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Abstract

We investigate the asymptotic behavior of a generalizeg lsémnel acting on a finite
size interval —q; q]. We determine its asymptotic resolvent as well as the firstge

in the asymptotic expansion of its Fredholm determinanttheu, we apply our results
to build the resolvent of truncated Wiener—Hopf operat@sagated by holomorphic
symbols. Finally, the leading asymptotics of the Fredhobtedminant allows us to
establish the asymptotic estimates of certain oscillatoujtidimensional coupled in-

tegrals that appear in the study of correlation functionguaintum integrable models.
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1 Introduction

The sine kernel

inX (1 —
su,u)=%,

is a very important object in mathematical physics. In pattr, the Fredholm determinant of
the integral operatar— S acting on some interval c R appears in random matrix theofy [18].
In the bulk scaling limit, det[l — S] stands for the probability [19] that a matrix belonging to
the Gaussian unitary ensemble has no eigenvalues.imhe kernel [I]1) also appears in the
theory of quantum integrable systems. In particular, thterdenant det[l + yS], y being a
parameter, describes various zero—temperature coomelatnctions of the impenetrable Bose
gaz [36.[20].

In all these interpretations of the sine kernel, one is e@gtxd in the large behavior of its
Fredholm determinant. The first attempt to analyzexhe +oo asymptotics of det[l — S]
goes back to Gaudin and Mehfa][{8] 19]. In 1973, Des CloizeadxMehta[[15] showed that

(1.1)

X 1
8 4
Three years later, using Widom'’s formula][40] for the asyatips of Toeplitz determinants sup-

ported on an arc, Dysof [[L6] gave a heuristic derivation efdbnstant termesy and proposed a
recursive method to compute the subleadingfogientscy, ¢, ... in the asymptotic expansion:

logdet_1.1;[l - S] = logx+ O(1), X — +00 . (1.2)

X2 1
8 4

Iogx+co+c—;+2+ . (1.3)

logdet_1;1;[1 = S] = 2

However, the forementioned results were somehow heurigtigas only in 1994 that Widom
[F1] managed to prove rigorously the first term in the asynigg{1.2):

d%logdet_l;l][l _ 5] :—%(+0(1) . (1.4)
One year later, this analysis was extended to the multigkenial case[[42]. While Widom

studied the asymptotic behavior of the Fredholm deterntibgnoperator techniques, Deift,
Its and Zhou applied the Riemann—Hilbert problem (RHP) fdation for integrable integral

operators[[37] to the sine kernel acting on a union of intervaJ, and proved the existence of
the asymptotic expansiop (IL..3). However, their method didatiow them to obtain an estimate
for the constanty, as they inferred the asymptotic expansion of log flet S] from that of

d
Py = x—logdet] - S] . 1.5
x = X logdet] - S (1.5)
The first proofs of Dyson'’s heuristic formula fog appeared in the independent, and based on
two completely diferent methods, works of Ehrharfit][17] and Krasovgky [34].
We would like to point out that there is a very nice connectifrthe sine kernel to the
Painlevé V equation[[29], aBy solves this equation. The link between Painlevé V &yd



was also investigated if [1L3] in the framework of RHP. It waewn that one can deduce this
Painlevé equation directly from the RHP data.

This article is devoted to the study a generalization of the kernel [T]1). This kernel, that
we will refer to as the generalized sine kernel (GSK), is effibrm

V()= w[& (Ve (W) -e (e, ], (1.6)
2 (A — )
where
e.(1) = etlixp()+g()]/2. 1.7)

We will be more specific about the functioRs p andg later on.

Various particular cases of the kernfl'[1.6) already amguear the literature. These par-
ticular kernels were mostly used for the description of elation functions of matrix models
or quantum integrable models equivalent to free fermioes €sg. [39[ 37, 24, 2$,138, P, 10,
R4, [28,[8]). In the present paper we consider a rather geoasal, only based on the analytic
properties of the functionB, p andg. The GSK [1.J) plays a crucial role in the study of cor-
relation functions of (non free-fermionic) quantum intaigie systemd [B1]. It is also useful for
the asymptotic analysis of truncated Wiener—Hopf opesatoth Fischer—Hartwig singularities
[B3).

We investigate here the largeasymptotic behavior of the Fredholm determinant of the GSK
in the framework of RHP. Our work is a natural extension of apublished analysis by Deift,
Its and Zhou of the pure sine kerrlet vS by RHP. The pure sine kernel was also analyzed by
RHP in [3].

This article is organized as follows. In Sectidn 2, we anmeuie main results of the paper,
namely,

¢ the largex asymptotic behavior of the Fredholm determinant of thegirsteoperatot +V,

cf. @.9);

e the asymptotic resolvent of some Wiener—Hopf operatorsecied to[(1]6);

e the asymptotic behavior of coupled multiple integrals Ivirgy a cycle of kernel&/ (L.6)
versus some holomorphic symmetric functions.

The proof of the asymptotic behavior of log detf V] is given in the core of the paper
(Sectiong]3[]4[]5 arld 6). More precisely, in Secfion 3, westdite problem into a certain RHP.
In Section}4, we transform this initial RHP into a RHP that easily be solved asymptotically.
This asymptotic solution is presented in Secf{ibn 5 and us&kctior] b to obtain the leading
and the first subleading terms of log det{V] in the X — +oo limit.

In Section[, we apply these results to truncated Wienerftdpprators. We show how
one can use the asymptotic resolvent of the generalizedksim®| to construct asymptotic
resolvents of truncated Wiener—Hopf operators acting-ex;[x], with x large. This asymptotic



resolvent is used to reproduce the low magnetic field behafithe so-called dressed charge
arising in the theory of quantum integrable models solvalyléhe Bethe ansatg][6].

Section[B is devoted to the study of the asymptotic behavicome particular type of
coupled multiple integrals which can be obtained in termthefGSK. This is in fact our main
motivation to study the GSK: indeed, such integrals areatjo®lated to those appearing in the
description of correlation functions of quantum integeablodels, and from the knowledge of
the asymptotic behavior of the former one can obtain the psytia behavior of the latter, as it
will be done in [31L].

Finally, in Sectiof9, we consider the case of further modifans of the GSK, in particular
those useful for the correlation functions of the integeaeisenberg spin chains [31].

Some properties of confluent hypergeometric functions andfp of several lemmas are
gathered in the appendices.

2 Problem to solve and main results

2.1 Generalized sine kernel: assumptions and notations

Let| + V be the integral operator with kern¢l ([1.6) and actind-6[ —q; q]).
We assume that there exists some open relatively compagtbwhoodU of [ —q; q] such
that the functiong, F andg, as well as the parametegr satisfy the following properties:

e F andg are holomorphic o, the closure ofJ;

e pis holomorphic and injective ob, p([-q;q]) c R, and p stabilizes the upper half
plane?, (resp. the lower half plang(_), i.e. p(U N H.) C H.;

e y € Doy = {2 € C:|A <r}, wherer is such thatrF| < 1 and ard1 + yF) € ] -z;x[ on
U.

We study the large expansion of the Fredholm determinant of V under these assump-
tions. This will be done by asymptotically solving a certaiatrix RHP. It will become clear
in the next section that the assumptipfl —q; q]) c R is tantamount to imposing the associ-
ated RHP to be of oscillatory nature. Moreover, the gafd N H.) c H- is obtained by the

negation(y,g(4)) = (-, -g ().

Before presenting the main result of this article, let usdieiice some convenient notations.
First, we define two auxiliary functions used all along thich:

v(A) = 2_|—71T log(1+yF (1)) , (2.1)
q

k(2; Q) = «(2) = exp f

—a

Mdﬂ (2.2)
A—p

Note thatx is a function of the two parametefsandq, although we will sometimes omit the
dependence on the second parameter.



Finally, we will use the following simplified notations fdne values of the functiong and
v and of their derivatives at the points):

pizp(ﬂ)‘l , p;=p’(ﬂ)b , etc (2.3)
=+( =+(

Ve = v(/l)‘/l , Vi = V’(/l)‘/l , etc (2.4)
=q =q

2.2 The main results

We now give the asymptotic behavior of the Fredholm deteamtiin thex — +oo limit:

Theorem 2.1. Let V be the GSK[L.8) with p, g, F andy satisfying the assumptions of Sec-
tion[2:]. Then, in the %> +co limit, log det]l + V] behaves as

log det]l + V] = log det]l + V]© + o(1), (2.5)
with
q q
log det]l + V]© = —ix f V()P (2) dA — (v2 ++?) log x — f v()g (1) dA
—-q -q

. (2.6)

q
+|og[ 0.1 ) 6@ |, 1 [ g3q, YD) YD)
(29p,)" (2qp)" - (-g )| 2+ A-

in which we have used the notations of Secfioh 2.1. The B&@riesiction [3,[2] admits the
integral representation:

z

G(z+ 1)=(zn)%exp{—z(22‘ Y +ft¢//(t)dt}, R@D) > -1 W)=

0

'@
I -

(2.7)

and we denote ,2) = G(1 + 2G(1 - 2).

Using the perturbation theory for singular integral equadione can refine the theorem and
obtain sub-leading corrections. Although, in principlething opposes to derive the next sub-
leading corrections, the computations become more and meob/ed. We have proved the
structure of the first corrections to the equatipn](2.6).

Proposition 2.1. Let V be the GSHL.8) with the conditions of Sectidn 2.1. The leading asymp-
toticslog det | + V] of log det || + V] as defined in Theorefn 2.1 has non-oscillating and os-
cillating corrections.

LetO < ¢ < g be such that the disks.Bs of radiusé centered attq fulfill D.qs C U. Let
€ = 2SURpy,uD_g, |‘R(v)|. Then the first non-oscillating corrections are of the form

N, 1
x O(xZ(l—é))’ 28)



with

V2 { d d (V ) v_ }
Ni=i ) —Z{20V, logx+o—logu, + p,— =] - —==+. 2.9
The first oscillating corrections are of the form
o]} 1
% +0(5a5) (2.10)

and the leading oscillating cgfcient is given by

3 V_Vy U\ 20 (v, +v_) dox(ps—p-)
- Ue\7 2o, dox(p- ’ (2.11)
(29)% P, p. (r;l(”—)

where we have introduced

_ 0 [A=vy) [(2ap)™ }2
= e T(1+v.) { kaq) |7 (2.12)
w = 9 2 agp) (-l 2. 213

Remark2.1 The GSK depends only on the combinatiap() + g(2) (see [1]7)). Therefore the
Fredholm determinant and its asymptotics can only deperttistombination. This observa-
tion allows us to obtain the complete asymptotic expansepedding on the functiog() from
the asymptotic expansion of the Fredholm determimar¥ corresponding tg = 0. Namely, it
is enough to replace in the obtained formupde) by p(1) - )‘—(g(/l) and then expand into negative
powers ofx.

It is quite interesting to apply the latter proposition imer to obtain the first few terms of
the asymptotic expansion of détf V]. The reason why we draw the reader’s attention to these
asymptotics is because they present a very interestingtsten the leading oscillating terms in
the asymptotic expansion are just given by the sum of theilgaakymptotics evaluated at
shifted by 1 or-1. This structure of the asymptotics seems to restore, st peatly, the original
periodicityv — v + n, n € Z, of the Fredholm determinant tf+ V.

Corollary 2.1. Let I+V be the GSK as abovedet [| + V]©@ [v] the leading asymptotics of its
Fredholm determinant just as in Theor¢m| 2.3, ad O, as in Propositior] 2]1. Note that we
have emphasized the structuredst[l + V]© [v] as a functional ofv. Then the oscillating
corrections Q can be reproduced from the non-oscillating part via thetstfii by +1:

det[ +V]O[v] % =det] +V]O[y+1]+det]l +V]O[y-1] . (2.14)

This structure of the first terms of the largeasymptotic expansion for ddt { V] leads us
to raise the following conjecture on the structure of thexgstptic series :

Conjecture 2.1. The asymptotic expansion of the Fredholm determidanfl + V] of the GSK
restores the periodicity — v + n, n € Z, of the determinant. In particular, this asymp-
totic expansion contains all tHé-periodized terms with respect toof the leading asymptotics



det[l + V]Q[y]. Thus, all the oscillating terms can be deduced from the ssmillating ones.
More precisely, let

(2.15)

AV] () ~ det [ +V](0)[v](1+M+---+M+...)
X

xM

stand for the formal asymptotic series corresponding tonthie-oscillating part of the asymp-
totic series fologdet [| + V]. There & (X)[v] are polynomials of degree k in X whose fise
cients are functionals im. Moreover each of the & has no oscillating exponents of the type
e*P:  Then the formal asymptotic series ftet [| + V] is given by

detl + V]~ Y Alv+n] (X . (2.16)
nez

This conjecture is supported by (3.14) and also by the =ilf83] where several sub-
leading corrections to the asymptotics of the Fredholmrdeteint of the pure sine-kernel were
computed.

The first application of the asymptotic behavior of the GSKamasider in this article con-
cerns the asymptotic inversion of truncated Wiener—Hogfrars. We will prove in Sectidi 7
the following proposition:

Proposition 2.2. Let |+K be a truncated Wiener—Hopf operator pax; X[, acting on functions
g e L%(R) as

X

[(1+K).0] ) =g(t) + fK (t-tHgt)dt . (2.17)

—X

The kernel K is defined by its Fourier transform F:
K@) =F"[F1() . (2.18)
and we suppose that there exists 0 such that
e F admits an analytic continuation t{a: 19(2)| < 6};
o & F(£+i6) e LY(R);
o the analytic continuation of + F never vanishes fdfj(2)| < 6.

Then the resolvent+ R of | + K fulfills

ded (D) ixeeny @(E) ixen| €9 o5
R(4, ) =Rf 4ﬂ2? F(€) {a_—(g)é ) _ e )® (€ 'f>}W +0(e®), (2.19)

wherea(2) is given by

a () = exp{—%ﬂflog(1+ F(y))/%}. (2.20)
R



Our main mativation to study the asymptotics of log det[V] comes from the theory of
one dimensional quantum integrable models. Indeed, thergtng function of the zero tem-
perature two-point correlation functions (at distang@f different quantum integrable models
[B1] has a series expansion in terms of cycle integrals ofythe

InlFa) = 56 [ . ( () )l—[ x(p(z)-p(11)) o1
r([-a:a]) (2|7r)” (Zm)” G (ZJ —AJ)(ZJ' —/lj+1)

Therel’ ([ —q; q]) is a closed contour around-q; g ] whereas the functioft, is holomorphic in
some open neighborhood pfq; q]2n and symmetric in tha variables{1} (we setln;1 = A1)
and in then variables{z}.

In SectionB, using the above results for the GSK, we provedhewing asymptotic ex-
pansion of7 , [Fn] in the X — +oo limit :

Proposition 2.3. Let#, and 7, [F,] be as above. Then for» +oo,

/ln
InlFa] = fdl XP) + 0] 7 ({Mi}}{ﬂ}”‘l )\
s e=0

+ 3 on - calog 2a, ) 7o (7o |

(oq)
Q7 ( (ol )—7—‘ ( (0P ()P )
; n_lf "toa” )" toal®, (4P
+ da
(@) =g p(n-p)(@-0a)
n S dd A+ € AP P
+ | . {afn( ’ ’“n_p)
220 (o (=P (A-p) A+ e, (P
- o+ e P P )} D (299
af”({u+e},{u}“,u}”‘P o @)

with
(-1t 9'vg
(-1t oy | _

_ (=11 8"log G (1, vo)
o "7 (n-1)! Ay"

n:

v = Iglog(1+y), (2.23)

y=0
and wherg{1}" denotes the set formed by n copies of the same parameter

Moreover, in Sectiof]8 we will also describe the form of thb-&ading corrections to this
result.
2.3 Comparison with known results

There are several results in the literature concerning sgemptotic behavior of the Fredholm
determinant deftl + yS]. This determinant corresponds to the GSK witk id, F = 1 andg =

10



0. Itis clear that we reproduce the answer concerning trdingaasymptotics of ddt + yS]
analyzed in[[7] and[]4].
As observed in@g]x& log det[l + yS] satisfies the fifth Painlevé equation. The authors

of [9] used this property to obtain an asymptotic expansiblog det[l + yS]. This fact was
also exploited by the authors df]38] in order to derive thetfifew terms in the sub-leading
asymptotics of the latter quantity. Their result reads

d . 2 -Vg
x& log det]l +yS] = —4ixvg - 2vy - |;

L5 {(F(—Vo))2(4x)4vo e4ix_(r(—vo))2 e4ix } (2.2

4x " (vo) " (vo) (4)()4"0

with v given in {2.2B) andj = 2. Itis straightforward to see that in such a lihi = iv3 and

V2 . r (_VO) 2 e_Zin r (Vo) 2
- 0 IgX 4, |
> (20)* {ez 29 (F(Vo) ) T 2™ (r(—vo)) . (2.25)

which reproduces the oscillating ternfis (2.24) after sgttis- 2 and taking they derivative.

3 The initial Riemann—Hilbert problem

The GSK[TL.p) belongs to a special algebra of integral opesathe so-called integrable integral
operators. This algebra was first singled out{ir} [27] and stadied more thoroughly irf T13].
It is well known that many properties of these integrablerafmes can be obtained from the
solution of a certain RHP.

In this section, we formulate our problem in terms of a RHR tha then asymptotically
solve.

3.1 Notations

An important property of completely integrable integrabogiors is that their resolvent still lies
in the same algebra. However, before presenting the forfoulthe resolvent we introduce
some quite useful vector notations. Namely, let

W)= PE D) E 1= Fd (e e ). (3.)

so that the kernéV has a simple expression in terms| & (1) ) and( E- (1) |:
(E-() | ER ()

V(A,p) = 14 (3.2)
Observe that
(E() | ER@) =0, (3.3)

11



and, hence, the kern¥lis not singular aft = u.
Let| FR (1)) be the solution to the integral equation:

q
|FR(/1)>+fV(A,u)|FR(ﬂ)>dA=|ER(;1)>, (3.4)

—q

and ( FL (1) | be the solution to the corresponding dual equation. It isveoient to write
[FR(2)) as well as its dua| F- () | in a form similar to] ER (1) ) and( E" (1) |:

IFR) =2 'ZiFﬂ(A) (Ii gg) (FE@) | = VF@)(-f- (1), £, (2)). (3.5)

Then the resolvent reads:

(F- () | FRW) v VFF()
A—pu - 2in(A-p)

R(A, 1) = [ (D)) - £ (D] (3.6)

3.2 The Riemann-Hilbert problem associated to a GSK

Proposition 3.1. Let V be the GSKJL.6) understood as acting or?l[ —q; q]), and such that
det[l + V] # 0. Then, there exists 2x 2 matrix y (1) such that

IFR) =x (DIERW@),  (FE () [=(E" () k(). (3.7)
The matrixy (1) is the unique solution of the RHP:
e yisanalyticonC\[-q;q];
e ¥() = O( 1 1 )Iog|/12—q2| for 1 — =q;

‘X(/i)/ljoob:(é (1));

e ¥+ (WG, (W) =x-(1) forde]-q;q[ .

The jump matrix G for this RHP reads

1-yFQ) YFWeEW

GX(A):(_YF(A)GE(A) 1+ 7F () ):I+2i7r|ER(/l))<EL(/l)|. (3.8)

Finally, y and its inverse can be expressed in termgdt(1) ) and of its duak F- (1) |:

(3.9)

p. R L
(=t [ iy

-q -q

FIERG)FHG)
.
u—A

12



p
1Y+
J

Figure 1: Original contour for the RHP.

We emphasize that the big O symboI(C} 1 ) is to be understood entrywise. Moreover,

x= (u) stands for the non-tangential limit gf(1) whena approaches a poiptbelonging to the
jump curve from the left, resp. right, side of the contoue(&.[1).

Proof — The unicity of solutions to this RHP is proved along the saime &s in [3p]. The
proof of existence of solutions is based on the equivaleet@den RHP and singular integral
equations which, in the case of the above RHP, implies

q
)((/1)=|2+f/ld_ﬂ#)(+(/1)|ER(/1)>(EL(M)| , 1eC\[-q;q] . (3.10)
-q

The solution to this equation can be expressed in terms otdwvent kernel — Rof | +V

q
cW=to+ [ F(IED.0-R)WE 1. (3.11)

-q

In its turn, the resolvent kernel exists as det[V] # 0. Moreover, the explicit construction
of the resolvent through a Fredholm series shows that) — R(4,z) is analytic inU x U.
Hence, so igFR(u)) = [|ER).(I - R)| (u). The estimatdy| = O(log|4? - ¢?) . 1 — +q
follows from the integral representatioh (3.11) suppletedrwith the fact that botkE" | and
|FRY are smooth ofi-q;q].

Applying (3.9) to]ER(1)) and(E"(1)| we obtain the equation$ (B.7). Hereby one can easily
check that due to the orthogonality conditidn [3.3) the ¢fanm (3.7) is continuous across
[-a.d]. O

It is also possible to express logarithmic derivatives df[tle V] either in terms of the
resolventR of | + V or in terms ofy. Indeed, we have the

Lemma 3.1. The derivative ofog det || + V] with respect to x is related to the following trace
involving the matrixy

dxlogdet] +V] = 56 2—; Pt [dx () oax ™ (1)), (3.12)
r([-a:a])
with oz = (é _Ol), whereas its derivatives with respecthtand g are expressed in terms of the

13



resolvent as

q
Oylogdet] +V] = I%R(/i,/i), dqlogdet] +V] =R(g,9) + R(-0,-q). (3.13)
Y

-q
Proof — The last two equations are easily proved by the multiplegiatieseries expansion of

logdet ] + V]. We shall only focus on the equation relating thderivative of log det[ + V]
to y. Clearly

q
o logdet] +V] = f [0V, (1 = R] (L A)d1 , (3.14)
-q
with
W= Ee (W o) 315
r([-aa])

So that, using the representati¢n(3.6) of the resolRntterms of( F- | and| FR ) and the fact
that( F-(u) | o3| FR(D) ) = tr [oral FR(D) ) FL () 1], we get

(E-(2) o3l ER (1))
(z- )2

q
Oxlogdet] +V] = - 56% p(z)fd/l
r([-a:a]) —d

q
d
sl Sp@ [l FRWXE W |

r([-a:a]) —a
1 1 |ER () )} F- () |
X(/l_z—/l_'u)(fg — (3.16)
Using the integral expressiorfs (3.9) foandy~, we obtain
q
dxlogdet] +V] = - 95 j—; p(Z)fd/l (E (/l()z|f3|)lzzR(/l)>
r([-a:a]) —a
q
d R L
I T
r([-a:a]) —d
_ 5{5 % Pt {0x @ rar 1 2}, (3.17)
r([-a:a])
where we used (3.7). O
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It is worth noticing that formula[(3.12) is particularlyfective whenp is a rational function
as then the contour of integration can be deformed to thespdlp (including the pole ato).
The integrals can be then easily calculated. In particitathe casep (1) = A, we have the
following result:

Corollary 3.1. Lety, be the first non-trivial cogcient of the expansion gfaroundoo, i.e.

1
X(/i)=|2+)%+0(z). (3.18)
Then
dylogdet ] + V] |pig= —lztr (y103) - (3.19)
Proof — —tr (o3x1) is the residue of the pole at infinity df— Atr {a,p((/l) 0-3)(‘1(/1)}. m|

In this way, we recover one of the formulae derived for theemine kernel[[43], but also
for more general kernels as ipJ44] 25] 28]. We emphasize(ha$) is valid not only for the
pure sine kernel as it was originally derived, but also ferdgleneralized sine kernel wifh= id.

4 Transformations of the original RHP

In this section we perform several transformations on th& R y so as to implement Deift—
Zhou's steepest descent methpd [14]. The first substitutiaps the RHP for the matrjxinto

a RHP for a matrixe whose jump matrix has 1 on its lower diagonal entry. This jungirix is
then easily factorized into upp@wer triangular matrices. This factorization allows usléfine
another RHP for an unknown matrikwhose jump matrices are already exponentially close to
identity uniformly away from the endpointsg. It remains to construct the parametricegjat
and-g. These parametrices enable us to define a mAtgatisfying a RHP with jump matrices
uniformly I, + 0 (1) whenx — +oo.

4.1 Thefirststepy — E
Let

~ _g\"®
@ (1) = exp f;f(ﬂ)a du =K(/1)(:ll—+g) . (4.1)
—-q

Then clearlya (1) solves the scalar RHP
a_ () =a; (1) A +yF (), 1€[-q;q], e —>1 at 1> . 4.2)

The functions« (1) andv (1) were already introduced i (2.2) and {2.1). In the following
shall also use another representation for the funetio) :

p(4) — p(a) ]M

o) —pCgl (4-3)

a(d) = Kp(/l)[

15



wherex, is defined as

q
log kp(4; Q) = logkp(A) = f(v (1)

0w vl
ORI ‘a—y)d“‘ (4.4)

We specify that we chose the principal branch of the logarjthe. arge | —n; 7 [. Due to our
assumptions o, F andp, Morera’s theorem implies that the functionslog« and logk,, are
holomorphic onJ . Moreover we havéR (v (1))| < 1/2,¥1 € U. Indeed

v(A) = LG log|l + yF ()] — %arg(l +yF ), (4.5)

and we have assumed that étg- yF) € ] -n; x[.
We use the functiom to transform the RHP foy. Let us define the matri¥ (1) according
to

=) =y (1) (“ (()A) a_f’( l)). (4.6)

This new matrixz (1) satisfies the following RHP:
e ZisanalyticonC\[-q;q];

11

o [E(A)| = O( 11 )|/12 - q2|w3%(vi) log|2 - ¢?| fora— +q;

e Z(1) = lo;
e« Z.()G=() == (1) forie[-q;q] .

Here the new jump matrig6z reads

1+ P)QU) P(1)e”P)
6= L PRy P ) @)
and
P(1) = % a;2() e = —2ig™ %(VA(;) eI, (4.8)
Q1) = —% @? (1) e 90 = 2jgm () % a2 (1). (4.9)

The solution of this RHP foE exists as it can be constructed fraimMoreover it is unigque
as seen by arguments similar to those providing uniquerfdbg solution to the RHP foy.

16



4.2 The second steg —» Y

As already mentioned, the jump matiB¢ admits an explicit factorization into a product of
upper and lower triangular matrices:

Gz =M, M_. (4.10)

The matricedMl. are given by

ixp(1)
M+(/l):(é P(/l)fp ) M_(ﬂ):(Q(ﬁ)é_ixp(ﬂ) 2) (4.11)

and can be continued td N H.., resp.U NH_, where we recall thakt,. is the uppettower half
plane andJ is the domain of holomorphy of all the functions appearinghiea RHP. Then we
draw two new contourE. in p(U) and define a new matriX(1) according to Fig[]2.

2PN N

p(Hi) p(H)

- P st ¢o-->

p(-q) p(a)

Figure 2: Contour§’, andI'_ associated with the RHP faf.

As readily checkedY () is continuous across-q; [ and thus holomorphic in the interior
of ', UT'_. We have thus removed the cut aldneg; g ] and replaced it with cuts alorig UT _.
The matrixY solves the following RHP:

e YisanalyticinC\I', UT_;

(1 1 (IF RO gFRes) - :

[ T(/l) = O(l 1)( 0 |/l - q|¢‘x("i) |Og |/1 + ql ’ A /le—H>| iq,

(1 1\ [(laFgFReD _ .

° T = O(l 1) (I/l £ qER02) |5 gRen |09 T AL A 2o £,
e 1) =0} Tz aEttdlogiz g, 1 — =g
1 1 ’ AeH) -

17



e T(1) o2

T, ()M, (1) = T- (1) forael,,
T,(MTW)=71_(1) forael_,

where the domainsl|, Hy, Hy;; are shown on the Figufé 2.

Clearly, the solution of the RHP fof exists and is unique. Hence, the matriaeandy are
in a one to one correspondence.

Note that, except in some vicinities gfand—g, the jump matrice, and M~ for r are
exponentially close to the identity matrix. Therefore, tody the asymptotic solution of the
RHP, it is enough to study the local problems in the vicisitiq and—q.

4.3 Parametrix around —q

We first present the paramettixon a small diskD_qs c U of radiusé and centered atq, that
is an exact solution of the RHP:

e Pis analytic onD_gs \ {I'y UT_} ;

L[ 1 1N\ 1A+dROD g gReD :
oP(/l)—O(l 1)( ; 4 qieo |logltrd 4 =
(1 1\ M+gRe) —q;
" P = O( 11 )( A+ g7 %) |A+q|9‘(v ogit+dl, A o 79

[ ]
®
—~
o
=
|

1 —rsR(v)
— 03 R (v- A
O(1 1)|ﬁ+ql log|d+q|, AA—>€H”| q,

P) =2+ O(Xl—l_s) uniformly for 1 € D _q,

° P+ (/l) M+ (/l) = P_ (/1) fOf /1 € F+ N D_q’é,
P, (ML) =P_(1) foraeT_nND_gs.

Heree = Zsup|%(v)| < 1. The canonically oriented contodD_q; is depicted in Fig[]3.
(')qu,b'

The RHP for® admits a class of solutions. Each element of this class #deglto another
one through a left multiplication by a holomorphic matriattis uniformlylz + O(1/x'-¢) on
0D_q. In order to construct the solutidf to this problem, we first focus on the simpler case
where the function$, g and«, are constant. Then the solution to the RHP#apnst can be
obtained by the dierential equation methoff |2B,]11] 12]. This leads to thetiswiu

-vo3 _inv

Peonst(d) = ¥ (A) L (1) [~ (4.12)
Herel q = x(p(4) - p(-q)), v =ilog(1+yF) /2,
W) - ¥ (-1 1;-i¢ ) ib12 ¥ (1 + v, 15if_q) ’ (4.13)

—iboy ¥ (1= v, 1;-id ) ¥ (v, 15iq)

18



5(4)[

R(2)
Figure 3: Contours in the RHP f@®.
and finally
i 2
bia (1) = —i 2Sln [tV T2 (1 +v) _ xp(-a+g (4.14)
kg [X(P(@) = P()]
2 —p)? .
gy (1) = i ™ GGl ) S a (4.15)

sin [7v] 2 (v)

¥ (a,c; 2) denotes Tricomi confluent hypergeometric function (CHF}haf second kind (see
Appendix[A). It solves the dierential equation

zy'+(c-2y —ay=0. (4.16)

Recall that¥ has a cut alon@®~. Note that this choice for the cut & implies the use of the
principal branch of the logarithm:n < arg(2) < n. The expression for the piecewise constant
matrix L depends on the region of the complex plane. Namely,

2 —n/2<arg[p(1) - p(-9)] <7/2,

L(/l) — ( (:I)- e—gﬂv ) 71'/2 < arg[p(/i) - p(_q)] <m, (417)

e—Zim/
( 0 1 ) -7 <arg[p(4) - p(-q)] < -7/2.

The reader can check using the monodromy properties of Mii€HF (A.4) and [A.b) that
the jump condition for constant functiosandg are satisfied by the matriR.ons: Moreover
the asymptotic expansion f8f (a, c; Z) atz — ~ allows one to check th&..nsthas the correct
behavior at infinity.

In order to extend this result to the case of arbitrary holghiz functionsF (1), g (1) and
kp (1), it is enough to add the dependency in all places where these functions appear. One
ends up with the following solution to the RHP f6r:

P() =P LW [-icq] e (4.18)
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Herel_q = X(p () - p(-0)),

~ ¥ (-v (1), 1;-id ) ib12(2) ¥ (1+v (1), 1;i¢q)
T= —ibaa(2) W (1 - v (1), 1;-i{ ) ¥ (v (1), 1) ’ (4.19)
with
~sin[av (D] T? (L + v (1) o .
b2 (1) = — eID+XP(=A) = _jy, () u(A; X), 4.20
2 D @ - PP DU (420
7 () XP@ - PP o ()
T ) L7 R TT7E5) 421
and finally
u(d; x) = H {kp() X [p(a) - p (@]V“)}‘2 gxp-+ol), (4.22)

In the above formulae we have explicitly stressed the degrezel of the functionb;o, by
andy on A. Finally, the matrixL (1) is given by [4.1]7) with’ replaced by the function ().

This construction originates from the observation thatrdacements — F (1), g —
g(2) andkp — «p(4) preserve the jump conditions as the latter hold pointwisé.cddrse,
once the parametri® is guessed it is not a problem to check directly that it sobesRHP
in question. The asymptotic behavior is inferred frgm [AwBhereas the jump conditions can
be verified thanks to (Al4) andl (4.5). Furthermore, due todéfnition of the matrix, the
solution is continuous across the line fpd1) — p(-g)] = = and thus analytic in the whole
domain{1 € C; R [p(1) — p(-q)] < O}.

4.4 Parametrix aroundq

The RHP for the parametri® aroundq reads

e Pis analytic onDgs \ (T, UT_} ;

Son_ o1 L[t [ grRe _ -
) W)_O( 1 1)( 0 - g2 [leglt=d. 4= a;
— (1 1)[A-qrRe 0 -
"= O( 11 )( - geRe o grRea [0 A A
~ 11 o3R(vy) :
¢ PW)=0| | 7 JA-ad”™™logli-dl. 1 —> q;

5(/1) =l + O(Xli_g) uniformly for A € 9Dg;

. P ()M, () =P_(2) for 1€, N Dy,
P, (ML) =P_(1) fordel_ N Dgygs.
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5(4)[

R(1)

Figure 4: Contours in the RHP fe?.

ande = ZSUQ,D |‘R(v)| < 1. The solution to the RHP for the parameﬂberoundq can be
formally obtalned from the one atq through the transformatiog — —q andv — —v on the
solution to the RHP fof. Indeed, the two RHP are identical modulo this negation.

Just as for the parametrix arourd, we focus on the solution

P (1) = T () L) gWe 2, (4.23)
whereZq = X[p(4) — p(a)], and

—— ‘I‘(v(/l),l;—ig’q) b2 ()W (1-v (1), Lig)

)= =iy (1) P (1 + v (1), 1;-iL) ‘I‘(—v(/l),l;igq) (4.24)
Here

Buo(1) = i 2N F;()l YD) (o) - PSP = iy () X),

TKp
2(7) e 9(D)-ixp()
s = i— micp(A) 79D xR )
S (D] T2(—v() [X(PC) — pPCAZ@ 604 %)’

and

o TA=v @) (XD [P =Pl s

u(/l,x)_l_(l+v(/1)) { pREY X+l (4.25)

Just as for the parametrix arourd, the matrixC (1) depends on the quadrant of the complex
plane:

l2 ~n/2 <arg[p(d) - p(a] < /2,
1 0
cy=) (o emw ) m2<aglp()-p@I <= 2
imv(2)
(ezo 2) ~n <arglp(d) - p(@)] < -7/2
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4.5 The last transformation — II
Let

TP (1) for A € Dy,
) ={ TP ) fordeD_gs (4.27)
(1) for 1€ C\ {Dgs UD_qs}.

Introduce the curvé’ = {T'; U F_}Q{Bq’g U B_q’g}. ThenlIT is continuous acros& \{q, —q}.
Sincell is holomorphic in a vicinity of¢’, we have thafl is holomorphic inDgs U D_gs \
{g,—q}. This, in turn, due to the estimates 8¢ # and Y around the pointsq, ensures that
the singularities at these points are of a removable typ&celd is holomorphic on the disks
Dgs U D_qs. Finally, we see thail satisfies the following RHP:

e ITis analytic inC \ Zr (cf Fig.[B) ;
o I1(2) =12+0(1/2) forA— oo;

ML, ()M, (1) =T1_(1) forael”,

I, (AMT() =I_(1) foraiel”,

I, ()P)=T_(1)  for e dD_gs,
I, ()P) =T_(1)  for A€ dDgy.

The solution to the RHP fdi, exits and is unique as seen by standard arguments.

/4
>F+

’
lr_
-<

Figure 5: ContouEp appearing in the RHP fdi.

The jump matrices fofl are uniformly exponentially close t in x onI"_ UT’, and uni-
formly 12 + O(x*"*) on 9D U D g5, With E = 25URp 40, |[R(V)|- As & consequencey
is the unique solution of the RHP, up to uniformly(ﬁ‘l) corrections. In addition, using the

equivalence between singular integral equations and Ri¢Ragymptotic expansion &f can
be obtained by a Neumann series. This will be done in the upmpsection.
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5 Asymptotic solution of the RHP

In this Section we asymptotically solve the above RHFfor

We derive an asymptotic expansion into negative powensfof the jump matrices fofI,
and use it to prove the existence of an asymptotic seried.fdrhe corresponding asymptotic
series fory follows readily. One can finally infer the asymptotic belwof the resolvent of the
GSK up to any order in /.

5.1 Asymptotics of the jump matrices

Denote the jump matrices forby Io+A (1). Then the matrix (1) has the asymptotic expansion
in the limit X — +o0:

A (1; %) ~M-143
A(A)_;T + o(x ). (5.1)
With & = 2SUpp, L ap_,s | B (V)]

The explicit form of the matricea®™ (1; X) depends on the position afin the contour
Y. they vanish to any order in/X onI”. UTI”, whereas the asymptotic expansion foon
dDgs U D_qs follows promptly from the asymptotic expansion of TricontHE (A.6). More
explicitly, for anyn € N*,

Aff‘)) X for 1 € 0D_gs
[p(2) - p(-9)I" A
AD (2 %) = A (2 %) (5.2)
’ — O for 1 € dDgs,
[p() - p@ 4
0 forael” UT”.

We have separated the jump matrices into their pole paits) — p.]™" and regular partAff‘))

andA", with

' 1 nusx D" () 0
TSV i - - (—v(2 n
e D R U 53)
y(Du(; X
for A € 0D_q,, and
' 1 by D" 0
nyi. i D" (v(a n
AD@WH =Gl " ( 0 (—V(A))ﬁ) ®4)
Y()T(A; X)

for 1 € 0Dgs . Here we use the standard notatipf, = I' (v +n) /T (v) andu(4; X), resp.
01 (1; x), have been defined ifi (4]22), resp. (#.25). Thus, the matti€eslightly depend orx,
but their entries are a &Y).
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5.2 Asymptotic expansion forll

Using the equivalence between RHP and singular integraltems we can expreg§sin terms
of its boundary value from the+" side of the contoulp

() = |2+Tlﬂfn+(s)A(s)ldTSS. (5.5)
Zn

In its turnI1,. (1) belongs toL? (Zr) and fulfills the linear singular integral equation of Cauchy
type

M,(2) = Iz + Cf [MLA](2) . (5.6)

Recall that the Cauchy operator bf(Zy) is defined as

g(s)ds ‘
-s’

t ¢ . (5.7)

Cyyldl(@) = lim Cyy[al(t)  and  Cyylgl(t) = Tlnf
Zn

The notationt — z" stands for the non-tangential limit bhpproaching from the "+ ” side of
the contourzy;. Recall that the Cauchy operator is bounded: i.e. therg¢seaisonstant, such

that, for any functiorg € L2 (Zr), one hachgH [g]” < ¢ |lgll, wherel|.|| is the canonical.? (Zp)
norm.
The matrixI1, can be asymptotically approximated by the following series

Proposition 5.1. LetH(+k) be defined recursively according to
k
n® =>"cg P a®] with 1 =1, (5.8)
p=1

Then, for any integer M- 0, there exists a constant(®) > 0 such that

M-1
N yerp| « M)
1, - > x Pl < e (5.9)
p=0
Proof — Let us prove this statement by induction bh For M = 1 we have that
T, = T2l = ||CF, [(Ty = 12) A] + C, [A]]| < c2IITL, = L2l Al + c2 1Al (5.10)
Therefore, forx large,
C2 ||A C(1
T, — 2l ) (5.11)

lof] < < ==
1-collAll = xt-2
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Let us now suppose that the result holds upitoThen,

Z ) -

k

M
LA - (k—p)A(P)
e ] i

M-
k=1 p=1 k=0
— M —
< G MLl Cay X M5 43" 6 [[AP]| x P C(M — p) x(P-M-0-5)
p=1
C(M+1)
S D) (5.12)

for some constant€,,, andC(M + 1). We used the fact that al(P are inL? () and that
I, || is bounded in virtue of (5.11). o

Let us now extend this result for poimdeing uniformly away from the contoy;. Define
the matrices

p
n9@ =1, nP@ =>"cy, [nPPa9] @, p>o (5.13)
k=1

M
Mz M) = > xPrP(), (5.14)

which are analytic away frorBr;. Then we have the following result:
Proposition 5.2. Let K be any compact subset 6f\ ;. Then,Vk € N, YM € N*,

kI C(M) Igth(Zn)
d(K, ZH)k+1XM(1—§) ’

k11 (1) - oK M - 1)| < deK. (5.15)

Here|.| denotes the usual max noffiilj = max |Hi,j|, d(., ) is any distance ot andlgth(Zr)
is the length of the curvEy.

Proof — Letk € N, M € N*, then

AKII(1) — le x P okTIP (1)
=0
p M-1 p |
= |2 f 0 )m {m(s) A9 - pZ’i xP IZ; (s A('><s>}
Kl C(M) Igth(=r)
= xM(1-8) gk+1 (K, ZH)
due to [5.p). O
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5.3 The functionsf. to the leading order

We now perform the transformations frdmback toy.
The solution to the RHP of Propositipn 3.1 reads

x() =) x9) . (5.16)

We cally© the zerd order solution (i.e. obtained faf = I5). In the vicinities of the endpoints
of [-q;q], x© is given as

o = | PW M1 @()~3, 1€ D_qsN{0<arg[p(d) - p-] <7/2},
§ P M) ()2, A€ Dgy N {/2 < argp(d) - pi] <.
Similarly, on[ —q; q], and uniformly away from the endpoints,

XOW) = MM ey ()™, de]-q+5;9-6] .

Inthe J (1) = 0* limitand forR (1) € [-q;q],

M;la;‘”( N 8; ): (a/+e_)_"'3( ez'lm ) (5.17)
sothat, fori e |-q+6;q9+6],
f-+(—0) @) v - im1e( 1
( 10 (3) ]zé @[3t (1) e, (1) €™P] ( 1 ) (5.18)

where we have explicitly written all the dependencelon
Whena € [ -q; —qg + ¢ |, we should multiply the latter expression 8y Using the decom-
position [A.}) of Humbert CHF into a sum of two Tricomi CHF wetg

0w w( e@\7 T(1+v)®(-v1;-iLq)
(f_“”(ﬂ))‘e (Kpu)ga) ra-vo(rLicy) ) (-19)

with £y = x[p(a) - p(1)] and{_q =
Analogously, fori e [q-6;q],

( 1O () ]_ i (& DG\ TA=v) (v Lily)
Q0 ) ( Kkp () ) l"(1+v)(D(—v,l;—i§q) .

xX[p(2) - p(-9)].

(5.20)

Note that the piecewise expressions for the functitip?s(/l) are in fact analytic in a vicinity
of their respective domain of validity, although they haeei obtained by taking the limit af
approaching a point ifi—-q; q] from the upper half plane. More precisely, the form{ila (5.19
holds onD_qs, (6.20) onDg,s, and [5.18) on the connected component of the interiax,of
containing[ 6 — q; g - ¢ |. This observation follows fron{ (3.3), but of course it canchecked
by a direct computation based on the expression for the xnatri the lower half plane.
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5.4 Integral bounds for the resolvent.

We now introduce a functioR© (1, 1) and show that it is a good approximation of the resolvent
in the sense that

r(R-R?)=0(x1) . (5.21)
Such estimates are necessary for the integration of-therivative of log detl[ + V].

Definition 5.1. LetIlI, (1) denote the solution of the RHP given in Subsedfion 4.5 whospg
are on circles of radiug and on the corresponding curvé$ andI”..

We can then write the solution of the RHP fpasy (1) = T)(T) There)((o) do not depend
explicitly on r. The radiusr only determines which patch we should use for the definition o
the matrix)(go). Moreover the whole combinatidﬁT)(gO) does not depend on the radiuat all.
Hence, we can represent the exact resolvent as

1 H;lil—) 100 0 ()| ER
—u

R(1u) = (E- () [/ ] (1)) - (5.22)

There, without altering the value & (1, u), we can chose flierent values ot depending on
the point we consider. This is quite useful as we can take ahe\of the radius in order to
have estimates aroung and another one to perform estimates in the lpdlk q; q— ¢ ]. This

will become clearer during the proof of the proposition belo

Definition 5.2. Let us fixs, @ > ¢ > 0 and define what we call the diagonal zZ&rorder
resolvent

RO (1, 1) = 72 @) (

ot () 19 () - 0,19 () £ (1)), (5.23)

where the functions(? (1) are given byB.18)for 1 € [6 - q:q - 6], (B-I9)for 1 e [-q;6 — q[
and (B-20)for A € ; q-6;q]. Similarly,| FR© (1)) and(Fb o (1) | are defined in terms of the
same functions,

We stress that the radiuspreviously introduced to build the exact solutlﬁn(/l))((o) ()
andés appearing in the definition are, a priori, unrelated.

Proposition 5.3. Let R(4, i) be the exact resolvent of the generalized sine kernel. Then
tr(R-RO)=0(x1), (5.24)

where theO is uniform iny € Dq,.

Proof — According to the preceding observations we havedfer[ -q; -q+dé[U]q-46;q],
R(2,2) = RO (2, 2) + (FO (1) M2 (1) 9aTT25 (1) | FRO (1)), (5.25)

and

R(1,2) = RO (2, 2) + (FEO () |52 () 9aT15/2 (1) | FRO (2)), (5.26)
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for 1 € [6-0q;9-5]. The advantage of using twoftérent matricedI for the corrections
of R(4, 1) with respect to the zefborder resolvenR© (1, 1) is that the corrections are always
analytic on the whole domain where they are considered. ©eg ot need to take into account
that I1s (1) has a jump across = +(gq-6). This might be problematic as, for instance, the
integral ofd,IT1(2) on[—q;d — gq] might be ill-defined. Moreover the uniform estimates that
we have derived for the matriX (1) only hold uniformly away from the jump contour. As we
will only integrate the terms containindz;s on[—q;6—q[ U |q—46;q], we will be in this
situation. The same holds for the terms involvifig,. However, we would not be able to
use the uniform estimatef (b.2) fé§I1; when integrating it o —q; ¢ — q], as we would not
always be uniformly away from the boundary of the jump confouIls.

With this way of understanding the corrections we have

—q 9
r(R-RY) = ( + )dﬂ (FYO (1) [Ia5 (1) a5 (1) [FRO ()
-4 g-5
0-6
+ f dA (F5O () /2 (2) a2 () IFRO (). (5.27)
5-q

Let us start by the bulk part of integral, i.e. the part[@n-q;q—6]. From the explicit
form for £ on[6 - q;q - 6] given in (5.1B) we see that these functions are uniform()0

Moreover, the uniform estimates for the matri¢&g, (1) for 2 uniformly away from the jump
contour guarantee that

(FHO () M2 (4) 9allsy2 () [FRO () = O (%), (5.28)

the O(x*~%) being uniform iny, at least fory small enough.
The situation at the boundaries is a little more complex. YW consider the right boundary
as the other case is treated similarly. We still have Ihgt{1) = |, + O(xg‘l) anda,Ilzs (1) =

O(x*~1) uniformly on[q-¢;q]. However the functionsfio) (A) are no longer uniformly a
0O(1) on this interval. We should thus estimate the following gmée
q
> WO WG6 (yda (5.29)

o0’ =%

05
with G~ (1) = O(x*%) being related to the entries B2 (1) 9.115/2 (4). The situation being
similar for all the possible choices of andd’, we explain the mechanism -, o) = (+, +).
The asymptotics of Humbert CHF guarantees that

C.
It
for some computable constartsdepending ora. These constants are continuous with respect

to a belonging to an open neighborhoodvd{ g - 6; q]), and so is the ¢1) term. Hence, there
exist anaindependent constaf such that

@ (a,1;=it) = 1+0(1) t— + (5.30)

1+ )@ @ (g 1;it)| < C . (5.31)
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Indeed the latter function is continuous Brand has a finite limit ato. Moreover the constant
C can be chosen in such a way that the estimate holdsbetonging to some small vicinity of
v([g-9;q]). Hence, by explicitly extracting the~* factor coming fronG, , (1) we get that,
for some constant’,

1O 19 WG ()] < %L (p(D) - P(@) (5.32)
with @y (t) = X2R0W) (1 + x|t])~2R0W) | The functiongy (t) fulfills

lex (P(A) = p@)] < EIp(R) — p(q)[ 2RO (5.33)

as, for anye € R, t — t/(1+1t®) is bounded. The latter function is integrable [ap-6;q]
(we consider the caﬁé& (v)| < 1/2). Thus the integrals if (5.29) do eventually yielc(ﬁl)
contributions. m]

One can prove, in a very similar way, the estimates for thédti-Schmidt norm of the
resolvent. Namely,

Proposition 5.4. Under the assumptions of the previous proposition,
|R-RO|, =0(x") (5.34)

with ||.||l> being the Hilbert—Schmidt norm.

5.5 Asymptotic expansion of the resolvent

We now prove that the asymptotic expansionIfiotan be used to obtain an asymptotics expan-
sion for the diagonal of the resolveR(1, 1). We derive point—wise bounds for the latter as this
guantity appears in thg-derivative of the Fredholm determinant:

dqlogdet] +V] =R(qg,9) + R(-0,—q) . (5.35)

We need to estimate the error when we replace the exact eegdhby the approximate one
RO. The magnitude for the error term follows from the followiregult:

Proposition 5.5. Let y(© be the solution of the RHP fgrup to the leading order in x, that is to
say the one obtained frofl = | and corresponding to the contodf; with disks D5 having
radius . Define the leading vectorsF-(© | and| FRO ) as

(FEO Q) | = (B~ () k@ 1FRO ) = Q) ER (1)) (5.36)
and the leading order of the resolvent by

(FEO () | FRO (1)

RO, p) =
A—p

(5.37)

Then

k
R(1,2) =RO(1,0) + >’
p=1

R('O)M’J)Jro( X ) (5.38)

xP x(k+1)(1-8)
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for A uniformly away fronk; and belonging tq4 —q; q]. Here,

RO (2,2 = ~(F5O (1) | 9,FRO (ay, (5.39)
RP (2, 1) = —(F5O ) TP ) | FRO (1)), p>0, (5.40)
in which

k
I (4K aaT1 (4 K) = Y TP () xP + 0 (5.41)

1
£ x(k+D)(17) |

Proof — Clearly,

FLO)(7) | ERO) b
Rty = = 2| FRO)),

2 ~FEO@) 1,FFOW) - (FHO@) (1) 9,11 FFO ).
—u

+(F-O) |H_luilj(g) -

The corrections to the leading order for the resolvent arerghere by the second term.

The inversion operator oM, (C): u — u! is continuously dierentiable around the iden-
tity I,. Thus there exists an open neighborh&®daf the identity matrixi, and a constant > 0
such that¥ A, B € W, one had|A™! - B™Y|| < C||A- B|.. Herell.|| denotes any matrix norm.
The matricedT (1) andII (1; k) belong toW for x suficiently large, as they both go te in the
X — +oo limit for A uniformly away from=y;, and we get, from Propositidn 5.2,

[T () GIT (A) = TT7H (A, K) 00T (4; K|
< CIIT(A) = I (4; KO ()]
+ C (T (DI + 1T (2) = IT(4; KD 10T (2) = OaTT (4; K|
CK
S ——r=
= xk+D)(1-8)’

for some constar€(k). Thus, uniformly away fronZy and on the real axis, one has

[ FEOQ) 1) 9,01(2) — TI7H(; K) 02T10; )| FROL) )| = O(L—)' (5-42)
k(1)

In the last equality, we used the fact tﬁé?) are at most of order Gf) on the real axis, as
follows from their behavior aroundq. m|

6 Leading asymptotic behavior oflogdet|l + V]

In this Section, we prove the result of Theorén] 2.1; that isag, we compute the leading
asymptotic behavior ddtf V]© of det[l + V] up to o(1) corrections in the — +oo limit. More
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precisely, we show that

G(1,v,) k"7 (0q; Q)
(29p, %)’

q
logdet] +V]@ =2 f div(2) log’[e_(2)] + Z Iog[
*q o=%*

q
1 V() v(p) = v() V' (1)
+ Efd/ld,u o . (6.1)
-q

This result will be obtained by two fierent methods based on the integration of equations
). The first one, which uses the derivative of the Fradiseterminant ovey, is based
on the uniformness of the asymptotic expansion for the vesolfor y small enough. It is
worth mentioning that this way is technically quite invalvelrhe second method deals with the
derivative of the Fredholm determinant oegrAlthough we have not been able to provide a full
rigorous proof for it, we would like to draw the reader’s atten to this method as it is much
more direct and simple.

6.1 The leading asymptotics from they-derivative method

Due to Propositiof 53, the proof of the leading asymptaticthe Fredholm determinant from
the first equation[(3.13),

q
Oylogdet] +V] = I%R(/i, 1), (6.2)
Y
q
only necessitates the use B (1, 1) defined in [5.37). Recall tha&®© (1, 1) has diferent

leading asymptotics in the bulk-g; q[ and near the boundary. L&t> 0 be stficiently small.
Then

RY(1.2) 1€[q-6:q],

(0)
RE@ Ej’l)z D) ae[-q+5:9-6], 63)
R0 1e[-q;-q+6].
where
o . FW . P, — PO\
Rk = S F ) {2‘9” loge. (1) = 20;log [Kpu)(p(ﬁ) - p—) ’

R (4, 2) = —ve (v x[p - p_]) {2v' log x— 20, | vIog (p, — p) — 20, log |
+V [ L+ )+ (L= +d | +ixvpr (i x[p- p-]) +wp (i x[p-p]),

RY (1.4) = —ve (vi X[ P+ =~ pl) {2v" log x— 20, [vlog (p ~ p-) ~ 20, logcy]
+ o[y @+v) +y (L= )]+ g} +ixvp'r (v x[ps = pl) = wp (i X[ s - pI).
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Herey(2) = g, 4 1ogI'(2) and we have introduced the shorthand notations

o (;t) = O (-, 1;-it) @ (v, 1;it),
o (v; 1) = (01D) (v, 1;it) @ (—v, 1;—it) + (01P) (—v, 1;—it) © (v, 1;it),
T(v;t) = =@ (—v,1;-it) D (v, 1;it) + (0,D) (v, 1;—it) D (v, 1;it)

+ @ (-, 1;-it) (6,9) (v, 1;it) .

Moreover, in order to lighten the above expressions andaimones in the following, we omit
the explicit dependence on the argumeantf the diferent functions involved (like,, p, and
their derivatives’, p/, etc.).

We can now split the integration contour into three parts

A Q[ ) ~da
fR(O)(/l,/l)—: f_R(_Ogu,m f = (Ok)(/l,/l)+f—Rg°)(/1,/1). (6.4)
y y y y

-q -q —Q+6 g-6

The bulk integral is carried out straightforwardly. Theeigtals over the vicinities of the end-
points are more involved. Consider, for instance, the natiggn over| —q; —q+ 6 |.

Using the asymptotic series for Humbert CB®HRA.9) and the equation§ (AJ10], (A]11) we
get that

e(at) — €™,
ira

ri-ar@+a

r(at) +¢€ (1 1+t)

plat)+ {Zlogt v(l-a) - ¢(1+a)—ﬁ},

t

are uniformly Riemann integrable dn* in the sense of the definition of Lemnia B.1 (See
Appendix B). Using the integration Lemnha B.1 as well as th@reges for the integrals of

andy (A.10), (A.11), we find
—Q+0 —Qg+0

d einv
f RO, )d1=- f m{w logx — 23, [vlog (ps — p)]
—-q

+ )+ (=) +d}

—Q+0

da emy diy
+f—r(v)m ){2log[x(p—p_)]—w<—v)—w<v)+—1+x(p_p_)}

—Q+0

+|xfd/lpv{x(p o)+l 1}

v e|7TV_

* m{Z—w(V—)—w(—v_)}m(l) . (6.5)
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Here the d1) is with respect to the successive limig — +oo0 ands — 0. The two terms
proportional to logx compensate each other. The remaining part of the first thres of (6.5)
is an O(6) and can thus be dropped. The integral in the last two linef.8) (s evaluated thanks
to the second integration Lemrha]B.2 (see Appehlix B). We get,

—g+0 —g+0 el
(0) _i [P
fR (1,2)da i fl“(v)l“(l—v)d/l
-q -q
gm-y_

TTeoora-v) {=2log[x(p(6 =) - p)] +2-y (v-) —¢(-v-)} +0(2) . (6.6)

The integration ovefq— ¢; q] can be treated similarly. The result reads

q q
elﬂ'V
0) _
fR( (A4, ) da = IfF(v)F(l—v)
g-6 g-¢
V+ei7rv+

TToard-v,) {=2log[x(p: = p(@=-N]+[2-¢ (vs) —¢ (—v)l} +0(D) . (6.7)

So that,

q q
0) _ vk ixo + o —
fR( (1,2) da fzm(le) |ixp’ + g - 20, logyp| da
“q “q

q-6
VF da ’)/VF P —p 0-0
' VIOg( ) {1+7F} ['ﬂ(1+7F) Iog(p_p_)L_q
6—q
#FF) {2log[x(p(6 —a) - p-)] -2+ ¢ (v-) + ¢ (-v-)}

vy F.

+ ZrL+FD {2log[x(p(@-9) - p)] -2+ ¥ (vy) + ¥ (-v4)} +0(1), (6.8)

e vF . ) .
where we use Using the integral representation for the Barnes
‘f(v)r(l—v) i@+ yF) oMY grairep
G-function (2.7), it is not a problem to see that

G(1, V+)G(1v)]

fR(O)(/i /1)— =9, fvaﬁloge_d/nlog([x(p =

+2fayvaﬂ logkp dl - 2f[aﬁayv vlog(g+ pp) di. (6.9)
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Now we should recast the last line as a derivative with resjpec We have

q
2 f [ayvaﬂ |Og/<p—[c')/16yv]vlog(p+ _pp)] a1

_ (@) (Pe - p\2F (ps—p\2°
_aylog{ﬂ(—q;q)( 2qp, ) ( 2qp. ) }

+ Z |odyve log (o0; @) — ovedy log k (o 9)]

) q
q-A41
Zf[ayaﬁv] [|09K+V|Og(q+/l)] di. (6.10)
—q

It remains to apply the identity

q

q
V(v ) - W)v(d) _ q-4
ayl 2(1- 1) d/ld,u——Z:qf[ayaﬂ] [IogK+vIog(m)] da

+ Z[o-ayvg log (c'q; @) — ovedy logk (g, )] (6.11)

o=%x

Indeed, we have for the r.h.s. ¢f (§.11)

q
RHS = f(m(')),v - vo,v, N v_0yv — V(')),v_) QL
g-41 q+A4

q
1 1
+fv(ﬂ)ayaﬂu){ﬁ_ﬂ+io+ ﬂ_ﬂ_io} dA dp

1 1
(v(,(')yv+v8),v(,){q_o_/l+i0+q_o_/l_io} da

q
1 1
+_jq‘v(y)67v(/l){(/l_ﬂ+ 07 + T i0)2} didu. (6.12)

There we have regularized all the integrands and then peeian integration by parts. On the
other hand, one has for the I.h.s. pf (§.11)

1 1

q
LHSIf[ayv(/.l)a/lv(/l)+V(/J)L’“)y6/1v(/1)]{/l_'u+io+/l_’u_io} didu. (6.13)
-q

Taking the last integral by parts we arrive fat (§.12).
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Thus, the I.h.s. of[(6.8) is presented as a derivative wisheet toy. Since the asymptotic
expansion is uniform iry we can integrate this result from 040 As log det | + V] |,—o= O we
get the desired result.

6.2 The leading asymptotics from theg-derivative method
The method we use here is based on the second equatjon i, (3.13
dqlogdet] +V] =R(qg,9) + R(-q,—0). (6.14)

For the purpose of this sub-section, we assume|$héiz (/1))| < 1/4. Indeed we are then able to
use the pointwise estimates for the resolvent establishBdopositior] 5]5. Such a restriction on
|‘R (v (/1))| could be relaxed by much more refined estimates. Recall tieahas forl uniformly
away from the boundar¥; corresponding to disks of radids

c@ _c@

()
|R(/1, /1) - R( )(/L /1)| < x1-28 = x1-2e

, with e = 2sup|Rv]| , (6.15)
u

so that they anti-derivative ofR(q, q) + R(-q, —q) — R? (g, ) - RO (-q, —q) will be a o(1) in
the x — +oo limit.
Equation [6.8) allows us to determine the value of

RO(a.2) = ~(FHO (2) | 9.,FO ()
= %Ef) fOw) £9) {0, 10g f, — 8, log f_} (6.16)

at both endpointg and—q.
Consider, for instancé&®® (-q, —q). We have, forl € D_q,

RO (4, A) = —v(D) ® (=, 1;-i_q) @ (% L;ic_q) {251 loge, (1)
—20,[logkp(A) + v(2) log gl + V(DY 1 +v) +y (1 -v)]
(0,9) (v, 1;iq) | 09) (-1 —ig_q)‘
d)(v, 1; i{_q) (D(—v, l;—ig“_q)
(020) (#Liico)  @r10) (-1 —ig_q)H

—ixp'(2)

—V'(4)

(6.17)

(D(v, l;ig“_q) (D(—v, l;—ig“_q)

where, so as to lighten the formula, we have omitted the aegaivh of v(1) whenv appears
as an argument of another function (hérer ®). The symbold, stands for the derivative of
a CHF with respect to its variable, whereasstands for the derivative with respect to its first
argument. Recall also thétg = x[p (1) — p(-g)] andlyq = X[p (@) — p(D)].

It is remarkable that the last two terms involving derivasivof CHF vanish in tha — —q
limit. The resulting expression can be further simplifiedrtks to the identities:

_ q-41 A+q
log icp(1) = logx(A) + v() {Iog (m) ~log (m)} , (6.18)
Y)Y () [W(L+ ) + 6(L = )] = 8,109 G(L,v) + 2v(A) V' (), (6.19)
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Thus, we obtain

RO(-a.-0) = -2v-[d1loge.()])  +2/v-logx
4

2 pl/

+ 2V v_ Iog(qu()—— o

—2v_v_ +2v_[0,log K(/l)]‘ , (6.20)
A=—q

where we have used the notatiofs](2.8),](2.4).

The final aim is to integratd (6]14) over the variagleOne should keep in mind that the
function (1) = «(2;q) is actually a function of the two parametetsandqg. Therefore, one
should replace partial derivatives atl = +q by total q derivatives thanks to

d
d—[log k(—0; )] = -0, log«(4; q)‘ + dglog k(4; q)‘ : (6.21)
q A=—(q A=—q

ThenR© (—q, —q) is almost a totaj derivative:

RO (g, —q) = -2v_[9, log el + a4 Iog[

G(Lv.) l
1=—q 4

(2qp.x)”
d .
- le_aq [logk(-q; Q)] + v-

0e=v) - (6.2)

Similar calculations based on the expressidns [5.20§ faroundq lead to
G(Lvs) l
y2
(2qp, x)"™
d
+ 2v+d_q [log (g; a)] -

d
RO (q,q) = —2v,[d,log e *gq Iog[
q

(vi —v.)

(6.23)

Hence, we have

dqlogdet] + V] =2 )" v,[d;log W o+ % log [ (2(: SXV)Z) Z;lr;t))vzl

Y ogrlrgq) _ o~ YL o@). (.20

It remains to express the last line as a tatalerivative thanks to Lemmfa B.3. After an
integration with respect tq of (.24) we arrive to

q
logdet] +V] = Zfd/l v(2) log’[e_(2)] + log

G(1,v+) G(L, v-) K+ (q; ) l
(299, %% (2ap. )" ©-(~0; 9

q
+ % fd/ld,u A% V(”; :;(/l)v ) +C+o0(1), (6.25)
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whereC is ag-independent integration constant still to be determined.

One can give arguments that this constant should beyalsdependent. Indeed, the asymp-
totic expansion of the Fredholm determinant, being a foneti of the holomorphic function
yF(2)in U, can depend on this function either in the integral form \itegration over{q; q],
or through the values ofF and of its derivatives at the ends of the integration contapand
g. In both cases the result should dependgoriHence, theg-independent constai can not
depend onyF (1) and, thus, it ig/-independent. We can then fix the const@rty settingy = 0
in the asymptotic formula. This yields = 0.

6.3 The first corrections to the leading asymptotics of the Fedholm determinant

We close this section by deriving the sub-leading correstifsom thex-derivative (3.1P) of
log det || + V]. This will constitute the proof of Propositign 2.1.

In order to prove the claim of the Propositipn|2.1, one hastivd the first two sub-leading
corrections for the matriXI. As one might expect the computations are, by far, simplatr th
those necessary to fix the constant. We also would like totpmihthat one can obtain the
sub-leading asymptotic of ddt } V] by the g-derivative method. However, the computations
are quite involved, so we omit the presentation of this metho

We derive the first term in the/X expansion of log deti [+ V] thanks to [3.12):

dxlogdet] +V] = 56 2—; P tr [ (D) oay ™ ()] (6.26)
r([-a:a])
where we chose the contolif| —q; q]) to lie outside of the contouZ but still in the region
of holomorphy forp. There the solution for the RHP fgrhas a simple form:
x()=T1) a2 (2). (6.27)

In order to derive the first correction to the leading asyriggoit is enough to consider the first
two terms in the asymptotic expansion f@¢?):

no@ 19w g ().
X

H(/l)=|2+ 2

(6.28)

There, as follows fror’r@S), the O is uniform on the wholetoorI' (| —q; q]). Thus

dxlogdet] +V] = - p(A )6/102 (;) " 56 i—i p(A)tr [03611'[(1) (/l)]
r([-a; q]) r([-a:al)
+ % j—i p() tr {03 [P () - IO, TV ()]} + O (D) . (6.29)

([ -a:a])

The first term in this expansion will yield the leading cotres. Indeed,

q
dﬂ p(A )aﬂ‘z()ﬂ) di P ()loga (1) = —i f dip ()v() . (6.30)

([ -a; q]) ([ -a; q])
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Here we shrunk the contour fe-q; q] and used the jump condition far.

In order to evaluate the higher order correctiong in {6.28)eed to derive the expressions
for the matricedT® = Cy, [A®] andI®@ = Cg, [MPAD + A@)] outside ofSy;. An elementary
computation of residues yields:

AR @x  AY (-g %)

6.31
C(1-9?p, (ﬁ+q)2 P (6-31)

8,19 (1) =

as well as

8,1® (1) - 1 (1) 9,11D (1)
= (0:08) (759 + Y (060 (9280 (0 9
(- oq) p,

A(Z)(o-q X) + [A(l)(o-q x)] o 2
: (;i 2(py)? { o, (- 00  (A- crq)3}
A8 (@ %), AY) (-a; )|
20 P p(A-a)a+q)
Thus the Ix term in (6.2P) gives the cdigcient in front of logx in (2.8). Indeed,

(6.32)

56‘“ () tr o3 0,11 ()] = itr sl (—a; %) + 073AL) (@ )]

([ -a:a])
=- (i +2). (6.33)

We now focus on the last term i (6]29). It yields, aftenantegration, the first correction
to (2.6). A straightforward computation leads to

56 ;—i p()tr{os 0,10 (1) - 1P (2) 0,11V ()}

r([-a:a])
P+ — P- _
= 2wt 1oe |20 @9 A5 e )
_ Z —tr 0'3 GAA(Z))(U'q X) +A(1) (oq; X) (‘94AE(1T))) (oq; x)]}. (6.34)

The first term corresponds to the oscillating correction:

@) (o @ u(gx)  u(-9x)
tr{o-3[A(+)(q,x) A )( qx)]} 2V+v_{u(—q;x) 0G0 | (6.35)
The last term gives the non-oscillating one:
3

25 (6.36)

tr {0’3 (8,1A( ))(O'q, X)}
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and

Z pl tl’{0'3 A(1) (g, %) ((%A(l))(aq X)}

/
o=+ 0

= piv 9, (logti(; x))‘ + ivzaﬂ (logu(1; x))‘

d P, d (VCZ,) v_(,}
= 2 logx+oc—logu, + ——|—| - , 6.37
Z {(rv g O—dq g vy 0q \ . o ( )
with
r(l-v,) (@)
= 9@ * { 6.38
R T ) W) (638
r(1+v.)
— g9(-a) =
u =é T ){(qu) k(-0 g)} 2 (6.39)
Putting all this together we obtain
dxlog det ] +V]——ifqd/l ) '(A)-Vz”g—zi'ogx‘lzﬁdﬁ
X g - J 4 p X X2 i pé— dq
i VZ{ d logu, + ! d (v(,) v_(r}
_ o— o+ P — (2] - =2
P | dg dg \ ps q
+ |(p+ P- )V Vi {U+ 2(v++v )e|x(pJr p-) _ —2(v++v )eIX(p p+)}
(209)% plprx? (U u

ax(p+—p-) 1
* ( A1-5) ’X3(1—§))' (6.40)

The first two terms reproduce the already known answer fotehding asymptotics. The re-

maining ones reproduce the first oscillating and non-a&il) corrections as given in Proposi-
tion[2.1. Note that for the oscillating terms, one only skidntegrate the exponent with respect
to x as all the other terms will give subdominant contributions.

7 Applications to truncated Wiener—Hopf operators

Truncated Wiener—Hopf operators appear in many domainsatfiematical physics such as
scattering or diusion processes. Moreover, many observables (dressegyengomentum
or dressed charge) related to quantum integrable modeksoartons of integral equations of
truncated Wiener—Hopf typé (2]17).

Let us recall that a truncated Wiener—Hopf operator canteegreted as an integral operator
| + K onL?(R) such that it acts oh? (R) functions according to

(I +K) o) = o)+ fdt’K(t—t’)go(t’)dt’. (7.1)
0
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The kernelK is characterized in terms of its Fourier transfdfm
. 1 :
K@) = FL[F](t), with TAFK0=Zif@F@kﬂi VF e LY(R). (7.2)
R

The study of truncated Wiener—Hopf operators is equivateat2x 2 matrix RHP. Another
facet of this equivalence is the correspondence betweemeated Wiener—Hopf operator and
the GSK acting o in which p = id andg = 0. Indeed, it is easy to see that

Ko=F1oVoF|y], (7.3)

whereV acts inL2 (R) with a kernel

— dxé-n _ 1

V(E.n) =F () PTGk (7.4)
The operator identity

l+K=7"1(1+V)F, (7.5)

together with the facts thatis trace-class angi ! are continuous, ensures the equality between
the Fredholm determinants:

det[l + K] = det|l + V]. (7.6)

The kernel is related to

Vi) = F@Fm @7

by a similarity transformation. Hence,

det [| + K] L20,%) = det [| + V] L2(R) - (78)

7.1 The Akhiezer—Kac formula

Our study of the generalized sine kernel allows us to rectherAkhiezer—Kac formula de-
scribing the largex behavior of Fredholm determinants of truncated Wiener$tépgrators:

Theorem 7.1 (Akhiezer—Kac [LL[30]).Let I+K be a truncated Wiener—Hopf operator as above
and such that

¢ F is analytic in an open neighborhood U &f;
e F goes sfficiently fast to 0 ateoo ;

e 1+ F (&) does not vanish on U.
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Then

[ee)

logdet| + K] = x7(0) + E[F] + o(1), with E[F]= ftr(t) 7(-t) dt, (7.9)
0
in which
7(t) = % flog(F(g) +1)e™™ de . (7.10)
R

Proof — The largex asymptotics of deti[+ K] follows from (7.8) after taking the — +oo
limit in the leading asymptotics for the corresponding gefieed sine kernel[(3.6). This limit
may seem a little heuristic as we did not specify any estimate for the small o terms with
respect to the leading asymptotics. However, the validitguzh a limit may either be seen
by refining all the estimates obtained in the previous seatioby considering the RHP for
B.3) on the whole real line from the very beginning. We shadke the second approach more
explicit in the forthcoming subsectidn ¥.2. Here we formadiike theq — +co limit in the
leading asymptotics of Theorgm . 1.

One should notice that, in the asymptotic formila](2.6)tradl terms evaluated at the end-
points vanish due to the fact tha{+qg) logg — 0 whengq — +c0, which is a consequence of
the sufficiently fast decrease &f at infinity. Hence, the only constant contributi&fiF] to the
asymptotics of log deti[+ K] is given by the integral

q
EF]= lim gfv' (W) @) =y D)V ()
gotoo 2 A—u

dadu . (7.12)
-q
Let us recast the constaBf F] in a more standard form. We have

log’ (F(¢) + 1) log (F(n) + 1) —log’ (F(n) + 1) log (F(£) + 1)
&-n

EIF] = -5 [ e
R

i
- 1672

[eednaxay {1+ s hearin e e
R

Let H be the Heaviside function, then

E[F] = 5= [ dndxdy r(9 ) (x ) (€7 ) - I (-y))
R
+00 0
— -2 [ 309 20+ 3 [ dr6)een) (-2
0 —00

- f dy(y) T(-y)y .
0
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which ends the proof of Theorem 7.1. O

It happens that this correspondence between truncatede¥Widopf operators and gener-
alized sine kernels can be pushed further so as to obtairsymepdotic behavior of Fredholm
determinants of truncated Wiener—Hopf operators with syimbhaving Fischer-Hartwig type
discontinuities. Considering the GSK for finiggsomehow corresponds to the asymptotic be-
havior of a determinant whose symbol has two jumps. The chsgmobols having general
Fischer-Hartwig type singularities is studied [in][33].

7.2 The resolvent of truncated Wiener—Hopf operators

Proposition 7.1. Let | + K be a truncated Wiener—Hopf operator bax; X[,

X

[(I+ K).g] (t) = o(t) + fK(t —t)gt')dt’, with K(t) = 7 F](t). (7.12)

Zx
Suppose that there exists> 0 such that

e F admits an analytic continuation t{a: 19(2)| < 6};

o & F(£+i6) e LY(R):;

¢ the analytic continuation of + F does not vanish on U.

Then the resolvent4 R of | + K fulfills

_ (% @+ (1) xe-n) _ @+ (&) ixe- )} glm-4) _25x%
s Rf i PO - e o o™ a9

where

a(d) = exp{f}%dy}, and v(1) = IZ log(1+ F(2). (7.14)

R

Proof — The GSK associated to+ K through the transformatiofi Lo [| + V]o F = | + K
acts on the whole real axis with the kernel

dE—mx _ d(n-6)x
2in (& —n)

Just as for the leading asymptotics of log det [K] (see Sectiofi 7}2), one can obtain the
leading asymptotic of the resolvent ¥fjust by taking formally the limitg — +oo in all the
expressions derived in the former part of the article. Nbtg tn this process all power law
corrections vanish: they are computed as contour integralsnd+q and, since~ approaches
0 suficiently fast at infinity, the residues &t vanish in theq — +oo limit. However, in order
to justify this limit, one should also check that all the wnifi estimates still hold fogq — +oo.

V(&) =F(@) (7.15)
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An alternative way is to consider from the very beginning aRRfdr y on the whole real
axisR. This is actually much simpler, than the RHP on a finite iraervThen it is enough
to perform the first two transformations described in Sed§cso as to obtain jump matrices
that are already uniformly close tg up to exponentially small corrections i Moreover, the
jump matrices for this RHP are given iy, andM-* (#-1]), so that they approach the identity
matrix atA — oo just as fast ag goes to zero at infinity. As expected, there is no need for
parametrices, and the corrections are immediately expafigrdecreasing withx. It means
that, up to uniformly exponentially small corrections, theolventRy of V is given by

©) __F® {Ch ) ey @+ (&) ixe- )}
e T mla© et ) (7.16)

where as usuat (1) is given by [7.14). Note that the integral in (7.14) is welfided in virtue
of the assumptions made én
We should now take the Fourjeverse Fourier oRy in order to geR. To this end, we must

justify that the sub-leading corrections do admit a Four&msform in two variables. Recall the
exact expression for the resolvent:

Ry (1.1 = RO (L) + (FLO (1) | 12/ RO () (7.17)

I ()T () -
A—p

Thereby, the matriXI is defined in terms ofI, (1), the limiting value ofIT on £ when 2
approaches a point afi; from the “+” side of the contour:

a2 ;

r,
dz 0 0\F®@a?(2 .y,
+f—d_zn+(z)( 1 0)—1+F(z) X2 | (7.18)

The L' integrability of F as well as the asymptotic conditidn(1) = I, guarantee that the
+

integrals are well defined. Thus one readily infers frgm§) the asymptotics dfl on the real
axis:

—26xC —20X
) =lp+ S - +o(eﬂ2 ) , (7.19)

whereC is some constant matrix and where we have explicitly extdthe exponential decay
in x of the matrixC. Hence using the boundednessfﬁ? on the real axis we obtain that

F (1) +O(e‘25XF(/l)).

7.20
B B (7.20)

Rv (4,p) = RY (L p) + €2C

Hence the corrections admit a Fourier transforml iand an inverse Fourier transform jinas
oscillatory integrals. Therefore, taking the Fourier sfamm does not change the nature of the
corrections. i
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Itis clear that, up to a similarity transformation, a Wierldopf operator onfa; b] has the
same generalized sine kernel than the same operator aot[rily a + b]. Therefore our method
works for any interval, of course up to a similarity transfiation on the resolvenf (7]16) ®f
We chose here to present this less standard form of Wieng@f-dferators as it fits better the
forthcoming application.

We apply our asymptotic inversion formula for truncated ki¢ie-Hopf operators acting
on a symmetric intervalfx; x] to re-derive some formulas concerning the low magnetid fiel
behavior of the so-called dressed chafde [6]. This functiaalitionally denote(1), describes
the intrinsic magnetic moment of an elementary excitatioova the ground state in the XXZ
spin-1/2 model. It satisfies the integral equation:

sinZ
2nsinh(l + i) sinh@d —i2) -

Z() + f QKA - ZE) =1, with K1) = (7.21)

TherebyK is often called the Lieb kernel ande 10 ; z [ is some real parameter describing the
coupling of the model. The large parametds a function of the external longitudinal magnetic
field; it goes to infinity when the magnetic field vanishes.

For the study o, one should distinguish two domains in the intervak], x]: the bulk, i.e.
the region 1| < x, and the boundariet ~ +x. While the asymptotic value at(1) in the bulk
(1 < X) is enough to describe the intrinsic magnetic moment of etgary excitations, the
value ofZ at the boundariesHX) determines the critical exponents of the two-point fumtsi
of the model [2D[31], 29] 5]. As we will see, the bulk and thertstary behavior of the dressed
charge difer fundamentally.

First, let us note that, setting directty= +oo in (7.2]), one can solve explicitly the integral
equation forZ by taking the Fourier transform: one obtains in this case Zlfd) is equal to a
constant valu&(1) = nr/ [2(r — £)] on the whole real axis.

Let us now consider the limix — oo in ([7.2]) in a more accurate way, namely, taking
large but finite, and use the method described aboveK e the Fourier transform df,

sinhl (¢ — 7/

K© =7 K = 5@ (7.22)
Then in virtue of Propositio@.l,
Z(D)=1- fR(/l,y) du (7.23)
1 %@ .y (0) - X+ (f) —i(X+1) }
=1 T {—a_ (g)é e —0 (0)e S (7.24)
R

First let us study the bulk limit i.e|1] < x. Using the jump equation satisfied ly:
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[1+ K(1)]as (1) = a_(1), we recast the integrand as

_ % K () {a’+ 0) dO=E _ a- (é:) —|(x+/1)§}
J A[1+K(@]E-i07) (a4 () a-(0)

= I f @ K€ +i¢/2) a,(0)  exE=¢/2)
~1+K(0) J 2 |14+ K +ig/2) a-€+1¢/2) £+)2

Z() =

K(& i —(x+A)(i£+£/2)
KE-iz/2) o (0) e } (7.25)

1+ RKE—igj2) a-(€-iL/2)  £-¢)2
Here we have separated the integral into two parts and theadribe contour to the upptawer

half-plane. This gives a pole contribution frahs= i0. The integral appearing iff (7]25) is clearly
a O(e‘(x‘“D?/z). So that, in the bulk,

1 B by
1+K(0) 2@#-9°
up to exponentially small corrections. As expected, wevecthe value oZ obtained in the
case of an infinite interval. Note that the corrections bexderger and larger as we approach
any of the endpointgx.

Let us now study the behavior of the dressed charge at thedades. Since the kern&l
is even, so iZ. We can thus focus on a single boundary, $ay x. We have,

[ [ena@ K@) @) o
20 =1 Rf 2i7r(§—i0+){K(§)a-(€) 1+ K@ @0 } (727

Z(A) ~ (7.26)

As before, the integral of the second term gives an expaalngmall contribution C(e"‘é“).
The integral of the first term is explicitly computable. Ugionce again the jump equation
satisfied byr..(£), we have,

d& oz (@) -1+ 1-aZ'(9) O(e x{)

2(x) = 1- ,(0) f

2 £-1i0
-1
_ +(0)f§ia’§(§) O(e—X{)
:m@+q ) (7.28)

We have computed the remaining integral by residues, sipb@) — 1 = O(g‘l) foré - o in
the respective half plane of holomorphy.

For an even kernel like the Lieb on€(¢) = K(-£), and then it follows from the integral
representation] (7.14) of thate, (¢) = ~1(~£). This means that 4 K(0) = o;2(0). Hence, for
x large enough

1 Ps
ﬂ@N/V1+Rmy_V2w—§Y (7:29)
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and the value aZ (1) at the boundary is the square root of its value in the bullowgxponentially
small corrections. In the limik — +oo this correspondence becomes exact.

8 Asymptotics of multiple integrals

We have already mentioned that the asymptotic expansiomedftedholm determinant of the
GSK can be used for the asymptotic analysis of correlatiorctfans of quantum integrable
models. For a relatively wide class of integrable systers, dorrelation functions can be
presented as series of multiple integrals of a special §fie [These series can be summed up
to Fredholm determinants for the models equivalent to feemions. In the general case, such a
reduction to determinants is not known. However, the asgtigobehavior of individual terms
of the series can be derived from the asymptotics of the Bteddeterminant of the GSK. In
the present section we consider this problem.

More precisely, our purpose is to derive the lasgasymptotic behavior of the following
type of integrals (cycle integrals):

Io[F] = 56 b ?( () ) ll[ gx(p(z)-p(4)) 6.1
nene (2. )n (zm)n "2 ) (z1-2))(z - Aja1) '

In this expressionf, is a holomorphic function ofRvariablesty, . .., An, z1, ..., Z, IN UM X W",

in which U andW are open neighborhoods pfq;q], andI'([ -qg;q]) denotes some closed
contour inW surrounding[ —q; q] with index 1. We moreover assume tiyat is symmetric
separately in the variablesi,, ..., A, and in then variablesz, . . ., z,. Finally, we agree upon
/ln+1 = /11.

F —qq

8.1 Leading asymptotic behavior of7 ,[F]
Let us first suppose that the functigh is of the special (factorized) type

AR (PO 82)

i=1
wherey is a one-variable holomorphic functionthand¢ is a one-variable holomorphic func-
tion in W, non-vanishing o'W. For two such functiong and¢ we introduce the associated
GSKV®9 given by [I.B) provided the identificatidh(1) = ¢(1)¢(1) ande? = ¢(2) is made.
Then, the integral[ (8 1) can be expressed in terms lof devV“#)] as

q n
Ih[F¥?) = f d"a ]—[ VD (4, Agr1)
. k=1

~ (_1)n—1
(n-1)! =0
In this specific case, it is straightforward to obtain thellag asymptotic behavior of the mul-

tiple integral [8.8) in the larg limit thanks to the results of the previous sections.
This remark leads us to the following definition:

o log det[l + V)] (8.3)

46



Definition 8.1. Let U, W be two open neighborhoods|efq; q], and letH (U) (resp. H(W))
be the set of holomorphic functions on U (resp. on W). Let also

SYW= {Z Far ) pe N, (¢ed) € H(U) X HW) andde| a1’ 0} . (84)
— [-a:a]

in which 7—}9‘7"’5) denotes a pure factor function 2f variables defined in terms gfand¢ as in
(B2). We define the linear functiong{ on SV as

Opgteay - CD™

(n-1)!
and by imposing linearity on functiong)._, F#e2)  Here \4) denotes the generalized sine
kernel{8) with F(1) = ¢(1)¢(1) anded® = ¢(2), andlog det[l + V&)@ denotes the leading
asymptotics of the Fredholm determindog det[l + V#¥)] as in Theorenf 2. 1.

It is easy, using the expressidn (2.6) of logldet V(W)](O), to obtain an explicit expression
for 1 O[F#9):

0 log detl + v<%¢>](°)‘y=o, (8.5)

q
P[] = f X4 (XD () $) + (D)
—-q
+ ) (ba—calog (20, %) [¢(0rq) ¢(er)]"

o=x

() Q)" - Q) TP [e() #)]"P
ZZZfdﬂ TEDICED

cr+p1

dadu o1 np
SNZPZ; { 0 (g A 60 ) 01 ) )

— 3ule() 6(1)] L) dE)]P [p(D) $(D]" P}, (8.6)

whereb, andc, are given by[(2.23). The — +co asymptotics of the Fredholm determinant are
uniform in+y to any fixed orden in 4. This means that

o737 = I 0] + 0 (1) (87)

In the next proposition we show the’ can be extended into a linear functional on the space of
holomorphic functionsr, (not necessarily of the fOI‘Iﬁ'n("D’(ﬁ)) that are symmetric in variables
A1,..., Ay andnvariablesz, . . ., z, separately. This extension tﬁf”, as we prove below, is the
good way to evaluate cycle integrajs {8.1) with such artjitsgmmetric functions,.

Proposition 8.1. Let U and W be open neighborhoods|efg; q], and letSym, (U, W) be the
set of holomorphic functiong, on U" x W" of 2n variablesAs, ..., An, 21, ..., Z,, Symmetric

in the n variablesis, ..., A, and in the n variables 1z...,z, separately. Then,(ﬁ) extends
to a continuous linear functional o8ym, (U, W) endowed with the topology of the sup norm
convergence on compact sets.
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Proof — 1(10)[7-“”(“""’5)] contains at most first order derivatives of the functigresxd¢. Now recall
that, for any compact&, P such that K ¢ P andP c U

VkeN, g such that/ ¢ e H (U), |6, < ccligllop - (8.8)

wherel|.llp.x = SUp. .| is the sup norm with support on the compHctin consequence,(]o) is
continuous orSW. The latter is dense i, with

snuﬁwz{zwwf) pen. (w,qsg)emmxw(\m} (8.9)

=1

Hencel,ﬂo) extends by density to a continuous linear functionat}h". Due to the density
Theorem[C]1 (See Appendix C), we have tisat" is dense inSym, (U, W). Thereforel ")
extends to a linear functional @&ym,(U, W). O

Corollary 8.1. Let U and W be open neighborhoods[efq; q], and letF, € Sym,(U, W).
Then,

/l n
4 e=0

-3 - cnlog(qufX))Tn( gi)

_ {oq)" {oaq)P, ()" P
n1 9 Tn( (o n )_Tn( {O’C]}p,{/l}n_p)

n q
—_— da
+(27r)ZZZf p(n—p) (@A)
q
n dadu A+, (P, P )
" S f I TE, {af”( A+ el (AP ()P

_ (+ b, )Pt (P )}
af”({u+e},{u}p—1,{4}”—p o 10

There{1}" denotes the set formed by n copies of the same pararheter

Proof — Apply Theoren{ CJ]1 to[(8]6). O

Finally, we have the following large asymptotic behavior for integrals of the forfn {8.1)
(which seems hardly attainable through a direct analysibemultiple integrals):

Theorem 8.1. Let U and W be open neighborhoods[efq;q], and letF, € Sym,(U, W).
Then, when %> +oo, the integralZ %] (B.3) behaves as

TolFol = I [Fa] + O(WTX) (8.11)

HereP is the interior of P
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the explicit expression of}[#] being given in Corollary 8]1.

The whole dificulty of the proof is to show that the smal(3 in (£.5) is preserved by the
density procedure formulated in Theorm|C.1. This is naialrsince the series converging to
Fn may not converge absolutely. We need therefore, so as te pihaa/theorem, to study more
precisely the sub-leading corrections and to see how they theiough all the steps described
above. This will be done in the next subsection.

8.2 Study of sub-leading corrections

In this subsection, we study the behavior of the sub-leadimgections to log detf+ V](©@ when
the above procedure is applied. In particular, we will shbat they indeed remain subleading,
which will prove Theorenf 8]1. In fact we will prove an even mgeneral result:

Theorem 8.2. Let U and W be open neighborhoodd efq; q|, and letF, € Sym, (U, W). For
any positive integer M, there exists a continuous lineacfiomal Ir(]'v') such that

M) log" x

The explicit expression for,(]M) can be obtained by some perturbative computations that
become more and more involved with the growthvbf We will nevertheless obtain the general
structure fonr(]M), showing that it can be decomposed in terms of non-oscitjedind oscillating
contributions, with oscillating factors of the forgf™P+=P-) me z*:

M M
1 . 1 )
[l = 107l + = R VA EDY = |0 (8.13)
N=1 N=2
1
= 1] + ) g 1] + Z P —p- )Z I 7], (8.14)
N=1 N= 2|m|
|m|<M/2

|(N:nosS)r 1 (resp. 1N 9SO[#,]) being given in terms of the functiofiy, and of its derivatives
up to ordemN (resp. up to ordeN — 2) evaluated atq or integrated from-q to q.

8.2.1 General strategy

In the previous subsection, we have defined the functid}ﬁhtfrom the leading asymptotic
part log det[ + V]© (B-8) of the GSK. More precisely, we have seen in Corolfady tBat
d)logdet| + v]©@ l,=0 yields the functional(-1)"" Yn-1) |(0) [#n] after the density proce-
dure as explalned in Propositign]8.1 and Theofenh C.1, ifiembpln order to estimate the
corrections tal{ [7—‘n] for the largex behavior of cycle integralg,[#5] of lengthn (B.1), we
have to take into account the corrections log dlet /]3“Pto log det] + V]©,

logdet ] +V] =logdet] +V]@ +logdet ] + V], (8.15)
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and to analyze thefieect of the density procedure on theh y-derivative of the subleading part
d}logdet] + V]sub ly=0. We will show in particular that it preserves the small o(1ffwespect
to thex — +oo limit, i.e. thatd}) log det || + \V]sub ly=0 can only generate o(1) corrections.

In the spirit of Definitior[ 8]1, we therefore introduce the:

Definition 8.2. Let U, W be two open neighborhoodq efy; q]. We define the linear functional
13w on SYW as

-1 n-1
—1)! =0
and by imposing linearity on functioris!_, 7\*"*". Here, as in Definitioff 8] 17" denotes

a factorized function o2n variables deflned in terms gfand ¢ as in (8:2), and #*) denotes
the generalized sine kern@.§) with F(1) = ¢(1)¢(1) anded@ = ¢(2).

According to the scheme presented in the previous subsethie next steps will be:

e to obtain a convenient representation Fg7, T "” : this means in particular to obtain
the form ofn-th y-derivatives of log det[+ V]S“bln terms of the function§ andg, to set
0(2) = log¢(2) andF(2) = ¢(2) ¢(2), and to estimate this result in the largémit;

e to apply the density procedure: one should first extend byitleand continuity the
functional 13"P to the spaceSy"; then, for any holomorphic functioff, in 2n variables
A1, ..., An, 21, . .., Zn, SYymmetric separately in the variablé¢snd in the variableg, one
has to consider a sequen@g, ¢x) such thatzl'(\':l 7—‘,1(‘”"’5") — Fn S0 as to be able to define
and characteriz&"9 7] and to see how it behaves in the lasgimit;

« to refine the procedure in order to get an asymptotic exparefits"97y].

8.2.2 y-derivatives oflog det]l + V]su°

As in Section[6]3, we will obtain the corrections to log det[V]© through thex-derivative
path, starting from formuld (3.].2) that we recast as

q
dxlogdet] +V] = —i f dip'()v () + 5{5 j—i p() tr {[0,T1(D)] o3 TT (D)} . (8.17)
—d r([-a:a])

Here, as in Sectioh 6.3, we have chosen the corftgpi+q;q]) to lie in U and to encirclegy,
which means thag(2) = I1(2) «=73(2) onT ([ —q; q]). Integrating this equation with respect to
X, we obtain

log det | + V]*UP= fdx’ 56 % p(1) {tr{[aﬁl‘[ (D] oslt (/1)}
e 1([-awa])

1 (tr{AD(zX) o3}
X f 2ir (1 — 2)?

Zn

dz} . (8.18)
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The convergence of this integral will be proved later on. \&eall that the second term in
®.17) produces also, when integrated oxethe logx term appearing in the definitioh (R.6)
of logdet] + V]© (see [6:33)). We have therefore substracted the corresmgpodntribution
(second term of[(8:18)) in the definition of log det{ V]S,

In order to obtain then-th y derivatives of this expression, hence we have to compute the
y-derivatives of,I1(1) and of[1-1(2), which in their turn follow from those of the jump matrix
A(D).

e y-derivatives of A

In order to determine the-th y-derivative aty = 0 of the jump matrixA (2), it is convenient
to express it in the following form:

A@2) = K@) AD K3(2). (8.19)
Here, the matrixK(z) depends oy only through the combinatiopF(z), whereas*73(2) de-

pends ory through the combinatiof_qq du [v(@ - v(W)] /(z- w).
It is easy to compute the multiptederivative ofX(z) aty = 0. Itis given as

MA@ =Adgswz[0A0@)] - F'@. (8.20)
‘7:0 ‘7:0

In this expression, A Y] stands for the usual adjoint action of the maton the matrixy,
andAg denotes the jump matrix atF = 1 andg = 0.

It remains to compute the-derivatives of«*73 (z). They follow from the Faa-di-Bruno
formula:

Ps

n N ops N S p. s s
(9?, KiO’3(Z)‘ - Z nl (i:-3)zs=lp 1_[ (_1) f F (Z) F (/J) ‘ (8.21)
Y=

2rs Z—
pLp=0 ] psd 1 _q K

Therefore, gathering these informations and applying hi&ils rule, we obtain that

agA(z)‘ = >
=0 p+potg=n py,. pn=0 Q1,..Gn=0 ! !
SO 1spz oy 1&150'; QSI:I (ps)! (as)!

X Ader?,g(z)/z [(—0'3)2';1‘35 . Bfvo(z)‘ . (0_3)2';1%
‘)/:

< FP() 1—[[( e FS(z)—Fsm)

n N, ChCpppld

Pstds

2I7rS —u
Ps
- Z 6({p})(z;x)Fp0(Z)nl F(Z) FS('U) : (8.22)
e
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Note that, in the first line, we have extended for convenigheesum over parameteps andgs
up ton, since anyway, due to the constraip,< pandps = 0 if s> p(resp.gs < gandgs = 0
if s> Q).

In the last line, we have changed the order of summationsrarwtporated all thé inde-
pendent prefactors into the definition of the ma6i#¥" (z x). More precisely,

3PN zx =] ((;)Ss)p

s=1

chca,pq

n
pra=n-po =1 ;sa=q [] (Qs)! (Ps — Js)!
s=1

XAdgrsg(z)/z[(—0'3)2&1@5_%)-BEOAO(Z)‘ 0-(03)2&1% . (8.23)
’y:

From the properties of the jump matrix(2), it is easy to see that the diagonal entries of the
matricesd(P) (z x) are a @x1), whereas their fi-diagonal ones are a@g x/x) uniformly
on the contour&y.

e y-derivatives of 9,11
Let us recall the integral representation #gfT (1), which is a direct consequence §f {5.5),

1 dz
Zn

Therefore, they-derivatives ofd,I1(1) can be directly obtained from the onesAft) and of
1, ().
Recall thafl1, (1) satisfies the following integral equation &tz (L2 (r)):

(1-c )] =1, (8.25)
where the operatoiB§H is defined by
C&, [M]=Cf [MA], VM e My(L*(Zn)). (8.26)

This matrix Cauchy operator is invertible, at least xdarge enough. Indeed, using the conti-
nuity of the scalar Cauchy operator:

dc, > Osuch thatvg e L2(3n),  ||CE, [9]||L2(zn) < 2119l 2y - (8.27)
one gets that the operator noHﬁ:@J“ fulfills:
Gl < c2 Aoy ==, O (8.28)

Moreover,C§rl being a holomorphic function of we have that, fox large enough, (- an) is
invertible and that its inverse is also a holomorphic fumetdfy. In particular, [8.25) implies

9,1 = (1 -C& )" o (8,C4 L] - (8.29)
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A straightforward induction shows that there exist somefgentscP) e Z such that

n

N = N P (1 ch ) e (b))

r=1 Eilepi:n
-1 -1
o(I-C§ ) o(052CE )00 (1-CE) o(ayCE,)m]. (8.30)
This expression simplifies at= 0 asA,_, = 0 andIl, | _, = I2. Hence,

i > {PD (aPrcy ) o (052CR ) oo (B CR )12 (8.31)
r=13%_ pi=n

. oo =

We can slightly deform the fferent contour&y, so as to regularize the explicit integral rep-
resentation for the above chain of operators. Namely, liegahe construction of the jump
contours for the matrices occurring in thefdrent transformations applied to the RHP for
we are able to write

n
s =3 ) (aﬁlcg(l))o(a;’zcg(z))o...o(a;’rcg(r))[lz]. (8.32)
=0 21 X pi=n n 1 1

There, the contourEg) are such that the side ofzg‘l) is at small but non vanishing distance
from the + side ofzg), with the exception of a finite number of points of intersesti(cf.
Fig.[8). The matrixA corresponding to the contomﬂ) is equal toM! — I, on F’i(i), toP -1y

on dD_gs, and toP — I on dDgs. We emphasize that, already im.32), one can use the

integral representation for the Cauchy operators withorring to boundary values. Indeed,
the integrand appearing i (8}32) is already integrablg/fi = = x ... x =1,

Figure 6: Encased Contouiﬁ) (in the case = id).

Finally, one infers from [(8.32), fron{ (8.22) and from theeigtal representation fai,I1
(8.24) that, whem € I'([ -q;q]), there exist some recursively computablefﬁoients?ﬁ{p”})
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such that

AT, =- Y apay [0z 8Pz %) 1P (2 )

"0 ) @y S

T reteephaomm0 g (4 -2)° I (2-1-2)
X Pe=n m

Pem

Xl_[ szo(zg)l_[ fw . (8.33)

=1

In this expression, the integration is performed over tf@eﬂbnzﬁ(r) = Z(FP X oo X Zg), and
the second summation is performed over integgs1 < £ <r,1< j<n,withl < pp<n
and 0< pj < nfor j > 1, and such that)_, p, = n, in which we have introduced the notation

Pe = Peo + Z]_; jPej-

o y-derivatives of 171

All the above observations also hold for the inverse mdiri (1). IndeedII ! satisfies the
integral equation

Mt (1) = 1o+ 'cy, [1m7], (8.34)
in which
'cy [M] =Cf [VM], VM € My(L?(Zn)), (8.35)

and the matrixV is defined by the equatiorl, + V = (I> + A)~L. In other words\V is the
adjugate ofA (we remind that we consider22 matrices and that delt f A] = 1). Hence, one
easily sees that, for> 1,

Sy e (42 @i oD @9
— 2im)t t
. th gy @) (1-2) H (z-1-2)

€0 (=

o [ (A)‘y:0 =

Pem

xﬂpmwﬁlfiﬂLﬂﬁz . (836)

whereo(Pi)) (z x) is the adjugate matrix af(tPah) (z x).

e y-derivatives oflog det ]| + V]stP

2\We stress that this matrik has nothing to do with the fierential operator usually denoted By
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From the expressions (8/18), (§.33) and (B.36), it is easgédthat there exist some combi-
natorial codficients6!'P") e Z (with €{P) = —s,, ) such that

_ ({pei}) da d*'z
_0_ Z Z G:r,t[ é ()f 2| )r+t

r= 1<r+t<n ppo>1, >0
r>1, t>0 Pro= er*[lp/ A ([ —q;q]) X(Ht)

) log det ] + V]S”b‘

f dx P01z} x)[g]

% +0o
(-2 (A - zHl)H(z“—zg)f_rni (%1 - 2)
Pem
r+t m
xn szo(zg)n IM , (8.37)

in which, in the termg = 0, the empty produci? — z.1) Hzth (z—1 — 2¢) should be under-
stood as 1. In this expreSS|dm( P )({Zj}; x)[g] corresponds to the following trace:

PP x)g] = tr {aga A0z X) - A(l’(z x| _ } (8.38)
&P (1z;); )] = tr {6({ Pz x)... 80P (25 ) g

X Q({pr+1i})(zr+l; X’) . .Q({pr-ﬁi})(zr_'_t; X’)} ifr+t>1. (839)

In ),Aél)(z; X') corresponds to the first term in the asymptotic expangial) (5 Ao(2).

Remark8.1 We have gathered in the tenm= 1,t = 0 the contribution of the second term in
@B.18), as well as the term that would correspond to the itrton of only one jump matrix\

in the first term of 8). Note that, in this tenm= 1,t = 0, the only non-zero contribution
come from the diagonal elements &f hence from the sequenggo = n, p;j = Oforj > 1
(indeed we have{?) = —5p,.1).

Remark8.2 It is easy to see from these expressions that the integralsxbare convergent.
Indeed, it follows from the asymptotic expansion of the cagAg that

[ Bo(z ¥) - %(Agl)(z; x)]‘ = o('ogzn X) (8.40)
.

uniformly on the integration contour, so that an integratid the trace[(8.38) is convergent. We
emphasise that the trade (8.39) is at leagtiad X)"/x?) uniformly on the integration contour:
indeed, each of the matricé&Pi!) or otPi!) is uniformly a O((log x)™° /x); in addition, the
trace [8.3P) involves a product of at least two such matriteser + t > 2. These estimates
guarantee that the integrals ovwéiin (B.37) are well defined.
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8.2.3 Application of the density procedure and proof of Theeem B.1

In order to be able to apply the density procedure, we shoxjdess more explicitely the
functional dependance of log det[I + VEDUP | on 789,

The F-dependence o)) log det[I + V]SUb l,—o has already been explicitely extracted in
®.37), and all theg-dependence is contained in the tratzég“ Dz {z;}; X)[d]. Using the struc-
ture of the matrice$!Pi) (z x) andptPi) (z ), one can be more precise concernlng this

dependance. Indeed, it follows frof (§.23) that there esdste coﬁimentsD[ p” 4 ]({zj}, X)
which are piecewise smooth on the integration contour suah t

r+t
R (CIEPN [+ IS S » SRR (AN exp{zefg(zo}. (8.41)
€1,..., €r+[€({)il,0} =1
Ye=

Note that these cdicientsD!'?"9((z}; x) are at least @(log )" /x2) uniformly on the inte-
gration contour. Integrating these ¢eients with respect tg, and defining

B! P (23 = 6P f ax DM (2} ) 8.42)

which are at least @log x)" /x) uniformly on the integration contou@l), one gets

a0 log det | +V]S“b‘ = > 56 ()f(zdlr:it

Y= 1<r+t r+t g,
L0 (| qq}) 550
5[ Pu A€ ]({Z} )

r+t

e U z)? (- Zr+l)H(Z€ 1-2) [1 (z-1-2)

{=r+2
r+t Prm

% n FPo (z,) ef9@) n fw . (8.43)

We stress that eaci%%) may only appear in combination with at least dhé) (aspe > 1):
F (z) e*9%), This guarantees that the functional above is continuotis respect to the sup
norm on the space of symmetric functionsimariablesz andn variablesa.

Before applying the density procedure, let us introduce rapee useful notation. Define
the finite diference operatcﬁ‘zm)(p) by its action on pure product functions

5 () - FX2) = FY@) - F*“™@) FP(). (8.44)

This action naturally extends to symmetric functionsefriables
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We remind here thap, = pqo + X_;Sfrs, With I pe = n. We have moreover used the

notation{z}”, which means that the variabke is repeatedp, times, anol{{zi}'ai}i:1 ]
means that the variablg is repeatedp; times, z, is repeatedp, times is

.,Z IS repeated
pr times. The purpose of introducing such finitéfelience operator is to recast products of

functionsF™ (z) — F™ (u) appearing in[(8.43) into a more compact form. Namely,

q
l Fm(za F%) ") FM ()
f de| =] de“
m=1|" H

N Pm q
A2 e e

m=1 j=1

, Which

Pem Pem

Therefore, setting?? = ¢(2) andF(2) = ¢(2) ¢(2), we get

n (¢.6)75ub d/l d+tz
0 log def[| + V9] o Z Z () | o
=0 1475 zf“ X(Ht)( i)

r>1, t=0 r([ -a; q])

5[“)(]}: €j ]({ } )

X
€15eees Er+t€ (/l Zl)2 (/l Z|’+l) H (Zg 1— Zé;) H (Zg 1— Zg)
ra=0 f=r+2
r+t n pm [ 2 i, et B
<[ 11111 f 6%m)(llz,m D | [le™ @) 6P*(@)}. (8.46)
=1m=1 j=1 2~ Hem, =1
—a

It follows immediately from the density procedure formeltin Theoren{ C|1 thatS\P

can be extended into a linear functional 8ym,,(U, W). Its action on a holomorphic function
Fn € Sym,(U, W) is given as

s ) (_1)n—1 dr+tZ
In [Tn] B (n_ 1)| 1<rz+t<n Zr“z é ( ) f 2 )r+t
r>1, t>0 D> F([ —-a; q]) ZX(M)
DE Mz 0
X
61525 0 (A - 21)2 (A—2z41) H (zp-1— Zz)gﬂ (ze-1-12z)

r+t n Pem

q
XUHU IM 88 (uem,) '7:n( {{ }g hsesr ) (8.47)

) Z — pemj { “ hcrsrst

The sum appearing inf (8]47) is finite, and since each integima O(log” x/x), 1SUC[F,] is
itself a O(log" x/x). Hence Theorerh §.1 follows directly, since

Tn[Fn] = 1 [Fa] + 18P 7] - (8.48)
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8.2.4 Asymptotic expansion of S“#,] and proof of Theorem 8.2

In order to prove the existence of an asymptotic series aof §¢# ], i.e. for IS“I7], we should
be more precise on the structure of thefﬁo'eentsﬁr,t, i.e. show that they themselves admit an
asymptotic expansion. Let us recall that theseffizients are obtained from the tracgs (B.41)
involving the matrice®({P:i}) (z¢; X) andg({pfj}) (z¢; X). The latter being obtained from the jump
matrix Ao. _

Clearly, all terms corresponding to an integration on thet(mrsl"'i(') yield exponentially
small corrections. Thus in what concerns the proof of an aggtic expansion we can only
focus on integrations along the contodfd.qs. We decompose the relevant cont¢@Dq s U

8D_qs]"™ into sums of elementary skeletoﬁﬁ)x(”t) = Dyyqs; X - X Dy, 16,0 Where
eacho takes values if+1}:
dr+tZ dr+tZ .
= "ol

The matrice!Pi") (z x) (B.23) admit an asymptotic expansion into inverse powersaf
0Dq5U0D_qs. This fact follows from the asymptotic expansion/qf(z). The latter is obtained
by taking adequate-derivatives ata = 0 or 1 of the asymptotics serigs_(A.6) fif(a, 1;2)
whenz — 0. This is licit as, for fixedM, the QzM-1) estimate in the asymptotic serids (A.6)
is uniform with respect ta and since we perform a finite number of derivative with respec
a. This asymptotic expansion takes the following form:

M Adgrsli: +ga12 [69“”"‘) zX)] O(Iogpo x) e oD
2 X Y ML | g9
50D (23 = | < X(p(2 ({pp;lz) (8.50)
M Adér?, [ixp-+9(2)]/2 [6_ " (Z, X_)] |ogp0 X
= X(p(2) - po) ( XM+ ) 2800w

the corrections being uniform on the contours. There thgatial entries of the matrices
6(“01 M (z X.) are some constants (i.ex and z independent), whereas th&-diagonal ones
are polynomials of degregy in the variableX. = log[+x(p(2) — p+)].

An exactly similar structure holds fai'Pi)) (z x) as it is adjunct to5(Pi) (z x). Hence,
on the skeletodDyqs = dDyyqs, X -+ X ODo, 100,40 the trace[(8.41) can be expanded in the
following form:

M+1
P (1) 010l = Z N Z Z br,t[{{zj}}:{{él}}] ({zi}; log x)
k1 ..... kr+t 1 €1yenny E,-He{il,o}
Tki=N Y6=0

exp{rit e [0(z) + iXpy,]

b g
(=1 +O(Iog X

. (8.51
lj(p(zf)—pw)"” XM) oD
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There we have explicitly factored out the dependence onshilating factor exgixZe; p,, }.
In this expression, the cicients®, ; are piecewise smooth on the integration contour and are
polynomials of degre&; || pso in log x.

We set, forN > 2,

1-N=() [{Pej} tab| o . _ \peid) f [{pcj},{fi}] . ,
X Dr,t[{m}’{ki}]({z},logx) €y (,)N (o). (k) ({z};logx) (8.52)

when} ¢ ps,, = 0, and

Cl Z x DX [{{p“}} {{k. }} ] (z};logx) + o('og X)
N Tij,

X
_ G(Epfj}) dX’ br |:{p€]}9{6|}

AR -X,Zp(r(;f(’
it ariiog 853)

+00

otherwise. Note at this stage that, due to the constigigt= 0, there exist some integer # 0
such that BZ Pre& = gxm(p.—p-),

We then insert the result of integration into the expresionSU?[7,], rearrange the asymp-
totic expansion into decreasing powers»fnd separate the oscillating and non-oscillating
parts. We obtain

M M
1 1 log" x
0] = ) 109 + ) 18597+ o ). (859
=1 N=2
where
_ N+1 {p {6
I oSO = 2 2 ey '](Iog X) [F7) . (8.55)
Lt o1.,0rt=% ky,.. k=1 {
{Pejhla) ZerPr,=0  Zk=N+1
(N: 0sc) S . ixrit‘fpcre s [{Pejls
1IN0 F] = oo Dlea sr,t[{ )’ ](logX)[?'n]
L OLe0r=t 52 ki, Kyt=1 il
{pejl.ta) Zecps,#0 =s
(8.56)

In these expressions,

NI VD) @5

1<r+t<n Peos---, p(’n €1,....6r+t€{+1,0}
{ng}{e} r>1,t>0 p(0>12 lpp Y6=0
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and the functional, ; is given by

~( [ {Pej}. {6} (=t 56 da f d+tz
‘Sr,t [{U'i}, {kl}] (lOg X) [?dn] - (n _ 1)| A p(/l) (2i7T)r+t
r([-axa]) oD

9 [{{Sf}"}}, ’ {{2}} ] ({z};log x) ot

(-2P (-2 [ @e1-2) T (s - 2) - (P =P

=r+

r+t n Pem q d i 5(
% 1_[1_[ f Le,m,j 6gn)(ﬂt’,mj) '7:n( {Ez{gz}fg[+€[}l}<£<r+t ) (8.58)

: Zp — Uem)j 1<t<r+t

1

The coéﬁcientspﬁr,t being polynomials of degrek, |e| pso in log X, this ends the proof of
Theorem[8]2 concerning the existence of the asymptoticreskpa of cyclic integrals to any
order in I/ x.

As it is presented, the form of this asymptotic expansion feak quite involved. Note
however that the integrals over the contoaB(XTg’;t) in (B.58) can be computed; they are ex-
pressible in terms of partial derivatives of the functiginat +q (see Appendif D). It is proved
in Appendix[D that the non-oscillating tert{: "9[#] of orderN can be expressed in terms
of derivatives off, of total order not higher thaN, whereas the order of such derivatives does
not exceedN — 2 in the case of (' °9[#]. This property will be usefull in[[31], when we sum
up the asymptotic behavior of a whole class of cycle integedlthe form [8]1) to obtain the
asymptotic behavior of correlation functions. To perfohis summation we use the knowledge
of the number of partial derivatives applied#q. We finally point out that the integral over
produces derivatives of the functiqfl) evaluated atq.

9 More general kernels

In the applications to quantum integrable models, one damstneeds to use some modified
versions of the GSK.
Consider the operatdr+ Vy acting on[ —q; g ] with kernel

e (e () —e (e ()
2ix[0) -0

wheree, andF are defined as iff (1.7). We assume in addition ¢Hata biholomorphism ot
onto its image, thad ([ —g;q]) c Randf (U N H.) C H..

Then the asymptotic behavior of log detf Vy] when x — oo follows from Theoren{ 2]1.
More precisely, we have the following corollary:

Vo () = VFQF e ()6 () (9.1)
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Corollary 9.1. Let\j, be as above. Then

G(Lv,) & (cq)s K f””(aq Q)
[(6(a) - 6(-0)) P, X"

q
+%fd/1d V' () & (1) v(u) — v() & () (1)

q
logdet || + V] = Zfd/l v(2) log'[e_ ()] + Z log

-q

50D — 600 +0(1), (9.2
where
_ 1 S V() = v(w)
v(d) = i log(1+yF(), K(;q9) =exp 9(/1) o & () du ¢, (9.3)

and, as before, p=[0,p(1)] [1=+q, v+ = v (£0).
Proof — The change of variables(1) = £ maps the kernély on the one of the GSK

e, 00 ¢)e o) —e 007§ e 00 (n)
2im (& —1n)

This kernel acts of6(—q) ; 6(q) | which is, a priori, a non symmetric interval. However, it is
enough to apply the transformatian— 1 - (6(q) + 8 (-q)) /2 so as to recover the symmetry of
the interval. Then, it remains to enforce the inverse tramsations on the asymptotic formula
for the Fredholm determinant &f. m]

VEn) = yF 0071 Foo-1(n)

Let us write explicitly the asymptotic§ (.2) in the caselw kernel

Vol =y VFFG) 0L B R, e = b,

as it plays a crucial role in the analysis of the asymptotltalvéor of the two-point functions in
the massless phase of ti&XZ Heisenberg chairf [B1]. In this case, equatipn](9.2) reads

V() vy) = v() V' (k)

logdet|l + Vg = Zfd/lv(/l) log'[e_(1)] + = fd/ld

tanh(A — u)
G(l VO-) V(/l)
' O'Z:i 10 [sinh(2)) p/-X] + 7o fd/l tanh(oq - 1) +0(1). (9.4)

It is clear that the last equation can be used in order to mlataianalog of the asymptotic
expansion for multiple integrals of the tyde {8.1) wherertitéonal functions — 1 are replaced
by the hyperbolic sintg— 1). Namely, let

h 95 9 d"a ﬁ ax(p(z)-p(4)))
IS [¢n - n n ( ) . ) (95)
r([-a; q])(zm) —q (2im) i=1 Slnh )smh(zj - ,1j+1)

61



Then under the conditions of Corolldry B.1 one has the fatigvasymptotic estimate

sh {/l}n
I[Pl = fd/l {ixp'(A) + 8¢} F+ ( A+ e L )‘e:o
: , {oq)”
+ ) n- clogsinnagpl ) 7o 70 |
o™\ [ loqP {y" P )

RS~ fq df“( (g ) 7”( (aP, (4P

(2n)? ; le_q p(n— p)tanh(q-oc4)
LN nifq dadu {a 55( A+ e (Pt (P )

2(2n)? =t (n—ptanh(A—g) | "\ {2+6, (4Pt P

_ e+ e, Pt )}
af”( ot el Pt e )| o @0
Conclusion

We have obtained in this article the leading asymptotic egjma of the Fredholm determinant
of the GSK. As we have mentioned, our main motivation is to\afs result to the asymp-
totic analysis of the correlation functions of quantum gnédble models, using in particular the
asymptotic study of multiple integrals performed in Setfio This will be done in a forthcom-
ing publication [3]L].

Another development is to extend the above analysis so asldntruncated Wiener—Hopf
operators with symbols having Fischer-Hartwig type disicmiities. The corresponding results
are published in[[33].

Let us also point out some unsolved problems. One of themeroadhe derivation of the
asymptotics of the Fredholm determinant of the GSK via théhog based on its derivative
over endpoing. It would be important to obtain a complete justification lnitmethod, since
it is rather powerful and at the same time relatively simple.

Another problem is to prove the conjecture on #he v periodicity for the asymptotic ex-
pansion of the Fredholm determinant. If this property daad,ithen all oscillating corrections
can be obtained from the non-oscillating ones via a simgfé @hv by integer numbers. This
could lead to a much simpler way to compute sub-leading ctores for such determinants.
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A Some properties of confluent hypergeometric function

For generic paramete(s, ¢) the Tricomi confluent hypergeometric functif(a, c; 2) is one of
the solutions to the dlierential equation

zy'+(c-2y —-ay=0. (A1)

It satisfies the properties:
¢ Differentiation:

¥(ac2) = 5g[(a —c+1)¥@+1.¢2-¥@ac?|
- Ja-c+2¥acd - ¥a-1c2)] (A2)
« Monodromy:
¥(a, 1;28™") = P(a, 1;2) (1 - md™ert) 4 mdmalet)

2ﬂ1n1éna£+z

) ¥Y(1-a1;-2, (A.3)
wheree = sgn(3(2)). In particular,

|e—|7ra+z

. o
P(a, 1;26") = ¥(a, 1,2 2™ +

Fz—(a)\P(l -al; —Z), S(Z) <0, (A4)
’ ) inima+z
Y(a, 1;z627) = ¥(a,1;2)e?™ - Z?S(a) Y1-a1;-2, J(2 > 0. (A.5)
e Asymptotic expansion:
— (@n@a-c+1n__. 3 3
. ~ _q\n\IM\V /M -a-n = -
¥(a,c 2) nz_;)( 1) . 74N, zow, -5 <agl) < . (A.6)

with (a), =T (a+ n) /T (a).
We have the following recombination between the Tricomi CHg, c; z2) and the Humbert
CHF® (a,c;2

®(a,c2) = - Z:(f)a) €Y (a,c2) + %e‘f”(a‘c)”‘lf (c-ac-2), (A7)
wheree = sgn(3(2)), and
. o (@)n 2"
cp(a,c,z):nzzgjﬁa. (A.8)
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Such a recombination formula allows to obtain the asympt@tpansion of the Humbert CHF:

®(ac2=

r@© (e*\'x~@n@-c+1), —a-M-
F(c—a)( ) Z nt (- Z)n O(|Z| M 1)

F(C) e (c—a),(1-a), e

One can estimate integrals involving a product of two CHF elevls, either by using La-
place-type integral representations for the functi@(s, c;2) and¥ (a, c; 2) or applying the
method given in[[33]. The latter uses Erdelyi’s represémmanf Laplace transforms of products
of CHF in terms of Lauricella function adjoint to some asyatjat expansion of Lauricella
function. In any case, the result reads:

f dt{e ™ (at) - 1} = -2ia, (A.10)
0
f _ira 2ia ,

dt{e Tr(at)+1+ H—l}:2|a—a[¢(a)+¢(—a)], (A.12)
0

and the Riemann integrability of the integrands is part efdabnclusion. We remind the defini-
tion of the functions (a;t) ande (a; 1):

e t) =D (-, 1;-it) D (v, 1;it), (A.12)
T(v;t) = =@ (—v,1;-it) D (v, 1;it) + (0,D) (v, 1;—it) D (v, 1;it)
+ @ (-, 1;-it) (6,9) (v, 1;it) . (A.13)

B Three preparatory Lemmas

Here we prove three preparatory integration lemmas useddtichi[f.

Lemma B.1. LetR (u,t) be a function of two variables defined ox R*, where | is an open
interval of R containing0. Suppose that the partial applications— R (u, t) are €1 (1) for all
but finitely many t's and thatt R (u, t) is Riemann integrable uniformly in u, i.e.:

Yo >0, ¥YM >0, Yug e |, v >0 such that

ue]-v+ugiv+U [Nl ke{0,1}: fdt[ﬁ'jR(u,t)—&'iR(uo,t)] <p. (B.1)
Then for ge € (1)

[ +00

fxg(t)?%(t,xt) dt:g(O)fR(O,t)dt+o(l) (B.2)

0 0

where the smalb (1) is with respect to the successive limit % +co ands — 0.
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Proof — One has
) ) X0
[xe0rex0-g@rO 0= [& [3la0)REOId . (B.3)
0 0 X
Consider a function
g:uamkifm®MMRu01 (B.4)

on the compact set [@] x R* x R*. g is clearly continuous on the interior and the uni-
form Riemann-integrability ofR (y,t) guarantees that it is continuous in an neighborhood of
(%, +00, %), (*, *, +00) and(*, +oo0, +00). Hence|g| is bounded, say b, as continuous function
on a compact set. Thus,

3 X0
[ [alemrr0)e] < @)
0 Xy
which ends the proof of Lemnja B.1. O

Lemma B.2. Let ge € (1) for some open interval | containing then

o
fg(?’:t — g(0)log x5 + 0(1) | (B.6)
0

whereo (1) stands with respect to the successive limiisx+oco ands — 0.

Proof — We have

t
—~=9(0) Iog(x6+1)+fdtfdyiiy)xi( (B.7)

0

0
= g(0)logéx + o (1) + fdyg () lo g(xy+i) (B.8)
But,

fdyg (y)lo g(y+ 1;)() sup|g | x (6 —log (6 +1/X) /X) —0. (B.9)
which ends the proof of Lemnja B.2. O
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Lemma B.3. Let« be defined in terms ofas in(R.2), and set

q
1 vV (4) v(p) — V' (1) v(2) :

H@ =5 f dAdu e + ; eve logx(eq; Q). (B.10)

Then,
d : d : (vs —v-)* _dH(q)

2. g llegx (@ )] - 2v-glogk (=g )] - ———— = =5 = (B.11)
Proof — Using (2.2), one can express the derivativéidfy) as

dH(q) v (eQ) =¥ (1) LI

=3 f e AIIC FALACLIE (8.12)

Thus, proving[(B.1]1) amounts to establishing the equality

Ve —v_)? ( v (eq) -V
Y ev(ea) g logs (el - = Y o) [ D2 g

The latter follows from an integration by parts:

Z ev (€q) d%] [logx (eq; 9)]

~ L=V v (1) = ve — v (u - €q)
ZlevE v, 42 +€ fd,u ”

- €q)?
-q

q
_ZevE V. + _V_+V_€_vf+zeqv;+efdy—‘/(#)_v’e
—2¢q H—€q

—-q
(e = v-Y () -
:T@Vefd e

This ends the proof. m|

C The density Theorem

{4

{Z}
morphic function on U x W", symmetric separately in the n variablégnd in the n variables

Theorem C.1. Let U, W be two open neighborhoods|efg; q], and letF, be a holo-
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z. Then, for any compact subsets K (resp. P) of U (resp.Wg eagsts a sequenoéep,%)
in H (K) x H (P) such that

peN

+o0 N

7_-n( {4 ) - Z n¢p(1i)¢p(zi) uniformly on K x P". (C.1)

z p=0 i=1

Proof — Let K andP be as above.

Let X = K" x P"/ ~, where the relation- is defined as follows{4,2) ~ (1’,Z7) if there
exists a couple of permutatioffs, 7) € G, x G, such tha{1?,Z") = (1, Z), whered? stands
for (Axq), . ... ds(n)). Since®, x G, is a discrete group, its action &' x P" is by definition
proper, i.e¥L > K" x P"

{(oom) € GpRx Gy : L7 NL =0} isdiscrete (C.2)

This ensures thaX is a compact Hausdfirtopological space. Moreover the spa€dX, C) of
continuous functions on X is canonically identified with $gace of continuous functions on
K" x P" that are symmetric in the first or the lasvariables.

Define the subspac® of € (X, C) as the subset of functiorﬁf"”"ﬁ) of the form

(1 )= TTewea. )
i=1

z}

where(yp, ¢) € H (K) x H (P), and letS be theC*-algebra generated [&. We have thag and
hencesS separates points M. Indeed, le(1, 2) and(u, y) be any two representatives k' x P"
of two distinct points inX. Thus

e there existst; € K such that exactly of the n coordinates of the-tuple 1 are equal to
i, whereas exactly of then coordinates of the-tupleu are equal tatj, with p # q;

e or there existg; € P such that exactlyp of then coordinates of the-tuple zare equal to
z, whereas exactly of then coordinates of the-tupley are equal t@, with p # q.

The situation is similar in the case of the firsand lastn variables, therefore we only treat the
first case. By Lagrange interpolation there exist a polyrbi®isuch that, for any coordinate
Ak of 2 and any coordinatgy of u satisfyingAx # A anduy # Ai,

Q) =Qu) =1 and Q1) =2 (C.4)

The function
@y (A _
" z )
separates the projections @f, zZ) and(u,y) on X. ThusS is aC*-subalgebra o (X; C) that

separates points. It then follows by the Stone-Weiersttassrem thatS = ¢ (X; C).
Let 7, be holomorphic orU" x W" and symmetric in the first and in the lastariables.

Q(p)eS (C.5)
p=1

There exists compact sefs ¢ U andP. ¢ W such thatkk c K, andP c P.. Here,K, stands
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for the interior ofK.. Thus the restriction of, to K7 x P{ also belongs t&’ (X,; C), with
Xe = K x P2/ ~, and therefore there existBp, $p)pery IN € (K¢; C) x € (P¢; C) such that

( (A} ) Z]—[gppu)qsp(z,) uniformly on K" x P, (C.6)

{z}
p=0 i=1

In particular the sequence converges uniformlyftoon (0K,)" x (0P.)", the latter set being
compact. Therefore we have

)
Z,[-(Zlir)n (2|7r)”1_[ i /1)(;_ Zn‘ﬁp(/li)d’(zi)

p=0 i=1

d"u dy  Faldlty)
N—>_+>oof(2i7r)nf(2l7r)n =4 1{z), (C.7)

rd P, H(/l A) (Y — z)

uniformly in (1,2) € K" x P". Moreover,

_ e ep () [ dydp(y)
ep () = f 27 u—A and ¢y (2) = Ary-z (€8
0K 0P
are holomorphic irK, resp.P. m|

D Form of the sub-leading terms inIStP

In this appendix, we focus on the general structure of thelsathng asymptotics of cyclic
integrals. We show that the/tN term in the non-oscillating part can be obtained as an action
of at mostN partial derivatives of the functioff,, followed by an evaluation atq or by an
integration over{q; qJ.

In principle, the contour integrals defining (§.58) can benpated to the end. However,
the result is quite intricate, and we do not need, for theherapplications, the formula in its
whole generality. Indeed, we are interested in a particsildr-class of such integrals. More
precisely we shall focus on the sub-class that is susceptiblproduce the highest possible
derivatives of the functiorf,,. Here, by highest derivative we mean the total degree ohall t
partial derivatives that might act on the integrand. Thiscéass is identified in the upcoming
lemma.

Lemma D.1. Letr,t € N withr +t > 1 label negationsr,...,or:t € {£}. Also introduce
syficiently small n_umber@ <01 <+ < st < (as well as positive integers K. ., Kr.t.
Finally, let G € H (Diryqsy X - - X Doy v, ) @NC

(b k) d™'z ﬁ 1 ﬁ ! ﬁ !
glatkl ) = : G({z). (D.1)
r.t @mtilza-z L za-2] ) @z -oqk

X(r+t)
9 D<rq 0
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with 9D = 9D 16, X - X ODgy g v
Then the mtegrag( aik )[G] can be computed as some combinatorial sum involving
derivatives of G at the points;q, the maximal order of such derivatives being equal to

r+t

D K= =N+ 6o+ 60— 2 (D.2)
i=1

Here n, resp. n, is the number of times the sequenes,...,o), resp. (ori1,...,0rst),
changes sign, anél o, ;0 denote the usual Kronecker symbols.

Proof — Let us prove the claim by induction on+ t.
First, forr +t =1, (D.2) is obviously satisfied. Indeed,

67016 =650 [G] = (0571G) (00). (D.3)

(k- 1)'
Let us now assume that the result holds for any func@oap to some value of + t. We
will prove that it also holds for +t + 1
Note first thaig!"V[G] = 7D [G], in which G, (&), (ki) are obtained fron®, {oi},
{ki} by a reordering of the varlables Hence, it is enough to ptbeeclaim forG,.1.1. We will
have to distinguish two cases, depending on whathet = 1 orr + 1 > 1.
Inthe case + 1 =1, itis easy to see that

(0'. )[ ] — (k 1)| Q(O'Z ,,,,, Ot+1:K2,....Ke+1) [akl le(o_ q’{z}t+1)] i (D4)

which means thag {7 [G] can be expressed in terms of derivativegosf maximal order

(ZH3k — 1=+ 6o) + (ki — 1), hence the result.
Let us now consider the case- 1 > 1. We have

( - r+t+1 r+1 r+t+1 1 r+t+1 1
{oik{ki)
Griit [C] = (ks _1)| f l_[ 2in l_[ Z1-% n Z-1— n

ke
ey (=2 £=r+3 Z (=2 (ze — 0¢Q)
oD

Q.0
-1( G({2)
x O ——
a4-2 ‘21=01q
r+t+1 d r+1 1 r+t+1 1 r+t+1

:_fnfzzinzf_l—ana_l— [ ;

_ ke
oy (=2 =3 £=r+3 %y -0

Q.0
Z Kl (z-0o Q)kl

At this point one should distinguish between the two possialsesoi0p = 1 oroy0p = —1.
We first assumerioo = 1 (i.e. that there is no change of sign betwegnand o), and set
G;(227 L] zf+t+1) = aléle(Zl, R Zr+t+l) |Z]_:0']_q- Then

- (8%5G) (10 (z}25Y) . (D.5)

O_I r+t+1 k2+k1

oihik r+t+1)
gE{Jrl,}t{K}) [G] = Z o grt [G+] (D.6)
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The latter can be expressed in terms of derivative® of maximal orderk + (ko + ky — k +
S K - — g+ 60— 2) = SR - 2 - ey — g+ Sio.
We now assume that;o> = —1. This leads to
k-1

ik r+t+1 }r+t+1) A
Q%,}tm}) [G] = - Z Qrt 2 [Gk] , (D.7)

k=0
where the function

alz(lG(Zla ceey zf+t+1) |Z;|_:O'1q
(z2 + o2q)lak

is holomorphic inside the integration cont@iD,qs, X - - - X 0Dy, q.6,..- ONCE again, the result

will be expressed in terms of derivatives@fand the maximal order of these derivatives will be

ki — 1+ (XK — Nt + 610 — 2) = 2K — ey — e + 60 — 2, which ends the proof

of Lemma[D.]. O

RemarkD.1. The integral can be explicitely computed using the recwednrmulas[(D]6) and
@-7). In particular, in the simplest casg = --- = oy andoy 1 = - -+ = o741, We have

GE(ZZa ce Zr+t+1) = (D8)

r+t

g({(ﬂ 1k} ) [G] ( 1)I'+t 6r,0—0t,0 Z 1_[ —_— ag::tl .. C’)ZlG ({Z})‘ ’ (D9)
Z=0iq

Ug,..,Uret £=1
ucely

in which the parameteng are summed over selfs defined as

14 -1 r+¢ r+0-1
rgz{o,...,Zk,- -y, —1}, rwz{o,..., Dki- >y —1}, Q<t<r),
j=1 i=1 j=r+1 j=r+1
(D.10)
r r-1 r+t r+t-1
I, :{ij— uj—l}, rm:{ ED) u,-—1}. (D.11)
j=1 =1 j=r+1 j=r+1

Corollary D.1. The subleadings terms of order N in the asymptotic expar(@d&#) for the
cycle integral7,[#5] are obtained in terms of derivatives of the functin More precisely,
the non-oscillating term{l": "*S*Y#] involves derivatives of, of total order at most equal to
N, whereas the oscillating on§i °*{ 7] involves derivatives ofy, of total order at most equal
toN-2.

Proof — In order to apply Lemmf D1 to the integral O\IHDX(’”) in (8.58), let us set

S ] [CTRE T,

ke
- 0¢q
(a- 21)2 (A=2z41) =1 ( p(z) - pa'f)
q

r+t n Pem d,“[m,] (m) {{ } }1<t’<r+t
Xl_H_H_[ fZg demj Oz (uem;) '¢n({{2€} o ) (D.12)

=1 m=1 ]=l q }1S55r+t

G({z) =
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The poles ar; = 1 andz.1 = A being outside of the skeletcﬁDfrg’?)
holomorphic in a vicinity of the pondisD;ggt).

Applying the result of Lemm§ D].1 to this function and using fact thaty k = N + 1 in
B55), it follows immediately that the expressionl§f "°{#,] cannot involve derivatives of
the function#, of order higher thaN. This maximal order of derivatives corresponds t00
andVi o = o with o = + in (B.59).

Similarly, as in [856)L k < N, I{N:°Y# ] cannot involve derivatives of, of order
higher thanN — 1. Moreover, due to the constrainise, = 0 and}; e,p,, # 0, it follows that
the variablesri have to take both values and—, which means that eithér> 1 orn, > 1 in
(0-3) (we recall that > 1). Hencel " °>[#,] cannot involve derivatives of;, of order higher
thanN - 2. m]

, this function is indeed
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