
HAL Id: ensl-00278430
https://ens-lyon.hal.science/ensl-00278430v1

Preprint submitted on 13 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Correctly Rounded Integer Powers in
Floating-Point Arithmetic

Jean-Michel Muller, Peter Kornerup, Christoph Lauter, Vincent Lefèvre,
Nicolas Louvet

To cite this version:
Jean-Michel Muller, Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas Louvet. Computing
Correctly Rounded Integer Powers in Floating-Point Arithmetic. 2008. �ensl-00278430�

https://ens-lyon.hal.science/ensl-00278430v1
https://hal.archives-ouvertes.fr

Computing Correctly Rounded Integer Powers

in Floating-Point Arithmetic∗

Peter Kornerup Christoph Lauter Nicolas Louvet
Vincent Lefèvre Jean-Michel Muller †

May 12, 2008

Abstract

We introduce several algorithms for accurately evaluating powers to a positive in-
teger in floating-point arithmetic, assuming a fused multiply-add (fma) instruction is
available. We aim at always obtaining correctly-rounded results in round-to-nearest
mode, that is, our algorithms return the floating-point number that is nearest the
exact value.

1 Introduction

We deal with the implementation of the integer power function in floating-point arith-
metic. In the following, we assume a radix-2 floating-point arithmetic that follows the
IEEE-754 standard for floating-point arithmetic. We also assume that a fused multiply-
and-add (fma) operation is available, and that the input as well as the output values of
the power function are not subnormal numbers, and are below the overflow threshold (so
that we can focus on the powering of the significands only).

An fma instruction allows one to compute ax± b, where a, x and b are floating-point
numbers, with one final rounding only. Examples of processors with an fma are the IBM
PowerPC and the Intel/HP Itanium [7].

An important case dealt with in the paper is the case when an internal format, wider
than the target format, is available. For instance, to guarantee – in some cases – correctly
rounded integer powers in double precision arithmetic using our algorithms based on
iterated products, we will have to assume that a double-extended precision is available.
The examples will consider that it has a 64-bit precision, which is the minimum required
by the IEEE-754 standard.

The only example of currently available processor with an fma and a double-extended
precision format is Intel and HP’s Itanium Processor [22, 7]. And yet, since the fma

∗This is Research Report No RR-2008-15 of Laboratoire LIP. LIP is a joint laboratory of CNRS, École
Normale Supérieure de Lyon, INRIA and Université de Lyon
†Peter Kornerup is with SDU, Odense, Denmark; Vincent Lefèvre, Christoph Lauter, Nicolas Louvet

and Jean-Michel Muller are with Laboratoire LIP, CNRS/ENS Lyon/INRIA/Université de Lyon, Lyon,
France.

1

operation will be specified in the revised version of the IEEE-754 standard [1], it is very
likely that more processors in the future will offer that combination of features.

The original IEEE-754 standard [2] for radix-2 floating-point arithmetic (as well as
its follower, the IEEE-854 radix-independent standard [3], and the forthcoming revised
standard) require that the four arithmetic operations and the square root should be
correctly rounded. In a floating-point system that follows the standard, the user can
choose an active rounding mode from:

• rounding towards −∞: RD (x) is the largest machine number less than or equal
to x;

• rounding towards +∞: RU (x) is the smallest machine number greater than or
equal to x;

• rounding towards 0: RZ (x) is equal to RD (x) if x ≥ 0, and to RU (x) if x < 0;

• rounding to nearest: RN (x) is the machine number that is the closest to x (with a
special convention if x is exactly between two machine numbers: the chosen number
is the “even” one, i.e., the one whose last significand bit is a zero).

When a◦ b is computed, where a and b are floating-point numbers and ◦ is +, −, × or
÷, the returned result is what we would get if we computed a ◦ b exactly, with “infinite”
precision and rounded it according to the active rounding mode. The default rounding
mode is round-to-nearest. This requirement is called correct rounding. Among its many
interesting properties, one can cite the following result (due to Dekker [13]).

Theorem 1 (Fast2Sum algorithm) Assume the radix r of the floating-point system
being considered is 2 or 3, and that the used arithmetic provides correct rounding with
rounding to nearest. Let a and b be floating-point numbers, and assume that the exponent
of a is larger than or equal to that of b. The following algorithm computes two floating-
point numbers s and t that satisfy:

• s+ t = a+ b exactly;

• s is the floating-point number that is closest to a+ b.

Algorithm 1 (Fast2Sum(a,b))

s := RN (a+ b);
z := RN (s− a);
t := RN (b− z);

Note that the information “the exponent of a is larger than or equal to that of b”
cannot be checked efficiently, but if |a| ≥ |b|, then the exponent of a will be larger than
or equal to that of b.

If no information on the relative orders of magnitude of a and b is available, there is
an alternative algorithm due to Knuth [15] and Møller [24], called 2Sum. It requires 6
operations instead of 3 for the Fast2Sum algorithm, but on any modern computer, the 3
additional operations cost significantly less than a comparison followed by a branching:
on current pipelined architectures, an if statement with an wrong branch prediction may
cause the instruction pipeline to drain.

2

Algorithm 2 (2Sum(a,b))

s = RN (a+ b);
b′ = RN (s− a);
a′ = RN (s− b′);
δb = RN (b− b′);
δa = RN (a− a′);
t = RN (δa + δb).

The fma instruction allows one to design convenient software algorithms for correctly
rounded division and square root. It also has the following interesting property. From
two input floating-point numbers a and b, the following algorithm computes c and d such
that c+ d = ab, and c is the floating-point number that is nearest ab.

Algorithm 3 (Fast2Mult(a,b))

c := RN (ab);
d := RN (ab− c);

Performing a similar calculation without a fused multiply-add operation is possible with
an algorithm due to Dekker [13], but this requires 17 floating-point operations instead
of 2.

Transformations such as 2Sum, Fast2Sum and Fast2Mult were called error-free trans-
formations by Rump [26].

In the sequel of the paper, we examine various methods for getting very accurate
(indeed: correctly rounded, in round-to-nearest mode) integer powers. We first deal with
methods based on repeated multiplications (that is, we simply use the fact that xn is
x × x × · · · × x), where the arithmetic operations are performed with a larger accuracy
using algorithms such as Fast2Sum and Fast2Mult. We then investigate methods based
on the identity

xn = 2n log2(x),

and that use techniques we have developed when building the CRlibm library of correctly
rounded mathematical functions [8, 12].

2 On correct rounding of functions

V. Lefèvre introduced a new method for finding hardest-to-round cases for evaluating a
regular unary function [19, 18, 20]. That method allowed Lefèvre and Muller to give
such cases for the most familiar elementary functions [21]. Recently, Lefèvre adapted his
software to the case of functions xn, where n is an integer; this consisted in supporting a
parameter n.

Let us briefly summarize Lefèvre’s method. The tested domain is split into intervals,
where the function can be approximated by a polynomial of a quite small degree and an
accuracy of about 90 bits. The approximation does not need to be very tight, but it must
be computed quickly; that is why Taylor’s expansion is used. For instance, by choosing
intervals of length 1/8192 of a binade, the degree is 3 for n = 3, it is 9 for n = 70, and
12 to 13 for n = 500. These intervals are split into subintervals where the polynomial
can be approximated by polynomials of smaller degrees, down to 1. How intervals are

3

split exactly depends on the value of n (the parameters can be chosen empirically, thanks
to timing measures). Determining the approximation for the following subinterval can
be done using fixed-point additions in a precision up to a few hundreds of bits, and
multiplications by constants. A filter of sub-linear complexity is applied on each degree-
1 polynomial, eliminating most input arguments. The remaining arguments (e.g., one
over 232) are potential worst cases, that need to be checked in a second step by direct
computation in a higher accuracy.

Because of a reduced number of input arguments, the second step is much faster than
the first step and can be run on a single machine. The first step (every computation up to
the filter) is parallelized. The intervals are independent, so that the following conventional
solution has been chosen: A server distributes intervals to the clients running on a small
network of desktop machines.

All approximation errors are carefully bounded, either by interval arithmetic or by
static analysis. Additional checks for missing or corrupt data are also done in various
places. So, the final results are guaranteed (up to undetected software bugs and errors in
paper proofs1).

Concerning the particular case of xn, one has (2x)n = 2nxn. Therefore if two numbers
x and y have the same significand, their images xn and yn also have the same significand.
So only one binade needs to be tested2, [1, 2) in practice.

For instance, in double-precision arithmetic, the hardest to round case for the function
x458 corresponds to

x = 1.0000111100111000110011111010101011001011011100011010

we have

x458 = 1.0001111100001011000010000111011010111010000000100101
︸ ︷︷ ︸

53 bits

1

00000000 · · · 00000000
︸ ︷︷ ︸

61 zeros

1110 · · · × 238

which means that xn is extremely close to the exact middle of two consecutive double-
precision numbers. There is a run of 61 consecutive zeros after the rounding bit. This
case is the worst case for all values of n between 3 and 733.

This worst case has been obtained by an exhaustive search using the method described
above, after a total of 646300 hours of computation for the first step (sum of the times
on each CPU core). The time needed to test a function xn increases with n, as the error
on the approximation by a degree-1 polynomial on some fixed interval increases. On the
current network (when all machines are available), for n ≃ 600, it takes between 7 and
8 hours for each power function. On a reference 2.2-Ghz AMD Opteron machine, one
needs an estimated time of 90 hours per core to test xn with n = 10, about 280 hours for
n = 40, and around 500 hours for any n between 200 and 600.

Table 1 gives the longest runs of identical bits after the rounding bit for 3 ≤ n ≤ 733.

1Work has started towards formalized proofs (in the EVA-Flo project).
2We did not take subnormals into account, but one can prove that the worst cases in all rounding

modes can also be used to round subnormals correctly.

4

n k

32 48
76, 81, 85, 200, 259, 314, 330, 381, 456, 481, 514, 584, 598, 668 49
9, 15, 16, 31, 37, 47, 54, 55, 63, 65, 74, 80, 83, 86, 105, 109, 126, 130, 148, 156, 165, 168,
172, 179, 180, 195, 213, 214, 218, 222, 242, 255, 257, 276, 303, 306, 317, 318, 319, 325, 329,
342, 345, 346, 353, 358, 362, 364, 377, 383, 384, 403, 408, 417, 429, 433, 436, 440, 441, 446,
452, 457, 459, 464, 491, 494, 500, 513, 522, 524, 538, 541, 547, 589, 592, 611, 618, 637, 646,
647, 655, 660, 661, 663, 673, 678, 681, 682, 683, 692, 698, 703, 704

50

10, 14, 17, 19, 20, 23, 25, 33, 34, 36, 39, 40, 43, 46, 52, 53, 72, 73, 75, 78, 79, 82, 88, 90, 95,
99, 104, 110, 113, 115, 117, 118, 119, 123, 125, 129, 132, 133, 136, 140, 146, 149, 150, 155,
157, 158, 162, 166, 170, 174, 185, 188, 189, 192, 193, 197, 199, 201, 205, 209, 210, 211, 212,
224, 232, 235, 238, 239, 240, 241, 246, 251, 258, 260, 262, 265, 267, 272, 283, 286, 293, 295,
296, 301, 302, 308, 309, 324, 334, 335, 343, 347, 352, 356, 357, 359, 363, 365, 371, 372, 385,
390, 399, 406, 411, 412, 413, 420, 423, 431, 432, 445, 447, 450, 462, 465, 467, 468, 470, 477,
482, 483, 487, 490, 496, 510, 518, 527, 528, 530, 534, 543, 546, 548, 550, 554, 557, 565, 567,
569, 570, 580, 582, 585, 586, 591, 594, 600, 605, 607, 609, 610, 615, 616, 622, 624, 629, 638,
642, 651, 657, 665, 666, 669, 671, 672, 676, 680, 688, 690, 694, 696, 706, 707, 724, 725, 726,
730

51

3, 5, 7, 8, 22, 26, 27, 29, 38, 42, 45, 48, 57, 60, 62, 64, 68, 69, 71, 77, 92, 93, 94, 96, 98, 108,
111, 116, 120, 121, 124, 127, 128, 131, 134, 139, 141, 152, 154, 161, 163, 164, 173, 175, 181,
182, 183, 184, 186, 196, 202, 206, 207, 215, 216, 217, 219, 220, 221, 223, 225, 227, 229, 245,
253, 256, 263, 266, 271, 277, 288, 290, 291, 292, 294, 298, 299, 305, 307, 321, 322, 323, 326,
332, 349, 351, 354, 366, 367, 369, 370, 373, 375, 378, 379, 380, 382, 392, 397, 398, 404, 414,
416, 430, 437, 438, 443, 448, 461, 471, 474, 475, 484, 485, 486, 489, 492, 498, 505, 507, 508,
519, 525, 537, 540, 544, 551, 552, 553, 556, 563, 564, 568, 572, 575, 583, 593, 595, 597, 601,
603, 613, 619, 620, 625, 627, 630, 631, 633, 636, 640, 641, 648, 650, 652, 654, 662, 667, 670,
679, 684, 686, 687, 702, 705, 709, 710, 716, 720, 721, 727

52

6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145, 151, 153, 169, 176, 177,
194, 198, 204, 228, 243, 244, 249, 250, 261, 268, 275, 280, 281, 285, 297, 313, 320, 331, 333,
340, 341, 344, 350, 361, 368, 386, 387, 395, 401, 405, 409, 415, 418, 419, 421, 425, 426, 427,
442, 449, 453, 454, 466, 472, 473, 478, 480, 488, 493, 499, 502, 506, 509, 517, 520, 523, 526,
532, 533, 542, 545, 555, 561, 562, 571, 574, 588, 590, 604, 608, 614, 621, 626, 632, 634, 639,
644, 653, 658, 659, 664, 677, 689, 701, 708, 712, 714, 717, 719

53

4, 18, 44, 49, 50, 97, 100, 101, 103, 142, 167, 178, 187, 191, 203, 226, 230, 231, 236, 273, 282,
284, 287, 304, 310, 311, 312, 328, 338, 355, 374, 388, 389, 391, 393, 394, 400, 422, 428, 434,
435, 439, 444, 455, 469, 501, 504, 511, 529, 535, 536, 549, 558, 559, 560, 566, 573, 577, 578,
581, 587, 596, 606, 612, 623, 628, 635, 643, 649, 656, 675, 691, 699, 700, 711, 713, 715, 718,
731, 732

54

24, 28, 30, 41, 56, 67, 87, 122, 135, 143, 147, 159, 160, 190, 208, 248, 252, 264, 269, 270, 279,
289, 300, 315, 339, 376, 396, 402, 410, 460, 479, 497, 515, 516, 521, 539, 579, 599, 602, 617,
674, 685, 693, 723, 729

55

89, 106, 171, 247, 254, 278, 316, 327, 348, 360, 424, 451, 463, 476, 495, 512, 531, 645, 697,
722, 728

56

11, 84, 91, 234, 237, 274, 407, 576, 695 57
35, 144, 233, 337, 733 58
51, 336 59
503 60
458 61

Table 1: Maximal length k of the runs of identical bits after the rounding bit (assuming
the target precision is double precision) in the worst cases for n from 3 to 733.

5

3 Algorithms based on repeated floating-point mul-

tiplications

3.1 Using a double-double multiplication algorithm

Algorithms Fast2Sum and Fast2Mult both provide double-precision results of value (x+y)
represented in the form of pairs (x, y). In the following we need products of numbers rep-
resented in this form. However, we will be satisfied with approximations to the products,
discarding terms of the order of the product of the two low-order terms. Given two
double-precision operands (ah + aℓ) and (bh + bℓ) the following algorithm DblMult com-
putes (x, y) such that (x + y) = [(ah + aℓ)(bh + bℓ)](1 + δ) where the relative error δ is
given by Theorem 2 below.

Algorithm 4 (DblMult(ah,aℓ,bh,bℓ))

t1h := RN (ahbh);
t2 := RN (ahbℓ);
t1ℓ := RN (ahbh − t1h);
t3 := RN (aℓbh + t2);
t4 := RN (t1ℓ + t3);
ch := RN (t1h + t4);
t5 := RN (ch − t1h);
cℓ := RN (t4 − t5);

The result to be returned is (ch, cℓ).

Theorem 2 Let ε = 2−p, where p is the precision of the radix-2 floating-point system
used. If |aℓ| ≤ 2−p|ah| and |bℓ| ≤ 2−p|bh| then the returned value (x, y) of function
DblMult(ah, aℓ, bh, bℓ) satisfies

x+ y = (ah + aℓ)(bh + bℓ)(1 + η),

with
|η| ≤ 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6.

Notes:

1. as soon as p ≥ 5, we have |η| ≤ 8ε2;
2. in the case of single precision (p = 24), |η| ≤ 7.000002ε2;
3. in the case of double precision (p = 53), |η| ≤ 7.000000000000002ε2.

Proof:
Note that (t1h, t1ℓ) is Fast2Mult(ah, bh) and (ch, cℓ) is Fast2Sum(t1h, t4), so that:

• t1h + t1ℓ = ahbh exactly;

• ch + cℓ = t1h + t4 exactly.

Now, let us analyze the other operations. In the following, the εi’s are terms of absolute
value less than or equal to ε = 2−p. First, notice that aℓ = ε4ah and bℓ = ε5bh. Since the
additions and multiplications are correctly rounded (to the nearest) operations:

6

1. t2 = ahbℓ(1 + ε1);

2.
t3 = (aℓbh + t2)(1 + ε2)

= ahbℓ + aℓbh + ahbh(ε1ε5 + ε2ε4 + ε2ε5 + ε1ε2ε5)
= ahbℓ + aℓbh + ahbh(3ε26 + ε37)

3.
t4 = (t1ℓ + t3)(1 + ε8)

= t1ℓ + ahbℓ + aℓbh + ahbh(3ε26 + ε37)
+t1ℓε8 + ahbh(ε4ε8 + ε5ε8)
+ahbh(3ε26 + ε37)ε8

but, from (t1h, t1ℓ) = Fast2Mult(ah, bh), we deduce t1ℓ = ahbhε9, therefore

t4 = t1ℓ + ahbℓ + aℓbh
+ahbh(3ε26 + ε37 + ε8ε9 + ε4ε8 + ε5ε8 + 3ε26ε8 + ε37ε8)

= t1ℓ + ahbℓ + aℓbh + ahbh(6ε210 + 4ε311 + ε412).

4.
ch + cℓ = t1h + t4

= ahbh + ahbℓ + aℓbh + ahbh(6ε210 + 4ε311 + ε412)
= ahbh + ahbℓ + aℓbh + (aℓbℓ − ε4ε5ahbh) + ahbh(6ε210 + 4ε311 + ε412),
= (ah + aℓ)(bh + bℓ) + ahbh(7ε210 + 4ε311 + ε412).

Now, from ah = (ah + aℓ)(1 + ε14) and bh = (bh + bℓ)(1 + ε15), we get

ahbh = (ah + aℓ)(bh + bℓ)(1 + ε14 + ε15 + ε14ε15),

from which we deduce

ch + cℓ = (ah + aℓ)(bh + bℓ)(1 + 7ε216 + 18ε317 + 16ε418 + 6ε519 + ε620).

�

3.2 The IteratedProductPower algorithm

Algorithm 5 (IteratedProductPower(x, n), n ≥ 1)

i := n;
(h, ℓ) := (1, 0);
(u, v) := (x, 0);
while i > 1 do

if (imod 2) = 1 then
(h, ℓ) := DblMult (h, ℓ, u, v);

end;
(u, v) := DblMult (u, v, u, v);
i := ⌊i/2⌋;

end do;
return DblMult (h, ℓ, u, v);

Due to the approximations performed in algorithm DblMult , terms corresponding to
the product of low order terms are not included. A thorough error analysis is performed
below. The number of floating-point operations used by the IteratedProductPower algo-
rithm is between 8(1 + ⌊log2(n)⌋) and 8(1 + 2 ⌊log2(n)⌋).

7

3.3 Error of algorithm IteratedProductPower

Theorem 3 The two values ch and cℓ returned by algorithm IteratedProductPower satisfy

h+ ℓ = xn(1 + α),

with
(1− |η|)n−1 ≤ 1 + α ≤ (1 + |η|)n−1

where |η| ≤ 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6 is the same value as in Theorem 2.

Proof: Algorithm IteratedProductPower computes approximations to powers of x, using
xi+j = xixj. By induction, one easily shows that the approximation to xk is of the form
xk(1 + βk), where (1− |η|)k−1 ≤ (1 + βk) ≤ (1 + |η|)k−1. If we call ηi+j the relative error
(obtained from Theorem 2) when multiplying together the approximations to xi and xj,
the induction follows from

(1−η)i−1(1−η)j−1(1−η) ≤
(

xi(1 + βi)
) (

xj(1 + βj)
)

(1+ηi+j) ≤ (1+η)i−1(1+η)j−1(1+η).

�

Table 2 gives bounds on |α| for several values of n (note that the bound is an increasing
value of n), assuming the algorithm is used in double precision.

Define the significand of a non-zero real number u to be

u

2⌊log2 |u|⌋
.

Define αmax as the bound on |α| obtained for a given value of n. From

xn(1− αmax) ≤ h+ ℓ ≤ xn(1 + αmax),

we deduce that the significand of h + ℓ is within 2αmax from xn/2⌊log2 |h+ℓ|⌋. From the
results given in Table 2, we deduce that for all practical values of n the significand of h+ℓ
is within much less than 2−53 from xn/2⌊log2 |h+ℓ|⌋ (indeed, to get 2αmax larger that 2−53,
we need n > 249). This means that RN (h+ ℓ) is within less than one ulp from xn, more
precisely,

Theorem 4 If algorithm IteratedProductPower is implemented in double precision, then
RN (h+ ℓ) is a faithful rounding of xn, as long as n ≤ 249.

Moreover, for n ≤ 108, RN (h+ ℓ) is within 0.50000008 ulps from the exact value: we
are very close to correct rounding (indeed, we almost always return a correctly rounded
result), yet we cannot guarantee correct rounding, even for the smallest values of n.
This requires a much better accuracy, as shown in Section 3.4. To guarantee a correctly
rounded result in double precision, we will need to run algorithm IteratedProductPower
in double-extended precision.

Table 3 gives bounds on |α| for several values of n assuming the algorithm is realized
in double-extended precision. As expected, we are 22 bits more accurate.

8

n − log2(αmax) n − log2(αmax)
3 102.19 1000 93.22
4 101.60 10,000 89.90
5 101.19 100,000 86.58

10 100.02 1,000,000 83.26
20 98.94 10,000,000 79.93
30 98.33 100,000,000 76.61
40 98.90 232 71.19
50 97.57

100 96.56
200 95.55

Table 2: Binary logarithm of the relative accuracy (− log2(αmax)), for various values of n
assuming algorithm IteratedProductPower is used in double precision.

n − log2(αmax) n − log2(αmax)
3 124.19 1000 115.22
4 123.60 10,000 111.90
5 123.19 100,000 108.58

10 122.02 1,000,000 105.26
20 120.94 10,000,000 101.93
30 120.33 100,000,000 98.61
40 120.90 232 93.19
50 119.57

100 118.56
200 117.55
586 116.0003
587 115.9978

Table 3: Binary logarithm of the relative accuracy (− log2(αmax)), for various values of n
assuming algorithm IteratedProductPower is implemented in double-extended precision.

3.4 Getting correctly rounded values with IteratedProduct-
Power

We are interested in getting correctly rounded results in double precision. To achieve this
we assume that algorithm IteratedProductPower is executed in double extended precision.
The algorithm returns two double-extended numbers h and cℓ such that

xn(1− αmax) ≤ h+ ℓ ≤ xn(1 + αmax),

where αmax is given in Table 3.
In the following we shall distinguish two roundings: RNe means round-to-nearest in

extended double precision and RNd is round-to-nearest in double precision. Let ulp(·)
denote “unit-in-last-position” such that |x− RN (x)| ≤ 1

2
ulp(x).

Define a breakpoint as the exact midpoint of two consecutive double precision numbers.
RNd (ch + cℓ) will be equal to RNd (xn) if and only if there is no breakpoint between xn

9

and ch + cℓ.
The worst cases obtained (given in Table 1, the very worst case for n ≤ 733 being

attained for n = 458) show that:

• if x is a double-precision number, and if 3 ≤ n ≤ 586, then the significand y of xn is
always at a distance larger than 2−115 from the breakpoint µ (see Figure 1) where
the distance |y − µ| ≥ 2−(53+61+1) = 2−115;

• if 587 ≤ n ≤ 733 then the significand y of xn is always at a distance larger than
2−(53+55+1) = 2−109 from a breakpoint.

a 2−52 µ = (a+ 1
2)2−52 (a+ 1)2−52

❄

y(∼ x458)

Figure 1: Position of the hardest to round case y = x458 within rounding interval
[a2−52; (a+ 1)2−52] with breakpoint µ = (a+ 1

2
)2−52, for significand defined by integer a.

We know that the significand of h+ ℓ is within 2αmax from that of xn, where αmax (as
given by its binary logarithm) is listed in Table 3. For all values of n less than or equal
to 586, we have 2αmax ≤ 2−115, and for 587 ≤ n ≤ 733, we have 2αmax ≤ 2−109. Thus
RNd (h+ ℓ) = RNd (xn). We therefore get the following result:

Theorem 5 If algorithm IteratedProductPower is performed in double-extended preci-
sion, and if 3 ≤ n ≤ 733, then RNd (h+ ℓ) = RNd (xn): Hence by rounding h+ ℓ to the
nearest double-precision number, we get a correctly rounded result.

Now, two important remarks:

• We do not have the worst cases for n > 733, but from probabilistic arguments we
strongly believe that the lengths of the largest runs of consecutive bits after the
rounding bit will be of the same order of magnitude (i.e., around 50) for some range
of n above 733. However, it is unlikely that we will be able to show correct rounding
in double precision for values of n larger than 1000.

• On an Intel Itanium processor, it is possible to directly add two double-extended pre-
cision numbers and round the result to double precision without a “double rounding”
(i.e., without having an intermediate sum rounded to double-extended precision).
Hence Theorem 5 can directly be used. Notice that the draft revised standard IEEE
754-R (see http://754r.ucbtest.org/) includes the fma as well as rounding to any
specific destination format, independent of operand formats.

3.5 Two-step algorithm using double-extended precision

Now we suggest another approach: first compute an approximation to xn using double-
extended precision and a straightforward, very fast, algorithm. Then check if this approx-
imation suffices to get RN (xn). If it does not, use the IteratedProductPower algorithm
presented above.

Let us first give the algorithm. All operation are done in double extended precision.

10

Algorithm 6 (DbleXtendedPower(x, n), n ≥ 1)

i := n;
pow := 1;
u := w;
while i > 1 do

if (imod 2) = 1 then
pow := RN e(pow · u);

end;
u := RN e(u · u);
i := ⌊i/2⌋;

end do;
pow := RN e(pow · u);
return pow;

Using the very same proof as for Theorem 3, one easily shows the following result

Theorem 6 The final result pow of Algorithm DbleXtendedPower satisfies

pow = xn(1 + α),

where
(1− 2−64)n−1 ≤ 1 + α ≤ (1 + 2−64)n−1.

n − log2(|αmax|)
3 63
4 62.41
5 62
6 61.67

10 60.83
15 60.19
20 59.41
30 59.14
32 59.04
33 58.9999999999999999987
40 58.71
50 58.38

100 57.37
1000 54.03
1024 54.001
1025 53.999999999999999959996

Table 4: Maximum value of the parameter |α| of Theorem 6, for various values of n.

Table 4 could be used to show that up to n = 1024, algorithm 6 (run in double-
extended precision) can be used to guarantee faithful rounding (in double precision).
What interests us here is correct rounding. From Table 4, it follows that if n ≤ 32,

11

then α < 2−59, which means that the final result pow of Algorithm DbleXtendedPower
is within 253 × 2−59 = 1/64 ulp from xn. This means that if the bits 54 to 59 of pow are
not 100000 or 011111, then rounding pow to the nearest floating-point number will be
equivalent to rounding xn. Otherwise, if the bits 54 to 59 of pow are 100000 or 011111
(which might occur with probability close to 1/32), we will have to run a more accurate
yet slower algorithm, such as Algorithm IteratedProductPower.

3.6 When n is a constant

Very frequently n is a constant, i.e., n is known at compile-time. In such a case it is
possible to simplify the iterated product algorithm, as well as the 2-step algorithm (that
first uses Algorithm DbleXtendedPower and uses the other algorithm only if the double-
extended result does not make it possible to deduce a correctly rounded value). The
possible simplifications are:

• the loops can be unrolled, there is no longer any need to perform the computations
“i := ⌊i/2⌋”, nor to do tests on variable i;

• moreover, for the first values of n, addition chains to obtain the minimal number of
multiplications needed to compute a power are known. This can be used for opti-
mizing the algorithm. For instance, for n up to 10001, such addition chains can be
obtained from http://www.research.att.com/~njas/sequences/b003313.txt.

4 Algorithm based on logarithms and exponentials

With binary asymptotic complexity in mind [4], it might seem silly to compute xn by

xn = 2n·log2 x.

However, in this section we are going to show that on actual superscalar and pipelined
hardware, if n is large enough, the situation is different. For that purpose we consider
an implementation on the Itanium architecture. Itanium offers both double extended
precision and the FMA instruction, as well as some other useful operations. These features
permit achieving high performance. In the example, for n ≤ 735, the measured average
evaluation time for xn is equivalent to about 21 sequential multiplications on Itanium 2.

4.1 Basic layout of the algorithm

We combine the scheme for xn based on logarithms and exponentials with a two-step
approximation approach. This approach has already been proven efficient for common
correctly rounded elementary functions [14, 30, 9]. It is motivated by the rarity of hard-
to-round cases. In most cases, an approximation which is just slightly more accurate than
the final precision, suffices to ensure correct rounding. Only in rare cases, the function’s
result must be approximated up to the accuracy demanded by the worst cases [14, 30, 9].
There is a well-known and efficient test whether correct rounding is already possible with
small accuracy [30, 8].

We propose the scheme shown in Figure 2 for correctly rounding xn. The function
2n·log2(x) is first approximated with an accuracy of 2−59.17. These 6.17 guard bits with

12

respect to double precision make the hard-to-round-case probability as small as about
2 · 2−6.17 ≈ 2.8%. If rounding is not possible correct rounding is ensured by the second
step that provides an accuracy of 2−116.

Recompute exponential
of known multiplied logarithm

rel. error ≤ 2−117

Special cases

x =NaN
x = ±∞

x = 0, 1, 2

Special cases

Compute logarithm

Multiply logarithm by n

Compute exponential

Rounding test Easy cases

rel. error ≤ 2−60

abs. error δ ≤ 2−69.5

rel. error ≤ 2−117

Recompute logarithm

Compute abs. error δ
of first logarithmCorrect exponential

according to δ

Final rounding
Hard-to-round cases

F
ir

st
st

ep

Se
co

nd
st

ep

2.8%

97.2%

Figure 2: Two step exponential of logarithm approach

The design of the second step is particularly adapted to superscalar hardware. As the
approximation to the logarithm ℓ = log2 x+ δ computed at the first step is already avail-
able, it is possible to perform the computation of the accurate logarithm and exponential
in parallel. Considering

xn = 2n·log2 x = 2n·ℓ · 2n·(log2 x−ℓ),

we see that we can accurately approximate 2n·ℓ and ℓ′ = log2 x in parallel. The correc-
tion step, the multiplication of the exponential by 2n·(log2 x−ℓ) = 2n·(ℓ

′−ℓ) = 2n·δ can be
performed easily with a first order approximation: 2n·δ ≈ 1 + c · n · δ.

13

4.2 Implementation details and error estimates

Both the logarithm and the exponential approximation sub-algorithms follow the well-
known principles of table look-up and polynomial approximation. The algorithms imple-
mented are variants of the techniques presented in [29, 7, 16, 11]. Our implementation uses
about 8 kbytes of tables. The approximation polynomials have optimized floating-point
coefficients [5].

4.2.1 Logarithm

In both first and second step, the logarithm log2 x is based on the following argument
reduction:

log2 x = log2

(

2E ·m
)

= E + log2 (m · r)− log2 r

= E + log2 (1 + (m · r − 1))− log2 r

= E + log2 (1 + z) + log2 r

= E + p(z) + logtblr[m] + δ

In this argument reduction, the decomposition of x into E and m can be performed using
Itanium’s getf and fmerge instructions.

The value r is produced by Itanium’s frcpa instruction. This instruction gives an
approximate to the reciprocal of m with at least 8.886 valid bits [7]. The instruction
is based on a small table indexed by the first 8 bits of the significand (excluding the
leading 1) of x. This makes it possible to tabulate the values of log2 r in a table indexed
by these first 8 bits of the significand of m.

The reduced argument z can exactly be computed with an FMS:

z = RN e (m · r − 1) .

Indeed, as can easily be verified on the 256 possible cases, the frcpa instruction [7] returns
its result r on floating-point numbers with at most 11 leading non-zero significand bits.
Since x is a double, x · r holds on 53 + 11 = 64 bits, hence a double-extended precision
number. No rounding occurs on the subtraction x · r − 1 as per Sterbenz’ Lemma [28].

The exactness of the reduced argument z makes it possible to reuse it in the second,
more accurate step of the algorithm. It is worth to remark that the latency for obtaining
the reduced argument is small. It is produced by only 3 depended operations: fmerge,
frcpa and fms.

The tabulated values logtbl[m] for log2 r are stored as double-double-extended numbers
logtblrhi[m]+logtblrlo[m]. The absolute error of the entries with respect to the exact value
log2 r is bounded by 2−130. Both double-extended numbers of an entry are read in the
first step of the algorithm. The second step can reuse the values directly.

The magnitude of the reduced argument z is bounded as follows: we have r = 1
m
·

(1 + εr) with |εr| ≤ 2−8.886. Hence

z = m · r − 1 =
1
m
· (1 + εr) ·m− 1 = εr

is bounded by 2−8.886.

14

The function log2 (1 + z) is approximated using a polynomial of degree 6 for the first
step and of degree 12 for the second step. The corresponding absolute approximation er-
rors are bounded by 2−69.49 respectively 2−129.5. The polynomials have optimized floating-
point coefficients. We minimize the number of double-extended and double precision
numbers because Itanium can load doubles and single precision numbers faster [7, 23].

The approximation polynomials are evaluated using a mixture of Estrin and Horner
scheme [7, 25, 11, 27]. In the first step, double-extended precision is sufficient for obtaining
an absolute round-off error less than 2−70. In the second, accurate step, double-double-
extended arithmetic, based on variants of the DblMult , is used. This yields an absolute
round-off error less than 2−130.

Reconstruction of the value of log2 out of the polynomial approximation and the table
values is performed in double-double-extended arithmetic in both steps. The value of
log2 x is returned in three registers E, ℓhi and ℓlo. In the first step, a modified version of
the Fast2Sum algorithm is used that ensures that ℓhi is written only on 53 bits (double
precision).

4.2.2 Exponential

The following argument reduction is used for the exponential 2t:

2t = 2M · 2t−M

= 2M · 2i1·2
−7

· 2i2·2
−14

· 2t−(M+i1·2−7+i2·2−14)

= 2M · 2i1·2
−7

· 2i2·2
−14

· 2u−∆

= 2M · exptbl1[i1] · (1 + exptbl2[i2]) · q(u) · (1 + ε)

Herein the values M, i1 and i2 are integers. They are computed out of

t = n · E + n · ℓhi + n · ℓlo

using the FMAs, shifts and Itanium’s getf instruction giving the significand of a number:

s = RN e
(

n · ℓhi +
(

249 + 248
))

a = RN e
(

s−
(

249 + 248
))

=
⌊

n · ℓhi · 214
⌉

b = RN e (n · ℓhi − a)

u = RN e (n · ℓlo + b)

k = getf(s)

M = k ÷ 214

i1 =
(

k ÷ 27
)

mod 27

i2 = k mod 27

In that sequence, all floating-point operations but those producing s and u are exact by
Sterbenz’ lemma [28]. The error in s is compensated in the following operations; actually,
it is b. The absolute error ∆ the value u is affected of is bounded by 2−78 because u is
upper-bounded by 2−15.

For approximating 2u for u ∈ [−2−15; 2−15], a polynomial of degree 3 is used in the
first step and a polynomial of degree 6 is the second, accurate step. The polynomials
provide a relative accuracy of 2−62.08 respectively 2−118.5.

15

The table values exptbl1[i1] and exptbl2[i2] are all stored as double-double-extended
numbers. Only the higher parts are read in the first step. The second step reuses these
higher parts and reads the lower parts. The reconstruction is performed with double-
extended precision multiplications in the first step and with DblMult in the second step.

The first step delivers the final result 2n·log2 x · (1 + ε1) as two floating-point numbers
rhi and rlo. The value rhi is a double precision number; rlo hence a round-off error estimate
of rounding xn to double precision.

In the second step, the exponential 2n·ℓ is corrected by

2δ
′′

= 2n·(E+i1·27+i2·214+u)−n·(E+ℓ′) = 2δ−∆,

where ℓ′ is a the accurate approximation of the logarithm. The correction approximates
first δ′′ = n ·

(

E + i1 · 27 + i2 · 214 + u
)

− n · (E + ℓ′) up to 58 bits and then uses a

polynomial of degree 1 for approximation the correction 2δ
′′

. The final result is delivered
as double-double-extended value.

The function xn has some arguments for which it is equal to the midpoint of two
consecutive double precision numbers. An example is 917. For rounding correctly in that
case, the ties-to-even rule must be followed. The final rounding after the second accurate
approximation step must hence distinguish the two cases. The separation is easy because
the worst cases of the function are known: if and only if the approximation is nearer to a
midpoint than the worst case of the function, the infinitely exact value of the function is
a midpoint. See [17] for details on the technique.

4.2.3 Complete error bounds

A complete, perhaps formal proof of the error bounds for the two steps of the algorithm
goes beyond the scope of this article. Following the approach presented in [10, 8], the
Gappa tool can be used for this task. Bounds on approximation errors can safely be
certified using approaches found in [6]. Let us give just the general scheme of the error
bound computation and proof for the first step of the presented algorithm.

We are going to use the following notations:

• E + ℓ = E + ℓhi + ℓlo stands for the approximation to the logarithm log2 x,

• δ is the associated total absolute error,

• δtable, δapprox, δeval and δreconstr are the absolute errors of the tables, the approxima-
tion, the evaluation and reconstruction of the logarithm.

• rhi + rlo stands for the approximation to xn = 2n·log2 x,

• εfirststep is the associated total relative error,

• ε1 the total relative error due only to the approximation of the exponential without
the error of the logarithm,

• εtable, εapprox, εeval and εreconstr are the relative errors of the tables, the approxima-
tion, the evaluation and reconstruction of the exponential, and

• ∆ stands for the absolute error the reduced argument u of the exponential is affected
with.

16

The following error bound can hence be given

rhi + rlo = 2M · 2i1·2
−7

· 2i2·2
−14

· p(u) ·

· (1 + εreconstr) · (1 + εtable) · (1 + εeval)

= 2M · 2i1·2
−7

· 2i2·2
−14

· 2u−∆

·2∆ · (1 + εreconstr) · (1 + εtable) · (1 + εeval) · (1 + εapprox)

= 2n·(E+ℓhi+ℓlo) · (1 + ε1)

Herein, ε1 is bounded by

|ε1| ≤ εreconstr + εtable + εeval + εapprox + 2 ·∆ +O
(

ε2
)

With |εreconstr| ≤ 3 · 2−64, |εtable| ≤ 3 · 2−64, |εeval| ≤ 4 · 2−64, |εapprox| ≤ 2−62.08 and
|∆| ≤ 2−78, this gives

|ε1| ≤ 2−60.5.

Additionally, we obtain for E + ℓhi + ℓlo:

E + ℓhi + ℓlo = E + logtblrhi[m] + logtblrlo[m] + p(z) + δeval + δreconstr
= E + log2(r) + log2(1 + z) + δtable + δapprox + δeval + δreconstr
= log2(x) + δtable + δapprox + δeval + δreconstr
= log2(x) + δ

Since |δapprox| ≤ 2−69.49, |δeval| ≤ − log2 (1− 2−8.886) · 3 · 2−64 ≤ 2−70.7, |δtable| ≤ 2−128 and
|δreconstr| ≤ 2−117, we get

|δ| ≤ 2−68.9.

These bounds eventually yield to

rhi + rlo = 2n·(ℓhi+ℓlo) · (1 + ε1)

= 2n·log2(x) · 2n·δ · (1 + ε1)

= xn · (1 + εfirststep)

With n ≤ 735, this gives

|εfirststep| ≤ 2735·2−68.9

·
(

1 + 2−60.5
)

− 1 ≤ 2−59.17.

For the second step, a similar error bound computation can be performed. One deduces
that the overall relative error ε2 of the second step is bounded by |ε2| ≤ 2−116. This is
sufficient for guaranteeing correct rounding for n up to 735.

5 Comparisons and tests

In this section, we report timings for the various algorithms described above. The algo-
rithms have been implemented on the Intel/HP Itanium architecture, using the Intel ICC
compiler 3. We compare the following programs.

3We used ICC v10.1, on an Itanium 2 based computer.

17

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

A
ve

ra
ge

 ti
m

in
g

(in
 c

lo
ck

 c
yc

le
s)

Exponent n

IteratedProductPower
IteratedProductPower, n constant

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower, two-step, n constant
 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 130 180 230 280 330 380 430 480 530 580

Exponent n

IteratedProductPower
IteratedProductPower, n constant

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower, two-step, n constant

Figure 3: Average timings.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

A
ve

ra
ge

 ti
m

in
g

(in
 c

lo
ck

 c
yc

le
s)

Exponent n

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower
IteratedProductPower, n constant

IteratedProductPower, two-step, n constant
 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 130 180 230 280 330 380 430 480 530 580

Exponent n

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower
IteratedProductPower, n constant

IteratedProductPower, two-step, n constant

Figure 4: Worst timings.

• IteratedProductPower: our implementation follows Algorithm 5 strictly.

• Two-step IteratedProductPower: for the first, “fast” step we use Algorithm 6, and
if needed, for the “accurate” step we use Algorithm 5 (see Subsection 3.5).

• IteratedProductPower and two-step IteratedProductPower with constant n: these
implementations are the same as the two previous ones, except that the exponent
n is fixed a priori (see Subsection 3.6). To take this information into account, a
different function has been implemented for each exponent n considered. In the
experiments reported hereafter, we consider exponents n ranging from 3 to 600:
we have used a code generator to automatically generate the C code for these 571
functions. Since all the branches are resolved a priori, it also allows us to perform
some obvious optimizations, without any (possibly costly) additional branch in the
generated C code. For instance, at the first iteration of the loop in 5, since we
know that v = 0, the statement (u, v) := DblMult (u, v, u, v) is replaced by (u, v) :=
Fast2Mult (u, v).

• Log-exp algorithm described in Section 4.

First we consider the average timings for computing xn rounded to the nearest floating-
point value. For each n from 3 to 600, we compute the average execution time for

18

16384 double-precision arguments randomly generated in the interval [1, 2]. We report on
Figure 3 the average timings over these 16384 arguments with respect to n.

We also report on Figure 4 the worst case timings measured over the 16384 arguments
tested. These worst case timings are mainly relevant for functions based on the two-step
approach. Anyway we also recall on the figure the timing for the other functions for
comparison purpose.

Table 5: Timings (in clock cycles) for tested functions.

n Iterated Two-step Log-exp Iterated Two-step Iterated
Product Iterated (n fixed) (n fixed)
Power avg case wst case avg case wst case avg case wst case

3 53 25.3 73 80.1 326 28 17.1 27
4 77 29.5 101 79.5 326 32 21.1 33
5 77 29.6 101 79.4 326 48 22.2 49
6 77 29.7 101 80.0 326 56 21.3 57
7 77 29.6 101 79.7 326 56 22.3 57
8 101 35.7 130 80.2 326 56 26.5 57
9 101 35.5 130 79.7 326 72 26.8 73

10 101 35.4 130 79.6 326 80 26.8 81
15 101 35.5 130 79.7 326 80 26.9 81
16 125 43.8 160 79.9 326 80 31.6 81
17 125 43.8 160 79.6 326 96 32.1 97
18 125 43.7 160 79.5 326 104 32.3 105
31 125 44.0 160 80.0 326 104 32.5 105
32 149 55.8 191 79.7 326 104 37.4 105
33 149 55.9 191 80.0 326 120 39.4 121
34 149 56.0 191 79.4 326 128 39.0 129
63 149 56.1 191 80.0 326 128 40.0 129
64 177 78.0 229 80.0 326 128 48.7 129
65 177 77.4 229 80.2 326 144 51.2 145
66 177 77.9 229 80.3 326 152 51.7 153

127 177 77.3 231 79.4 326 152 52.2 154
128 201 109.1 257 79.6 326 152 68.9 154
129 201 109.3 257 79.8 326 168 73.8 169
130 201 109.6 257 79.8 326 176 75.2 177
255 201 109.8 257 79.6 326 176 76.1 178
256 225 119.5 285 79.4 326 176 78.2 178
257 225 225.0 285 79.8 326 192 192.0 192
258 225 225.0 285 80.1 326 200 200.0 200
511 225 225.0 285 79.4 326 200 199.0 200
512 249 249.0 285 79.8 326 200 200.0 200
513 249 249.0 285 79.9 326 216 216.0 216
514 249 249.0 285 80.3 326 224 224.0 224
600 249 249.0 285 79.6 326 224 224.0 224

Finally, the timings for some typical values of the exponent n are reported in Table 5:
the timings for each “step” observed on the graphics of Figures 3 and 4 can be read in
this table.

19

From these timings, we can see that in the worst cases, the implementations based on
iterated products are always more efficient than the one based on the log-exp. Moreover,
if we consider the average timings reported on Figure 3 and in Table 5, we can do the
following observations.

• The average and worst case timings for the log-exp implementation are constant
with respect to n, with an average execution time of about 80 clock cycles and a
worst case execution time of 236 cycles.

• The straightforward (one-step) IteratedProductPower algorithm is more efficient on
average than the log-exp only for n ≤ 9

• The implementations of the two-step IteratedProductPower algorithm with n fixed
are significantly more efficient than the log-exp approach as long as n ≤ 128.

Conclusions

We have introduced several algorithms for computing xn, where x is a double-precision
floating-point number, and n is an integer, 3 ≤ n ≤ 626. Our multiplication-based
algorithms require the availability of a fused multiply-add (FMA) instruction, and a
double-extended format for intermediate calculations.

After our experiments, the best choice, depending on the order of magnitude of the ex-
ponent n, on whether n is known at compile-time or not, and on whether one is interested
in minimizing the average execution time or the worst case execution time:

• if one is interested in worst case performance, then Algorithm 5 (IteratedProduct-
Power) is preferable (at least, up to n = 626, since we do not have a proof that our
algorithms work for larger values);

• if one is interested in average case performance and n is not a constant then the
two-step IteratedProductPower algorithm should be used for n less than around 60,
and the log-exp algorithm should be used for larger values of n;

• if one is interested in average case performance and n is a constant then the “spe-
cialized” two-step IteratedProductPower algorithm should be used for n less than
around 250, and the log-exp algorithm should be used for larger values of n.

References

[1] 754-R Committee. DRAFT standard for floating-point arithmetic p754 1.2.1. Techni-
cal report, September 2006. Available at http://754r.ucbtest.org/nonabelian.

com/754/754r.pdf.

[2] American National Standards Institute and Institute of Electrical and Electronic En-
gineers. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985. New York, 1985.

20

[3] American National Standards Institute and Institute of Electrical and Electronic
Engineers. IEEE Standard for Radix Independent Floating-Point Arithmetic,
ANSI/IEEE Standard 854-1987. New York, 1987.

[4] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. ACM,
23(2):242–251, 1976.

[5] N. Brisebarre and S. Chevillard. Efficient polynomial L∞ approximations. In ARITH
’07: Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pages 169–
176, Washington, DC, USA, 2007. IEEE Computer Society.

[6] S. Chevillard and Ch. Q. Lauter. A certified infinite norm for the implementation of
elementary functions. In A. Mathur, W. E. Wong, and M. F. Lau, editors, Proceed-
ings of the Seventh International Conference on Quality Software, pages 153–160,
Portland, OR, 2007. IEEE Computer Society Press, Los Alamitos, CA.

[7] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on Itanium-Based
Systems. Intel Press, Hillsboro, OR, 2002.

[8] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, Ch. Q.
Lauter, and J.-M. Muller. Cr-libm, a library of correctly-rounded elementary
functions in double-precision. Technical report, LIP Laboratory, Arenaire team,
Available at https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.

18beta1.pdf, December 2006.

[9] F. de Dinechin, A. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th
IEEE Symposium on Computer Arithmetic, Cape Cod, Massachussets, June 2005.

[10] F. de Dinechin, Ch. Q. Lauter, and G. Melquiond. Assisted verification of elementary
functions using Gappa. In P. Langlois and S. Rump, editors, Proceedings of the 21st
Annual ACM Symposium on Applied Computing - MCMS Track, volume 2, pages
1318–1322, Dĳon, France, April 2006. Association for Computing Machinery, Inc.
(ACM).

[11] F. de Dinechin, Ch. Q. Lauter, and J.-M. Muller. Fast and correctly rounded loga-
rithms in double-precision. RAIRO, Theoretical Informatics and Applications, 41:85–
102, 2007.

[12] F. de Dinechin, Ch. Q. Lauter, and J.-M. Muller. Fast and correctly rounded log-
arithms in double-precision. Theoretical Informatics and Applications, 41:85–102,
2007.

[13] T. J. Dekker. A floating-point technique for extending the available precision. Nu-
merische Mathematik, 18:224–242, 3 1971.

[14] S. Gal. Computing elementary functions: A new approach for achieving high accu-
racy and good performance. In Accurate Scientific Computations. Lecture Notes in
Computer Science, volume 235, pages 1–16. Springer-Verlag, Berlin, 1986.

[15] D. Knuth. The Art of Computer Programming, 3rd edition, volume 2. Addison-
Wesley, Reading, MA, 1998.

21

[16] Ch. Q. Lauter. A correctly rounded implementation of the exponential function on
the Intel Itanium architecture. Research Report RR-5024, INRIA, November 2003.
Available at http://www.inria.fr/rrrt/rr-5024.html.

[17] Ch. Q. Lauter and V. Lefèvre. An efficient rounding boundary test for pow(x,y)

in double precision. Research Report RR2007-36, Laboratoire de l’Informatique du
Parallélisme, Lyon, France, September 2007.

[18] V. Lefèvre. Developments in Reliable Computing, chapter An Algorithm That Com-
putes a Lower Bound on the Distance Between a Segment and Z

2, pages 203–212.
Kluwer Academic Publishers, Dordrecht, 1999.

[19] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France, 2000.

[20] V. Lefèvre. New results on the distance between a segment and Z
2. Application

to the exact rounding. In Proceedings of the 17th IEEE Symposium on Computer
Arithmetic (ARITH-17), pages 68–75. IEEE Computer Society Press, Los Alamitos,
CA, June 2005.

[21] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary func-
tions in double precision. In Burgess and Ciminiera, editors, Proc. of the 15th IEEE
Symposium on Computer Arithmetic (Arith-15). IEEE Computer Society Press, Los
Alamitos, CA, 2001.

[22] R.-C. Li, P. Markstein, J.P. Okada, and J.W. Thomas. The libm library and floating-
point arithmetic in HP-UX for Itanium 2. Technical report, Hewlett-Packard Com-
pany, 2002. http://h21007.www2.hp.com/dspp/files/unprotected/libm.pdf.

[23] P. Markstein. IA-64 and Elementary Functions: Speed and Precision. Hewlett-
Packard Professional Books. Prentice Hall, Englewood Cliffs, NJ, 2000.

[24] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

[25] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhäuser
Boston, 2nd edition, 2006.

[26] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot prod-
uct. SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[27] G. Revy. Analyse et implantation d’algorithmes rapides pour l’évaluation polyno-
miale sur les nombres flottants. Master’s thesis, École Normale Supérieure de Lyon,
2006.

[28] P. H. Sterbenz. Floating point computation. Prentice-Hall, Englewood Cliffs, NJ,
1974.

[29] W. F. Wong and E. Goto. Fast hardware-based algorithms for elementary func-
tion computations using rectangular multipliers. IEEE Transactions on Computers,
43(3):278–294, March 1994.

22

[30] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded
last bit. ACM Transactions on Mathematical Software, 17(3):410–423, September
1991.

23

