418,419,421,425,426,427,442,449,453,454,466,472,473,478,480,488,493 18, 44, 49, 50, 97, 100, 101, 103, 142, 167, 178, 187, 191, 203, 226, 230, 231, 236, 273, 282, 284, 287, 304, 310, 311, 312, 328, 338, 355, 374, 388, 389, 391, 393, 394, 400, 422, 428, 434, 435, 439, 444, 455, 469, 501, 504, 511, 529, 535, 536, 549, 558, 559, 560, 566, 573, 577, 578, 581, 587, 596, 606, 612, 623, 628, 635, 643, 649, 656, 675, 691, 699, 700, 711, 713, 715, 718, 731, 732 24, 28, 30, 41, 56, 67, 87, 122, 135, 143, 147, 159, 160, 190, 208, 248, 252, 264, 269, 270 Table 1: Maximal length k of the runs of identical bits after the rounding bit (assuming the target precision is double precision) in the worst cases for n from 3 to 733.

Algorithms based on repeated floating-point multiplications 3.1 Using a double-double multiplication algorithm

Algorithms Fast2Sum and Fast2Mult both provide double-precision results of value (x+y) represented in the form of pairs (x, y). In the following we need products of numbers represented in this form. However, we will be satisfied with approximations to the products, discarding terms of the order of the product of the two low-order terms. Given two double-precision operands (a h + a ℓ) and (b h + b ℓ) the following algorithm DblMult computes (x, y)

such that (x + y) = [(a h + a ℓ)(b h + b ℓ)](1 + δ)
where the relative error δ is given by Theorem 2 below.

Algorithm 4 (DblMult(a

h ,a ℓ ,b h ,b ℓ)) t 1h := RN (a h b h); t 2 := RN (a h b ℓ); t 1ℓ := RN (a h b h -t 1h); t 3 := RN (a ℓ b h + t 2); t 4 := RN (t 1ℓ + t 3); c h := RN (t 1h + t 4); t 5 := RN (c h -t 1h); c ℓ := RN (t 4 -t 5);
The result to be returned is (c h , c ℓ).

Theorem 2 Let ε = 2 -p , where p is the precision of the radix-2 floating-point system used. If

|a ℓ | ≤ 2 -p |a h | and |b ℓ | ≤ 2 -p |b h | then the returned value (x, y) of function DblMult(a h , a ℓ , b h , b ℓ) satisfies x + y = (a h + a ℓ)(b h + b ℓ)(1 + η), with |η| ≤ 7ε 2 + 18ε 3 + 16ε 4 + 6ε 5 + ε 6 .

Notes:

1. as soon as p ≥ 5, we have |η| ≤ 8ε 2 ; 2. in the case of single precision (p = 24), |η| ≤ 7.000002ε 2 ; 3. in the case of double precision (p = 53), |η| ≤ 7.000000000000002ε 2 .

Proof:

Note that (t 1h , t 1ℓ) is Fast2Mult(a h , b h) and (c h , c ℓ) is Fast2Sum(t 1h , t 4), so that:

• t 1h + t 1ℓ = a h b h exactly; • c h + c ℓ = t 1h + t 4 exactly.
Now, let us analyze the other operations. In the following, the ε i 's are terms of absolute value less than or equal to ε = 2 -p . First, notice that a ℓ = ε 4 a h and b ℓ = ε 5 b h . Since the additions and multiplications are correctly rounded (to the nearest) operations:

1. t 2 = a h b ℓ (1 + ε 1); 2. t 3 = (a ℓ b h + t 2)(1 + ε 2) = a h b ℓ + a ℓ b h + a h b h (ε 1 ε 5 + ε 2 ε 4 + ε 2 ε 5 + ε 1 ε 2 ε 5) = a h b ℓ + a ℓ b h + a h b h (3ε 2 6 + ε 3 7) 3. t 4 = (t 1ℓ + t 3)(1 + ε 8) = t 1ℓ + a h b ℓ + a ℓ b h + a h b h (3ε 2 6 + ε 3 7) +t 1ℓ ε 8 + a h b h (ε 4 ε 8 + ε 5 ε 8) +a h b h (3ε 2 6 + ε 3 7)ε 8 but, from (t 1h , t 1ℓ) = Fast2Mult(a h , b h), we deduce t 1ℓ = a h b h ε 9 , therefore t 4 = t 1ℓ + a h b ℓ + a ℓ b h +a h b h (3ε 2 6 + ε 3 7 + ε 8 ε 9 + ε 4 ε 8 + ε 5 ε 8 + 3ε 2 6 ε 8 + ε 3 7 ε 8) = t 1ℓ + a h b ℓ + a ℓ b h + a h b h (6ε 2 10 + 4ε 3 11 + ε 4 12). 4. c h + c ℓ = t 1h + t 4 = a h b h + a h b ℓ + a ℓ b h + a h b h (6ε 2 10 + 4ε 3 11 + ε 4 12) = a h b h + a h b ℓ + a ℓ b h + (a ℓ b ℓ -ε 4 ε 5 a h b h) + a h b h (6ε 2 10 + 4ε 3 11 + ε 4 12), = (a h + a ℓ)(b h + b ℓ) + a h b h (7ε 2 10 + 4ε 3 11 + ε 4 12). Now, from a h = (a h + a ℓ)(1 + ε 14) and b h = (b h + b ℓ)(1 + ε 15), we get a h b h = (a h + a ℓ)(b h + b ℓ)(1 + ε 14 + ε 15 + ε 14 ε 15), from which we deduce c h + c ℓ = (a h + a ℓ)(b h + b ℓ)(1 + 7ε

The IteratedProductPower algorithm

Algorithm 5 (IteratedProductPower(x, n), n ≥ 1)

i := n; (h, ℓ) := (1, 0); (u, v) := (x, 0); while i > 1 do if (i mod 2) = 1 then (h, ℓ) := DblMult (h, ℓ, u, v); end; (u, v) := DblMult (u, v, u, v); i := ⌊i/2⌋; end do; return DblMult (h, ℓ, u, v);
Due to the approximations performed in algorithm DblMult , terms corresponding to the product of low order terms are not included. A thorough error analysis is performed below. The number of floating-point operations used by the IteratedProductPower algorithm is between 8(1 + ⌊log 2 (n)⌋) and 8(1 + 2 ⌊log 2 (n)⌋).

Error of algorithm IteratedProductPower Theorem 3 The two values c h and c ℓ returned by algorithm IteratedProductPower satisfy

h + ℓ = x n (1 + α), with (1 -|η|) n-1 ≤ 1 + α ≤ (1 + |η|) n-1
where |η| ≤ 7ε 2 + 18ε 3 + 16ε 4 + 6ε 5 + ε 6 is the same value as in Theorem 2.

Proof: Algorithm IteratedProductPower computes approximations to powers of x, using x i+j = x i x j . By induction, one easily shows that the approximation to x k is of the form

x k (1 + β k), where (1 -|η|) k-1 ≤ (1 + β k) ≤ (1 + |η|) k-1 .
If we call η i+j the relative error (obtained from Theorem 2) when multiplying together the approximations to x i and x j , the induction follows from

(1-η) i-1 (1-η) j-1 (1-η) ≤ x i (1 + β i) x j (1 + β j) (1+η i+j) ≤ (1+η) i-1 (1+η) j-1 (1+η).
Table 2 gives bounds on |α| for several values of n (note that the bound is an increasing value of n), assuming the algorithm is used in double precision.

Define the significand of a non-zero real number u to be

u 2 ⌊log 2 |u|⌋ .
Define α max as the bound on |α| obtained for a given value of n. From

x n (1 -α max) ≤ h + ℓ ≤ x n (1 + α max),
we deduce that the significand of h + ℓ is within 2α max from x n /2 ⌊log 2 |h+ℓ|⌋ . From the results given in Table 2, we deduce that for all practical values of n the significand of h + ℓ is within much less than 2 -53 from x n /2 ⌊log 2 |h+ℓ|⌋ (indeed, to get 2α max larger that 2 -53 , we need n > 2 49). This means that RN (h + ℓ) is within less than one ulp from x n , more precisely,

Theorem 4 If algorithm IteratedProductPower is implemented in double precision, then

RN (h + ℓ) is a faithful rounding of x n , as long as n ≤ 2 49 .
Moreover, for n ≤ 10 8 , RN (h + ℓ) is within 0.50000008 ulps from the exact value: we are very close to correct rounding (indeed, we almost always return a correctly rounded result), yet we cannot guarantee correct rounding, even for the smallest values of n. This requires a much better accuracy, as shown in Section 3.4. To guarantee a correctly rounded result in double precision, we will need to run algorithm IteratedProductPower in double-extended precision.

Getting correctly rounded values with IteratedProduct-Power

We are interested in getting correctly rounded results in double precision. To achieve this we assume that algorithm IteratedProductPower is executed in double extended precision.

The algorithm returns two double-extended numbers h and cℓ such that

x n (1 -α max) ≤ h + ℓ ≤ x n (1 + α max),
where α max is given in Table 3.

In the following we shall distinguish two roundings: RN e means round-to-nearest in extended double precision and RN d is round-to-nearest in double precision. Let ulp(•) denote "unit-in-last-position" such that |x -RN (x)| ≤ 1 2 ulp(x). Define a breakpoint as the exact midpoint of two consecutive double precision numbers. RN d (c h + c ℓ) will be equal to RN d (x n) if and only if there is no breakpoint between x n and c h + c ℓ .

The worst cases obtained (given in Table 1, the very worst case for n ≤ 733 being attained for n = 458) show that:

• if x is a double-precision number, and if 3 ≤ n ≤ 586, then the significand y of x n is always at a distance larger than 2 -115 from the breakpoint µ (see Figure 1) where the distance |y -µ| ≥ 2 -(53+61+1) = 2 -115 ;

• if 587 ≤ n ≤ 733 then the significand y of x n is always at a distance larger than 2 -(53+55+1) = 2 -109 from a breakpoint.

a 2 -52 µ = (a + 1 2)2 -52 (a + 1)2 -52 ❄ y(∼ x 458)
Figure 1: Position of the hardest to round case y = x 458 within rounding interval [a2 -52 ; (a + 1)2 -52] with breakpoint µ = (a + 1 2)2 -52 , for significand defined by integer a.

We know that the significand of h + ℓ is within 2α max from that of x n , where α max (as given by its binary logarithm) is listed in Table 3. For all values of n less than or equal to 586, we have 2α max ≤ 2 -115 , and for 587 ≤ n ≤ 733, we have 2α max ≤ 2 -109 . Thus RN d (h + ℓ) = RN d (x n). We therefore get the following result:

Theorem 5 If algorithm IteratedProductPower is performed in double-extended precision, and if

3 ≤ n ≤ 733, then RN d (h + ℓ) = RN d (x n):
Hence by rounding h + ℓ to the nearest double-precision number, we get a correctly rounded result.

Now, two important remarks:

• We do not have the worst cases for n > 733, but from probabilistic arguments we strongly believe that the lengths of the largest runs of consecutive bits after the rounding bit will be of the same order of magnitude (i.e., around 50) for some range of n above 733. However, it is unlikely that we will be able to show correct rounding in double precision for values of n larger than 1000.

• On an Intel Itanium processor, it is possible to directly add two double-extended precision numbers and round the result to double precision without a "double rounding" (i.e., without having an intermediate sum rounded to double-extended precision). Hence Theorem 5 can directly be used. Notice that the draft revised standard IEEE 754-R (see http://754r.ucbtest.org/) includes the fma as well as rounding to any specific destination format, independent of operand formats.

Two-step algorithm using double-extended precision

Now we suggest another approach: first compute an approximation to x n using doubleextended precision and a straightforward, very fast, algorithm. Then check if this approximation suffices to get RN (x n). If it does not, use the IteratedProductPower algorithm presented above. Let us first give the algorithm. All operation are done in double extended precision.

then α < 2 -59 , which means that the final result pow of Algorithm DbleXtendedPower is within 2 53 × 2 -59 = 1/64 ulp from x n . This means that if the bits 54 to 59 of pow are not 100000 or 011111, then rounding pow to the nearest floating-point number will be equivalent to rounding x n . Otherwise, if the bits 54 to 59 of pow are 100000 or 011111 (which might occur with probability close to 1/32), we will have to run a more accurate yet slower algorithm, such as Algorithm IteratedProductPower.

When n is a constant

Very frequently n is a constant, i.e., n is known at compile-time. In such a case it is possible to simplify the iterated product algorithm, as well as the 2-step algorithm (that first uses Algorithm DbleXtendedPower and uses the other algorithm only if the doubleextended result does not make it possible to deduce a correctly rounded value). The possible simplifications are:

• the loops can be unrolled, there is no longer any need to perform the computations "i := ⌊i/2⌋", nor to do tests on variable i;

• moreover, for the first values of n, addition chains to obtain the minimal number of multiplications needed to compute a power are known. This can be used for optimizing the algorithm. For instance, for n up to 10001, such addition chains can be obtained from http://www.research.att.com/~njas/sequences/b003313.txt.

Algorithm based on logarithms and exponentials

With binary asymptotic complexity in mind [START_REF] Brent | Fast multiple-precision evaluation of elementary functions[END_REF], it might seem silly to compute x n by

x n = 2 n•log 2 x .
However, in this section we are going to show that on actual superscalar and pipelined hardware, if n is large enough, the situation is different. For that purpose we consider an implementation on the Itanium architecture. Itanium offers both double extended precision and the FMA instruction, as well as some other useful operations. These features permit achieving high performance. In the example, for n ≤ 735, the measured average evaluation time for x n is equivalent to about 21 sequential multiplications on Itanium 2.

Basic layout of the algorithm

We combine the scheme for x n based on logarithms and exponentials with a two-step approximation approach. This approach has already been proven efficient for common correctly rounded elementary functions [START_REF]Computing elementary functions: A new approach for achieving high accuracy and good performance[END_REF][START_REF] Ziv | Fast evaluation of elementary mathematical functions with correctly rounded last bit[END_REF][START_REF] De Dinechin | Towards the post-ultimate libm[END_REF]. It is motivated by the rarity of hardto-round cases. In most cases, an approximation which is just slightly more accurate than the final precision, suffices to ensure correct rounding. Only in rare cases, the function's result must be approximated up to the accuracy demanded by the worst cases [START_REF]Computing elementary functions: A new approach for achieving high accuracy and good performance[END_REF][START_REF] Ziv | Fast evaluation of elementary mathematical functions with correctly rounded last bit[END_REF][START_REF] De Dinechin | Towards the post-ultimate libm[END_REF]. There is a well-known and efficient test whether correct rounding is already possible with small accuracy [START_REF] Ziv | Fast evaluation of elementary mathematical functions with correctly rounded last bit[END_REF][START_REF] Daramy-Loirat | Cr-libm, a library of correctly-rounded elementary functions in double-precision[END_REF].

We propose the scheme shown in Figure 2 for correctly rounding x n . The function 2 n•log 2 (x) is first approximated with an accuracy of 2 -59.17 . These 6.17 guard bits with respect to double precision make the hard-to-round-case probability as small as about 2 • 2 -6.17 ≈ 2.8%. If rounding is not possible correct rounding is ensured by the second step that provides an accuracy of 2 -116 .

Recompute exponential of known multiplied logarithm rel. error ≤ 2 -117

Special cases

x =NaN The design of the second step is particularly adapted to superscalar hardware. As the approximation to the logarithm ℓ = log 2 x + δ computed at the first step is already available, it is possible to perform the computation of the accurate logarithm and exponential in parallel. Considering

x = ±∞ x = 0,
x n = 2 n•log 2 x = 2 n•ℓ • 2 n•(log 2 x-ℓ) ,
we see that we can accurately approximate 2 n•ℓ and ℓ ′ = log 2 x in parallel. The correction step, the multiplication of the exponential by 2 n•(log 2 x-ℓ) = 2 n•(ℓ ′ -ℓ) = 2 n•δ can be performed easily with a first order approximation:

2 n•δ ≈ 1 + c • n • δ.

Implementation details and error estimates

Both the logarithm and the exponential approximation sub-algorithms follow the wellknown principles of table look-up and polynomial approximation. The algorithms implemented are variants of the techniques presented in [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF][START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF][START_REF] Ch | A correctly rounded implementation of the exponential function on the Intel Itanium architecture[END_REF][START_REF] De Dinechin | Fast and correctly rounded logarithms in double-precision[END_REF]. Our implementation uses about 8 kbytes of tables. The approximation polynomials have optimized floating-point coefficients [START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF].

Logarithm

In both first and second step, the logarithm log 2 x is based on the following argument reduction:

log 2 x = log 2 2 E • m = E + log 2 (m • r) -log 2 r = E + log 2 (1 + (m • r -1)) -log 2 r = E + log 2 (1 + z) + log 2 r = E + p(z) + logtblr[m] + δ
In this argument reduction, the decomposition of x into E and m can be performed using Itanium's getf and fmerge instructions. The value r is produced by Itanium's frcpa instruction. This instruction gives an approximate to the reciprocal of m with at least 8.886 valid bits [START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF]. The instruction is based on a small table indexed by the first 8 bits of the significand (excluding the leading 1) of x. This makes it possible to tabulate the values of log 2 r in a table indexed by these first 8 bits of the significand of m.

The reduced argument z can exactly be computed with an FMS:

z = RN e (m • r -1) .
Indeed, as can easily be verified on the 256 possible cases, the frcpa instruction [START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF] returns its result r on floating-point numbers with at most 11 leading non-zero significand bits. Since x is a double, x • r holds on 53 + 11 = 64 bits, hence a double-extended precision number. No rounding occurs on the subtraction x • r -1 as per Sterbenz' Lemma [START_REF] Sterbenz | Floating point computation[END_REF].

The exactness of the reduced argument z makes it possible to reuse it in the second, more accurate step of the algorithm. It is worth to remark that the latency for obtaining the reduced argument is small. It is produced by only 3 depended operations: fmerge, frcpa and fms.

The tabulated values logtbl[m] for log 2 r are stored as double-double-extended numbers logtblr hi [m]+logtblr lo [m]. The absolute error of the entries with respect to the exact value log 2 r is bounded by 2 -130 . Both double-extended numbers of an entry are read in the first step of the algorithm. The second step can reuse the values directly.

The magnitude of the reduced argument z is bounded as follows:

we have r = 1 m • (1 + ε r) with |ε r | ≤ 2 -8.886 . Hence z = m • r -1 = 1 m • (1 + ε r) • m -1 = ε r is bounded by 2 -8.886 .
The function log 2 (1 + z) is approximated using a polynomial of degree 6 for the first step and of degree 12 for the second step. The corresponding absolute approximation errors are bounded by 2 -69.49 respectively 2 -129. 5 . The polynomials have optimized floatingpoint coefficients. We minimize the number of double-extended and double precision numbers because Itanium can load doubles and single precision numbers faster [START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF][START_REF] Markstein | IA-64 and Elementary Functions: Speed and Precision[END_REF].

The approximation polynomials are evaluated using a mixture of Estrin and Horner scheme [START_REF] Cornea | Scientific Computing on Itanium-Based Systems[END_REF][START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF][START_REF] De Dinechin | Fast and correctly rounded logarithms in double-precision[END_REF][START_REF] Revy | Analyse et implantation d'algorithmes rapides pour l'évaluation polynomiale sur les nombres flottants[END_REF]. In the first step, double-extended precision is sufficient for obtaining an absolute round-off error less than 2 -70 . In the second, accurate step, double-doubleextended arithmetic, based on variants of the DblMult , is used. This yields an absolute round-off error less than 2 -130 .

Reconstruction of the value of log 2 out of the polynomial approximation and the table values is performed in double-double-extended arithmetic in both steps. The value of log 2 x is returned in three registers E, ℓ hi and ℓ lo . In the first step, a modified version of the Fast2Sum algorithm is used that ensures that ℓ hi is written only on 53 bits (double precision).

Exponential

The following argument reduction is used for the exponential 2 t :

2 t = 2 M • 2 t-M = 2 M • 2 i 1 •2 -7 • 2 i 2 •2 -14 • 2 t-(M +i 1 •2 -7 +i 2 •2 -14) = 2 M • 2 i 1 •2 -7 • 2 i 2 •2 -14 • 2 u-∆ = 2 M • exptbl 1 [i 1] • (1 + exptbl 2 [i 2]) • q(u) • (1 + ε)
Herein the values M, i 1 and i 2 are integers. They are computed out of

t = n • E + n • ℓ hi + n • ℓ lo
using the FMAs, shifts and Itanium's getf instruction giving the significand of a number:

s = RN e n • ℓ hi + 2 49 + 2 48 a = RN e s -2 49 + 2 48 = n • ℓ hi • 2 14 b = RN e (n • ℓ hi -a) u = RN e (n • ℓ lo + b) k = getf(s) M = k ÷ 2 14 i 1 = k ÷ 2 7 mod 2 7 i 2 = k mod 2 7
In that sequence, all floating-point operations but those producing s and u are exact by Sterbenz' lemma [START_REF] Sterbenz | Floating point computation[END_REF]. The error in s is compensated in the following operations; actually, it is b. The absolute error ∆ the value u is affected of is bounded by 2 -78 because u is upper-bounded by 2 -15 . For approximating 2 u for u ∈ [-2 -15 ; 2 -15], a polynomial of degree 3 is used in the first step and a polynomial of degree 6 is the second, accurate step. The polynomials provide a relative accuracy of 2 -62.08 respectively 2 -118. 5 .

The table values exptbl 1 [i 1] and exptbl 2 [i 2] are all stored as double-double-extended numbers. Only the higher parts are read in the first step. The second step reuses these higher parts and reads the lower parts. The reconstruction is performed with doubleextended precision multiplications in the first step and with DblMult in the second step.

The first step delivers the final result 2 n•log 2 x • (1 + ε 1) as two floating-point numbers r hi and r lo . The value r hi is a double precision number; r lo hence a round-off error estimate of rounding x n to double precision.

In the second step, the exponential 2 n•ℓ is corrected by

2 δ ′′ = 2 n•(E+i 1 •2 7 +i 2 •2 14 +u)-n•(E+ℓ ′) = 2 δ-∆ ,
where ℓ ′ is a the accurate approximation of the logarithm. The correction approximates first

δ ′′ = n • E + i 1 • 2 7 + i 2 • 2 14 + u -n • (E + ℓ ′
) up to 58 bits and then uses a polynomial of degree 1 for approximation the correction 2 δ ′′ . The final result is delivered as double-double-extended value.

The function x n has some arguments for which it is equal to the midpoint of two consecutive double precision numbers. An example is 9 17 . For rounding correctly in that case, the ties-to-even rule must be followed. The final rounding after the second accurate approximation step must hence distinguish the two cases. The separation is easy because the worst cases of the function are known: if and only if the approximation is nearer to a midpoint than the worst case of the function, the infinitely exact value of the function is a midpoint. See [START_REF] Ch | An efficient rounding boundary test for pow(x,y) in double precision[END_REF] for details on the technique.

Complete error bounds

A complete, perhaps formal proof of the error bounds for the two steps of the algorithm goes beyond the scope of this article. Following the approach presented in [START_REF] De Dinechin | Assisted verification of elementary functions using Gappa[END_REF][START_REF] Daramy-Loirat | Cr-libm, a library of correctly-rounded elementary functions in double-precision[END_REF], the Gappa tool can be used for this task. Bounds on approximation errors can safely be certified using approaches found in [START_REF] Chevillard | A certified infinite norm for the implementation of elementary functions[END_REF]. Let us give just the general scheme of the error bound computation and proof for the first step of the presented algorithm.

We are going to use the following notations:

• E + ℓ = E + ℓ hi + ℓ lo stands for the approximation to the logarithm log 2 x,

• δ is the associated total absolute error,

• δ table , δ approx , δ eval and δ reconstr are the absolute errors of the tables, the approximation, the evaluation and reconstruction of the logarithm.

• r hi + r lo stands for the approximation to

x n = 2 n•log 2 x ,
• ε f irststep is the associated total relative error,

• ε 1 the total relative error due only to the approximation of the exponential without the error of the logarithm,

• ε table , ε approx , ε eval and ε reconstr are the relative errors of the tables, the approximation, the evaluation and reconstruction of the exponential, and

• ∆ stands for the absolute error the reduced argument u of the exponential is affected with.

The following error bound can hence be given

r hi + r lo = 2 M • 2 i 1 •2 -7 • 2 i 2 •2 -14 • p(u) • • (1 + ε reconstr) • (1 + ε table) • (1 + ε eval) = 2 M • 2 i 1 •2 -7 • 2 i 2 •2 -14 • 2 u-∆ •2 ∆ • (1 + ε reconstr) • (1 + ε table) • (1 + ε eval) • (1 + ε approx) = 2 n•(E+ℓ hi +ℓ lo) • (1 + ε 1)
Herein, ε 1 is bounded by 08 and |∆| ≤ 2 -78 , this gives |ε 1 | ≤ 2 -60. 5 .

|ε 1 | ≤ ε reconstr + ε table + ε eval + ε approx + 2 • ∆ + O ε 2 With |ε reconstr | ≤ 3 • 2 -64 , |ε table | ≤ 3 • 2 -64 , |ε eval | ≤ 4 • 2 -64 , |ε approx | ≤ 2 -62.
Additionally, we obtain for E + ℓ hi + ℓ lo : These bounds eventually yield to

E + ℓ hi + ℓ lo = E + logtblr hi [m] + logtblr lo [m] + p(z) + δ eval + δ reconstr = E + log 2 (r) + log 2 (1 + z) + δ table + δ approx + δ eval + δ reconstr = log 2 (x) + δ table + δ approx + δ eval + δ reconstr = log 2 (x) + δ Since |δ approx | ≤ 2 -69.49 , |δ eval | ≤ -log 2 (1 -2 -8.886) • 3 • 2 -64 ≤ 2 -70.
r hi + r lo = 2 n•(ℓ hi +ℓ lo) • (1 + ε 1) = 2 n•log 2 (x) • 2 n•δ • (1 + ε 1) = x n • (1 + ε f irststep)
With n ≤ 735, this gives

|ε f irststep | ≤ 2 735•2 -68.9 • 1 + 2 -60.5 -1 ≤ 2 -59.17 .
For the second step, a similar error bound computation can be performed. One deduces that the overall relative error ε 2 of the second step is bounded by |ε 2 | ≤ 2 -116 . This is sufficient for guaranteeing correct rounding for n up to 735.

Comparisons and tests

In this section, we report timings for the various algorithms described above. The algorithms have been implemented on the Intel/HP Itanium architecture, using the Intel ICC compiler3 . We compare the following programs. • IteratedProductPower: our implementation follows Algorithm 5 strictly.

• Two-step IteratedProductPower: for the first, "fast" step we use Algorithm 6, and if needed, for the "accurate" step we use Algorithm 5 (see Subsection 3.5).

• IteratedProductPower and two-step IteratedProductPower with constant n: these implementations are the same as the two previous ones, except that the exponent n is fixed a priori (see Subsection 3.6). To take this information into account, a different function has been implemented for each exponent n considered. In the experiments reported hereafter, we consider exponents n ranging from 3 to 600: we have used a code generator to automatically generate the C code for these 571 functions. Since all the branches are resolved a priori, it also allows us to perform some obvious optimizations, without any (possibly costly) additional branch in the generated C code. For instance, at the first iteration of the loop in 5, since we know that v = 0, the statement (u, v) := DblMult (u, v, u, v) is replaced by (u, v) := F ast2M ult (u, v).

• Log-exp algorithm described in Section 4.

First we consider the average timings for computing x n rounded to the nearest floatingpoint value. For each n from 3 to 600, we compute the average execution time for 16384 double-precision arguments randomly generated in the interval [1,[START_REF]IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard[END_REF]. We report on Figure 3 the average timings over these 16384 arguments with respect to n.

We also report on Figure 4 the worst case timings measured over the 16384 arguments tested. These worst case timings are mainly relevant for functions based on the two-step approach. Anyway we also recall on the figure the timing for the other functions for comparison purpose. Finally, the timings for some typical values of the exponent n are reported in Table 5: the timings for each "step" observed on the graphics of Figures 3 and4 can be read in this table.

From these timings, we can see that in the worst cases, the implementations based on iterated products are always more efficient than the one based on the log-exp. Moreover, if we consider the average timings reported on Figure 3 and in Table 5, we can do the following observations.

• The average and worst case timings for the log-exp implementation are constant with respect to n, with an average execution time of about 80 clock cycles and a worst case execution time of 236 cycles.

• The straightforward (one-step) IteratedProductPower algorithm is more efficient on average than the log-exp only for n ≤ 9

• The implementations of the two-step IteratedProductPower algorithm with n fixed are significantly more efficient than the log-exp approach as long as n ≤ 128.

Conclusions

We have introduced several algorithms for computing x n , where x is a double-precision floating-point number, and n is an integer, 3 ≤ n ≤ 626. Our multiplication-based algorithms require the availability of a fused multiply-add (FMA) instruction, and a double-extended format for intermediate calculations.

After our experiments, the best choice, depending on the order of magnitude of the exponent n, on whether n is known at compile-time or not, and on whether one is interested in minimizing the average execution time or the worst case execution time:

• if one is interested in worst case performance, then Algorithm 5 (IteratedProduct-Power) is preferable (at least, up to n = 626, since we do not have a proof that our algorithms work for larger values);

• if one is interested in average case performance and n is not a constant then the two-step IteratedProductPower algorithm should be used for n less than around 60, and the log-exp algorithm should be used for larger values of n;

• if one is interested in average case performance and n is a constant then the "specialized" two-step IteratedProductPower algorithm should be used for n less than around 250, and the log-exp algorithm should be used for larger values of n.

Algorithm 1 (

 1 Fast2Sum(a,b)) s := RN (a + b); z := RN (s -a); t := RN (b -z);

Figure 2 :

 2 Figure 2: Two step exponential of logarithm approach

 algorithm IteratedProductPower, two-step IteratedProductPower, two-step, n constant

Figure 3 :

 3 Figure 3: Average timings.

Figure 4 :

 4 Figure 4: Worst timings.

 , 505, 507, 508, 519, 525, 537, 540, 544, 551, 552, 553, 556, 563, 564, 568, 572, 575, 583, 593, 595, 597, 601, 603, 613, 619, 620, 625, 627, 630, 631, 633, 636, 640, 641, 648, 650, 652, 654, 662, 667, 670, 679, 684, 686, 687, 702, 705, 709, 710, 716, 720, 721, 727 6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145, 151, 153, 169, 176, 177,

Table 3

 3 gives bounds on |α| for several values of n assuming the algorithm is realized in double-extended precision. As expected, we are 22 bits more accurate. n -log 2 (α max)

	n -log 2 (α max)

Table 2 :

 2 Binary logarithm of the relative accuracy (-log 2 (α max)), for various values of n assuming algorithm IteratedProductPower is used in double precision.

	n -log 2 (α max)	n -log 2 (α max)
	3	124.19	1000	115.22
	4	123.60	10,000	111.90
	5	123.19	100,000	108.58
	10	122.02	1,000,000	105.26
	20	120.94 10,000,000	101.93
	30	120.33 100,000,000	98.61
	40	120.90	2 32	93.19
	50	119.57		
	100	118.56		
	200	117.55		
	586	116.0003		
	587	115.9978		

Table 3 :

 3 Binary logarithm of the relative accuracy (-log 2 (α max)), for various values of n assuming algorithm IteratedProductPower is implemented in double-extended precision.

 7 , |δ table | ≤ 2 -128 and |δ reconstr | ≤ 2 -117 , we get |δ| ≤ 2 -68.9 .

Table 5 :

 5 Timings (in clock cycles) for tested functions.

	n Iterated	Two-step		Log-exp	Iterated	Two-step Iterated
	Product		Iterated			(n fixed)	(n fixed)
	Power	avg case wst case avg case wst case		avg case wst case
	3 53	25.3	73	80.1	326	28	17.1
	4 77	29.5	101	79.5	326	32	21.1
	5 77	29.6	101	79.4	326	48	22.2
	6 77	29.7	101	80.0	326	56	21.3
	7 77	29.6	101	79.7	326	56	22.3
	8 101	35.7	130	80.2	326	56	26.5
	9 101	35.5	130	79.7	326	72	26.8
	10 101	35.4	130	79.6	326	80	26.8
	15 101	35.5	130	79.7	326	80	26.9
	16 125	43.8	160	79.9	326	80	31.6
	17 125	43.8	160	79.6	326	96	32.1
	18 125	43.7	160	79.5	326	104	32.3
	31 125	44.0	160	80.0	326	104	32.5
	32 149	55.8	191	79.7	326	104	37.4
	33 149	55.9	191	80.0	326	120	39.4
	34 149	56.0	191	79.4	326	128	39.0
	63 149	56.1	191	80.0	326	128	40.0
	64 177	78.0	229	80.0	326	128	48.7
	65 177	77.4	229	80.2	326	144	51.2
	66 177	77.9	229	80.3	326	152	51.7
	127 177	77.3	231	79.4	326	152	52.2
	128 201	109.1	257	79.6	326	152	68.9
	129 201	109.3	257	79.8	326	168	73.8
	130 201	109.6	257	79.8	326	176	75.2
	255 201	109.8	257	79.6	326	176	76.1
	256 225	119.5	285	79.4	326	176	78.2
	257 225	225.0	285	79.8	326	192	192.0
	258 225	225.0	285	80.1	326	200	200.0
	511 225	225.0	285	79.4	326	200	199.0
	512 249	249.0	285	79.8	326	200	200.0
	513 249	249.0	285	79.9	326	216	216.0
	514 249	249.0	285	80.3	326	224	224.0
	600 249	249.0	285	79.6	326	224	224.0

Work has started towards formalized proofs (in the EVA-Flo project).

We did not take subnormals into account, but one can prove that the worst cases in all rounding modes can also be used to round subnormals correctly.

We used ICC v10.1, on an Itanium 2 based computer.