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Abstract

The introduction of a non-abelian gauge group embedded into the rigid symme-

try group G of a field theory with abelian vector fields and no corresponding

charges, requires in general the presence of a hierarchy of p-form gauge fields.

The full gauge algebra of this hierarchy can be defined independently of a specific

theory and is encoded in the embedding tensor that encodes the gauge group.

When applied to specific Lagrangians, the algebra is deformed in an intricate way

and in general will only close up to equations of motion. The group-theoretical

structure of the hierarchy exhibits many interesting features, which have been

studied starting from the low-p forms. Here the question is addressed what hap-

pens generically for high values of p. In addition a number of other features is

discussed concerning the role that the p-forms play in various deformations of the

theory.



1 Introduction

In recent years the study of general gaugings of extended supergravities initiated in [1, 2] has

led to considerable insight in the general question of embedding a non-abelian gauge group

into the rigid symmetry group G of a theory that contains abelian vector fields without

corresponding charges, transforming in some representation of G (usually not in the adjoint

representation). The field content of this theory is fixed up to possible dualities between p-

forms and (d−p−2)-forms. Therefore, it is advantageous to adopt a framework in which the

decomposition of the form fields is determined only until after the gauging. The relevance

of this can, for instance, be seen in four space-time dimensions [3], where the Lagrangian

can be changed by electric/magnetic duality so that electric gauge fields are replaced by

their magnetic duals. In the usual setting, one has to adopt an electric/magnetic duality

frame where the gauge fields associated with the desired gauging are all electric. In principle

this may not be sufficient, because the gauge fields should decompose under the embedded

gauge group into fields transforming in the adjoint representation of the gauge group, and

fields that are invariant under this group, so as to avoid inconsistencies. In a more covariant

framework, on the other hand, one introduces both electric and magnetic gauge fields from

the start, such that the desired gauge group can be embedded irrespectively of the particular

electric/magnetic duality frame. Gauge charges can then be switched on in a fully covariant

setting provided one introduces 2-form fields transforming in the adjoint representation of G.

To keep the number of physical degrees of freedom unchanged, new gauge transformations

associated with the 2-form gauge fields are necessary. In this approach the gauge group

embedding is encoded in the so-called embedding tensor, which is treated as a spurionic

quantity so as to make it amenable to group-theoretical methods.

This group-theoretical framework has already been applied to a rather large variety of

supergravity theories in various space-time dimensions, where it was possible to characterize

all possible gauge group embeddings in a group-theoretical fashion [4, 5, 6, 7, 8, 9, 10]. We

note that the three-dimensional theories [11, 12, 13] also fall in this class, although they

are special in that the vector gauge fields themselves can be avoided in the absence of any

gauging, as they are dual to scalar fields. It is in this context that the embedding tensor was

first introduced.

While in four space-time dimensions no p-form fields are required in the action beyond p =

2, the higher-dimensional case may incorporate higher-rank form fields which will naturally

extend to a hierarchy when switching on gauge charges, inducing a non-trivial entanglement

between forms of different ranks. It may seem that one introduces an infinite number of

degrees of freedom in this way, but, as mentioned already above, the hierarchy contains

additional gauge invariances beyond those associated with the vector fields. As it turns out,

this hierarchy is entirely encoded in the rigid symmetry group G and the embedding tensor

that defines the gauge group embedding into G [2, 14] and a priori makes neither reference to

an action nor to the number d of space-time dimensions. In particular, as a group-theoretical

construct, the tensor hierarchy in principle continues indefinitely, but it can be consistently
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truncated in agreement with the space-time properties (notably the absence of forms of a

rank p > d). In this paper we will analyze some of the generic features of the hierarchy for

large values of the rank p (i.e. close to d).

Although every choice of embedding tensor defines a particular gauging and thereby a

corresponding p-form hierarchy, it turns out that the hierarchy is universal in the sense

that scanning through all possible choices of the embedding tensor and taking into account

the group-theoretical representation constraints which it obeys, allows to characterize the

multiplicity of the various p-forms in entire G-representations – within which every specific

gauging selects its proper subset. This is precisely the meaning of treating the embedding

tensor as a spurionic quantity. The covariant description of the gauged tensor hierarchy

thereby enables the derivation of the full p-form field content. In the general case it may

be difficult to indicate the precise G-representations to which the p-forms are assigned, but

it is possible to indicate all the ingredients in a systematic way (although it requires some

notational ingenuity) such that they can be worked out explicitly on a case-by-case basis [14].

Although the structure of the p-form hierarchy seems to be universal, the situation changes

when incorporating this formalism in the context of a given Lagrangian. The transformation

rules are then deformed by the presence of the various matter fields and, as a result, the

closure of the generalized gauge algebra only holds up to equations of motion and additional

symmetries (which are connected to certain redundancies in the transformation rules of the

hierarchy) [6, 7, 14, 15]. Moreover the hierarchy is often truncated at a relatively early stage,

because the Lagrangian may be such that the gauge transformations that connect to the

higher-p forms have become trivially satisfied. This truncation process can be understood in

the context of the hierarchy, because it can be truncated (at some value of p) by projecting the

p-forms with the embedding tensor. For instance, in five space-time dimensions, the gauged

supergravity Lagrangians do not require the presence of p-form fields with p > 2, because the

2-forms appear in the Lagrangian only in a certain contraction with the embedding tensor

that precludes the continuation to higher-p gauge invariances. On the other hand, the (d−1)-

and d-forms play a different role, as was suggested in [14] where this role was explicitly

demonstrated for three-dimensional maximal supergravity. The results of this paper indicate

that this role is in fact generic, so that, while the hierarchy may be truncated at some specific

value of p, the (d−1)- and d-forms can always be included.

It is a possiblity that the truncation induced by the Lagrangian is such that all p-forms

with p > 1 decouple. In that case the hierarchy will not offer any new insights. But it does

offer a universal framework in which gaugings must take place, although the field content of

the theory will ultimately determine how much of the hierarchal structure will be reflected in

the final result. On the other hand, the universal features of the hierarchy are presumably the

reason why the results of this approach overlap in a surprising way with the results obtained

in an entirely different context. For a discussion of some of these results we refer to the

literature (see, e.g. [16, 17, 18, 19, 20, 21, 14]).

This paper is organized as follows. In section 2 the hierarchy of p-form tensor fields

is introduced in a general context. Section 3 presents the representations of the p-form

2



fields for the maximally extended supergravities to illustrate some of the results that can be

obtained in the context of the hierarchy. Section 4 deals with the question what the generic

representations are for the higher-rank p-forms and discusses the possible role played by the

(d−1)- and d-form fields. In the final section some consequences for more general deformations

of ungauged theories are pointed out.

2 The p-form hierarchy

The p-form hierarchy has already been discussed in a number of places, but for clarity we

summarize some of its main features here. We assume a theory with abelian gauge fields

Aµ
M , that is invariant under a group G of rigid transformations. The gauge fields transform

in a representation of that group.1 The generators in this representation are denoted by

(tα)M
N , so that δAµ

M = −Λα(tα)N
M Aµ

N , and the structure constants fαβ
γ of G are defined

according to [tα, tβ] = fαβ
γ tγ . The next step is to select a subgroup of G that will be elevated

to a gauge group with non-trivial gauge charges, whose dimension is obviously restricted by

the number of vector fields. The discussion in this section will remain rather general and will

neither depend on G nor on the space-time dimension. We refer to [1, 4, 6] where a number

of results were described for maximal supergravity in various dimensions.

The gauge group embedding is defined by specifying its generators XM , which will couple

to the gauge fields Aµ
M in the usual fashion, are obviously decomposed in terms of the

independent G-generators tα, i.e.,

XM = ΘM
α tα . (2.1)

where ΘM
α is the embedding tensor transforming according to the product of the represen-

tation conjugate to the representation in which the gauge fields transform and the adjoint

representation of G.2 This product representation is reducible and decomposes into a number

of irreducible representations. Only a subset of these representations is allowed. For super-

gravity the precise constraints follows from the requirement of supersymmetry, but from all

applications we know that at least part (if not all) of the representation constraints is nec-

essary for purely bosonic reasons such as gauge invariance of the action and consistency of

the tensor gauge algebra. This constraint on the embedding tensor is known as the repre-

sentation constraint. Here we treat the embedding tensor as a spurionic object, which we

allow to transform under G, so that the Lagrangian and transformation rules remain formally

G-invariant. At the end we will freeze the embedding tensor to a constant, so that the G-

invariance will be broken. As was shown in [14] this last step can also be described in terms

of a new action in which the freezing of ΘM
α will be the result of a more dynamical process.

The embedding tensor must satisfy a second constraint, the so-called closure constraint,

which is quadratic in ΘM
α and more generic. This constraint ensures that the gauge transfor-

1In even space-time dimensions this assignment may fail and complete G representations may require the

presence of magnetic duals. For four space-time dimensions, this has been demonstrated in [3].
2The gauge algebra may have a central extension which acts exclusively on the vector fields.
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mations form a group so that the generators (2.1) will close under commutation. Any embed-

ding tensor that satisfies the closure constraint, together with the representation constraint

mentioned earlier, defines a consistent gauging. The closure constraint reads as follows,

QPM
α = ΘP

βtβM
NΘN

α + ΘP
βfβγ

αΘM
γ = 0 , (2.2)

and can be interpreted as the condition that the embedding tensor should be invariant under

the embedded gauge group. Hence we can write the closure constraint as,

QMN
α ≡ δMΘN

α = ΘM
β δβΘN

α = 0 , (2.3)

where δM and δα denote the effect of an infinitesimal gauge transformation or an infinitesimal

G-transformation, respectively. Contracting (2.2) with tα leads to,

[XM , XN ] = −XMN
P XP = −X[MN ]

P XP . (2.4)

It is noteworthy here that the generator XMN
P and the structure constants of the gauge

group are related, but do not have to be identical. In particular XMN
P is in general not

antisymmetric in [MN ]. The embedding tensor acts as a projector, and only in the projected

subspace the matrix XMN
P is antisymmetric in [MN ] and the Jacobi identity will be satisfied.

Therefore (2.4) implies in particular that X(MN)
P must vanish when contracted with the

embedding tensor. Denoting

ZP
MN ≡ X(MN)

P , (2.5)

this condition reads,

ΘP
α ZP

MN = 0 . (2.6)

The tensor ZP
MN is constructed by contraction of the embedding tensor with G-invariant

tensors and therefore transforms in the same representation as ΘM
α — except when the

embedding tensor transforms reducibly so that ZP
MN may actually depend on a smaller

representation. The closure constraint (2.3) then ensures that ZP
MN is gauge invariant. As

is to be expected ZP
MN characterizes the lack of closure of the generators XM . This can be

seen, for instance, by calculating the direct analogue of the Jacobi identity,

X[NP
R XQ]R

M = 2
3ZM

R[N XPQ]
R . (2.7)

The fact that the right-hand side does not vanish has direct implications for the non-abelian

field strengths: the standard expression

Fµν
M = ∂µAν

M − ∂νAµ
M + g X[NP ]

M Aµ
NAν

P , (2.8)

which appears in the commutator [Dµ, Dν ] = −gFµν
M XM of covariant derivatives

Dµ ≡ ∂µ − g Aµ
M XM , (2.9)

is not fully covariant. Rather, under standard gauge transformations

δAµ
M = DµΛM = ∂µΛM + gAµ

NXNP
MΛP , (2.10)

4



the field strength Fµν
M transforms as

δFµν
M = 2 D[µδAν]

M − 2g XM
(PQ) A[µ

P δAν]
Q

= g ΛP XNP
M Fµν

N − 2g ZM
PQ A[µ

P δAν]
Q . (2.11)

This expression is not covariant — not only because of the presence of the second term on

the right-hand side, but also because the lack of antisymmetry of XNP
M prevents us from

obtaining the expected result by inverting the order of indices NP in the first term on the

right-hand side. As a consequence, we cannot use Fµν
M in the Lagrangian. In particular,

one needs suitable covariant field strengths for the invariant kinetic term of the gauge fields.

To remedy this lack of covariance, the strategy followed in [1, 2] has been to introduce

additional (shift) gauge transformations on the vector fields

δAµ
M = DµΛM − g ZM

NP Ξµ
NP , (2.12)

where the transformations proportional to Ξµ
NP enable one to gauge away those vector

fields that are in the sector of the gauge generators XMN
P in which the Jacobi identity is

not satisfied (this sector is perpendicular to the embedding tensor by (2.6)). Fully covari-

ant field strengths can the be defined upon further introducing 2-form tensor fields Bµν
NP

transforming in the same representation as Ξµ
NP

Hµν
M = Fµν

M + g ZM
NP Bµν

NP . (2.13)

These tensors transform covariantly under gauge transformations

δHµν
M = −gΛP XPN

MHµν
N , (2.14)

provided we impose the following transformation laws for the 2-forms

ZM
NP δBµν

NP = ZM
NP

(

2 D[µΞν]
NP − 2 ΛNHµν

P + 2 A[µ
NδAν]

P
)

. (2.15)

We note that the constraint (2.6) ensures that

[Dµ , Dν ] = − gFµν
MXM = − gHµν

MXM , (2.16)

but in the Lagrangian the difference between FM and HM is important.

Consistency of the gauge algebra thus requires the introduction of 2-form tensor fields

Bµν
PN . It is important that their appearance in (2.13) strongly restricts their possible rep-

resentation content. Not only must they transform in the symmetric product (NP ) of the

vector field representation as is manifest from their index structure, but also they appear

under contraction with the tensor ZM
NP which in general does not map onto the full sym-

metric tensor product in its lower indices, but rather only on a restricted sub-representation.

It is this sub-representation of G to which the 2-forms are assigned, and to keep the notation

transparent, we denote the corresponding projector with special brackets ||⌈NP ⌋||, such that

ZM
NP Bµν

PN = ZM
NP Bµν

||⌈NP ⌋|| , etc. . (2.17)
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The tensor ZM
NP thus plays the role of an intertwiner between vector fields and 2-forms by

means of which consistency of the vector gauge algebra determines the precise field content

of the 2-form tensor fields.

The same pattern continues upon definition of a covariant field strength for the 2-forms

and leads to a hierarchy of p-form tensor fields, which is entirely determined by choice of the

global symmetry group G and its fundamental representation Rv in which the vector fields

transform. Let us collect its main features which have emerged in the study of particular

gaugings and have been analyzed systematically in [2, 14] :

• Under the global symmetry group G of the theory, the p-forms transform in a sub-

representation of the p-fold tensor product R⊗p
v , where Rv denotes the representation of

G in which the vector fields transform.In many cases of interest this is the fundamental

representation. We denote these fields by

[1]

A M ,
[2]

B ||⌈MN⌋|| ,
[3]

C ||⌈M ||⌈NP ⌋||⌋|| ,
[4]

C ||⌈M ||⌈N ||⌈PQ⌋||⌋||⌋|| ,
[5]

C ||⌈M ||⌈N ||⌈P ||⌈QR⌋||··⌋|| , etc. , (2.18)

where we have suppressed space-time indices, and the special brackets ||⌈ · · · ⌋|| are intro-

duced to denote the relevant sub-representations of R⊗p
v .

• The precise representation content of the (p + 1)-forms C[p+1]
||⌈N0||⌈N1||⌈···Np⌋||··⌋|| are reflected

in the intertwining tensors Y , defined recursively in terms of the lower-rank intertwiners

and the gauge group generators XN0 evaluated in the representation of the p-forms. For

p ≥ 3, this recursive relation is given by

Y M1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈···Np⌋||··⌋|| ≡ − δ

||⌈M1

N0
Y

M2||⌈···Mp⌋||··⌋||
N1||⌈N2||⌈···Np⌋||··⌋||

− (XN0)||⌈N1||⌈N2||⌈···Np⌋||··⌋||
||⌈M1||⌈M2||⌈···Mp⌋||··⌋|| . (2.19)

Inspection of (2.19) for a concrete choice of G and Rv shows that the intertwining

tensor, considered as a map

Y [p] : R⊗(p+1)
v −→ R⊗p

v , (2.20)

has a non-trivial kernel whose complement defines the representation content of the

(p + 1)-forms that is required for consistency of the deformed p-form gauge algebra.

It is important to stress that all intertwining tensors depend linearly on the embedding

tensor Θ. Since they are constructed from the embedding tensor contracted with G-

invariant tensors, they all transform covariantly and belong to the same representation

as the embedding tensor, in spite of their different index structure. Obviously the inter-

twining tensors depend on the particular gauging considered. However, sweeping out

the full space of possible embedding tensors yields a Θ-independent (and G-covariant)

result for the representation of (p + 1)-forms. This is understood by regarding the

embedding tensor as a so-called spurionic quantity, which transforms under the action

of G, although at the end it will be fixed to a constant value. This approach shows
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how the mere consistency of the deformation of the p-form gauge algebra upon generic

gauging imposes rather strong restrictions on the field content of the ungauged theory.

In the ungauged theory there is a priori no direct evidence for these restrictions and

usually additional structures, such as supersymmetry or the underlying higher-rank

Kac-Moody symmetries, motivate the presence and precise field content of the p-forms.

It is rather surprising and intriguing that the constraints implied by these additional

structures on the field content do precisely coincide with the constraints derived from

consistency of the p-form hierarchy.

• The lowest-rank intertwining tensors are given by

Y [0] : Rv −→ Radj , Y [1] : R⊗2
v −→ Rv , (2.21)

corresponding to p = 0, 1, with (Y [0])α
M = ΘM

α and (Y [1])M
PQ = ZM

PQ. The

intertwining tensor, Y [2], for p = 2 can be written as follows,

Y MN
P ||⌈RS⌋|| = 2

(

δP
||⌈M ZN⌋||

RS − XP ||⌈R
||⌈MδS⌋||

N⌋||
)

. (2.22)

• Inspection of the symmetry properties of the intertwining tensors (2.21) and (2.19)

shows explicitly that in general the lowest-rank p-forms in the hierarchy do not live

in the full tensor product R⊗p
v , but only in a subsector thereof constrained by certain

symmetry properties:

[1]

A ∈ ,
[2]

B ∈ ,
[3]

C ∈ ,
[4]

C ∈ ⊕ , etc. , (2.23)

in standard Young tableau notation.3 In general, the group G will be different from

an SL(N), so that the Young tableaux themselves are reducible. As it turns out, the

tensor hierarchy then imposes further restrictions on the representation content.

• Mutual orthogonality: the intertwining tensors satisfy the relations

Y K2||⌈K3||⌈···Kp⌋||··⌋||
M1||⌈M2||⌈···Mp⌋||··⌋|| Y M1||⌈M2||⌈···Mp⌋||··⌋||

N0||⌈N1||⌈···Np⌋||··⌋|| ≈ 0 , (2.24)

where ‘weakly zero’ (≈ 0) indicates that the expression vanishes as a consequence of

the quadratic constraint (2.2) on the embedding tensor. More schematically, these

orthogonality relations take the form

Y [p] · Y [p+1] ≈ 0 , (2.25)

(with equation (2.6) as their lowest member) and thus in view of (2.20) define the

sequence

· · ·
Y [p+1]

−→ R⊗(p+1)
v

Y [p]

−→ R⊗p
v

Y [p−1]

−→ · · ·
Y [1]

−→ Rv
Y [0]

−→ Radj . (2.26)

3We should stress that the Young box ‘ ’ here corresponds to the representation Rv in which the vector

fields transform under G and not to their space-time structure. With respect to the latter, all tensors of course

transform as p-forms, i.e. in the totally antisymmetric part of the p-fold tensor product.
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Again, we emphasize that every embedding tensor, i.e. every solution to the quadratic

constraint, gives rise to such a sequence and defines its proper field content, while by

sweeping out the entire space of possible embedding tensors one obtains the full p-form

field content induced by the group G.

• Consequently, given the Y -tensors, and specifying the group G, the above results enable

a complete determination of the full hierarchy of the higher-rank p-forms required for

the consistency of the gauging. In particular, we can exhibit some of the terms in the

variations of the p-form fields

δ
[p]

C M1||⌈M2||⌈···Mp⌋||··⌋|| = p D
[p−1]

Φ M1||⌈M2||⌈···Mp⌋||··⌋||

+ Λ||⌈M1
[p]

H ||⌈M2···⌋||··⌋|| + p δ
[1]

A ||⌈M1∧
[p−1]

C ||⌈M2···⌋||··⌋||

− g Y M1||⌈M2||⌈···Mp⌋||··⌋||
N0||⌈N1||⌈...Np⌋||.⌋||

[p]

Φ N0||⌈N1||⌈...Np⌋||··⌋|| ,

+ · · · . (2.27)

In particular, this demonstrates how the intertwining tensors Y show up explicitly in

the tensor gauge transformations to induce a Stückelberg-type coupling between p and

(p + 1)-forms. The dots in (2.27) represent further terms carrying the lower-rank p-

forms such as terms linear in the covariant field strengths H (to be introduced below)

and further Chern-Simons-like variations such as δC ∧ C.

• For all higher-rank p-forms covariant field strengths can be defined that transform

homogeneously under vector gauge transformations and are invariant under all higher-

rank tensor gauge transformations.

E.g. for the 2-forms the modified field strength takes the form,

[3]

H MN ≡ 3 D
[2]

B MN + 3
[1]

A ||⌈M ∧

(

d
[1]

A N⌋|| + 2
3gX[PQ]

N⌋||
[1]

A P∧
[1]

A Q

)

+ g Y MN
P ||⌈RS⌋||

[3]

C P ||⌈RS⌋|| . (2.28)

This pattern continues.

• The hierarchy can be truncated at any value of p by projecting the corresponding

forms with the next intertwining tensor. Because of the orthogonality property (2.24),

the Stückelberg-type shifs are then no longer effective and the hierarchy will not be

continued to higher p-forms. Of course, this projection is a somewhat arbitrary and

technical way to truncate, but in practice this situation may occur when considering

specific Lagrangians in which intertwining tensors may appear that effect precisely this

projection. For instance, in five-dimensional maximal supergravity, the 3-form fields do

not appear in the Lagrangian for precisely this reason.

Although the number of space-time dimensions does not enter into this analysis (as stated

earlier, the iteration procedure can in principle be continued indefinitely), there exists, for
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the maximal supergravities, a consistent correlation between the rank of the tensor fields

and the occurrence of conjugate G-representations that is precisely in accord with tensor-

tensor and vector-tensor (Hodge) duality4 corresponding to the space-time dimension where

the maximal supergravity with that particular duality group G lives. In the next section we

discuss some of the results of this analysis.

3 Representation assignments of the p-forms

The hierarchy of vector and tensor gauge fields that we presented in the previous section can

be considered in the context of the maximal gauged supergravities. In that case the gauge

group is embedded in the duality group G, which is known for each space-time dimension

in which the supergravity is defined. Once the group G is specified, the representations can

be determined of the various p-form potentials. In principle the hierarchy allows a unique

determination of the higher p-forms, and table 1 shows an overview of some of the results.

We recall that the analysis described in section 2 did not depend on the number of space-

time dimensions. For instance, it is possible to derive the representation assignments for

(d+1)-rank tensors, although these do not live in a d-dimensional space-time (nevertheless, a

glimpse of their existence occurs in d dimensions via the shift transformations (2.27) of the

d-forms in the general gauged theory).

On the other hand, whenever there exists a (Hodge) duality relation between fields of

different rank at the appropriate value for d, then one finds that their G representations

turn out to be related by conjugation. This property is clearly exhibited at the level of the

lower-rank fields in the table. More precisely, upon working out the precise representation

content as described in the previous section, the sequence (2.26) takes the particular form

· · ·
Y [d−2]

−→ Radj
Y [d−3]

−→ Rv∗
Y [d−4]

−→ · · ·
Y [1]

−→ Rv
Y [0]

−→ Radj , (3.1)

symmetric around the forms of rank p = 1
2 [d−1], i.e. Rv∗ denotes the representation dual

to Rv, etc.. In particular, the intertwiners in (3.1) are pairwise related by transposition

Y [0] = (Y [d−3] )T , Y [1] = (Y [d−4] )T , etc. . (3.2)

It is intriguing that the purely group theoretical hierarchy reproduces the correct assignments

consistent with Hodge duality. In particular, the assignment of the (d−2)-forms is in line

with tensor-scalar duality, as these forms are dual to the Noether currents associated with

the G symmetry. In this sense, the duality group G implicitly carries information about the

space-time dimension.

What is more, the hierarchy naturally extends beyond the (d−2)-forms and thus to those

non-propagating forms whose field content is not restricted by Hodge duality. It is another

striking feature of the hierarchy that the diagonals pertaining to the (d−1)- and d-rank tensor

fields refer to the representations conjugate to those assigned to the embedding tensor and

4As well as with the count of physical degrees of freedom.
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1 2 3 4 5 6

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(6) 27 27 78 351 27+1728

4 E7(7) 56 133 912 133+8645

3 E8(8) 248 1+3875 3875+147250

Table 1: Duality representations of the vector and tensor gauge fields for gauged maximal supergrav-

ities in space-time dimensions 3 ≤ d ≤ 7. The first two columns list the space-time dimension and the

corresponding duality group.

its quadratic constraint, respectively. In the next section, we will show that this pattern is

in fact generic and related to the special role these forms may play in the Lagrangian [14].

It is an obvious question whether these systematic features have a natural explanation

in terms of M-theory and we refer to [14] for a discussion. Here it suffices to mention that

the representation content agrees with results based on matrix models in M-theory [16],

(see also, [22] and references quoted therein) where matrix theory [23, 24] is considered in

a toroidal compactification. The representations in the table were also found in [17], where

a ‘mysterious duality’ was exhibited between toroidal compactifications of M-theory and

del Pezzo surfaces. Here the M-theory dualities are related to global diffeomorphisms that

preserve the canonical class of the del Pezzo surface. Again the representations thus found

are in good agreement with the representations in table 1. Furthermore there are hints that

the above considerations concerning new M-theoretic degrees of freedom can be extended

to infinite-dimensional duality groups. Already some time ago [18] it was shown from an

analysis of the indefinite Kac–Moody algebra E11 that the decomposition of its so-called L1

representation at low levels under its finite-dimensional subalgebra SL(3) × E8 yields the

same 3875 representation that appears for the 2-forms as shown in table 1. This analysis

has meanwhile been extended [19, 20, 21] to other space-time dimensions and higher-rank

forms, and again there is a clear overlap with the representations in table 1. Non-maximal

supergravities have also been discussed from this perspective in [25, 26].

4 Life at the end of the hierarchy

Historically the p-form hierarchy was discovered by starting from the 1-forms belonging to the

representation Rv, in the context of specific (supergravity) theories. The crucial ingredients

are the group G and the representation of the embedding tensor. No information about the

space-time dimension is required. On the other hand, one of the intitial observations was that

general gaugings require a certain decomposition between certain p-forms and their duals,

which belong to the conjugate representation. The actual distribution of physical degrees

of freedom over these sets of fields related by duality is eventually determined by the value

10



taken by the embedding tensor.

In this section, we will study the generic representation content of the p-forms predicted

by the hierarchy for large rank p close to d. In view of the fact that the theory is invariant

under the group G prior to switching on the gauge couplings, there exists a set of conserved

1-forms given by the Noether currents, transforming in the adjoint representation, which is

dual to the (d−2)-forms. Furthermore we expect (d−3)-forms that are dual to the vector

fields and thus are expected to transform in the G representation Rv∗ dual to the vector

field representation, in accordance with (3.1). When considering these high-rank p forms it

is convenient to switch from the general notation that was used in section 2 to a notation

adapted to this particular field content and to identify the (d−3)- and (d−2)-forms as,

[d−3]

C M1||⌈M2||⌈···Md−3⌋||··⌋|| ∼
[d−3]

C M ,

[d−2]

C M1||⌈M2||⌈···Md−2⌋||··⌋|| ∼
[d−2]

C α , (4.1)

upon explicit introduction of corresponding projectors, denoted by P
M1||⌈M2||⌈···Md−3⌋||··⌋||

M and

P
M1||⌈M2||⌈···Md−3⌋||··⌋||

α. We may then explicitly study the end of the p-form hierarchy by imposing

the general structure outlined in section 2. The result takes the following form,

δ
[d−3]

C M = (d − 3) D
[d−4]

Φ M + · · · − YM
α

[d−3]

Φ α ,

δ
[d−2]

C α = (d − 2) D
[d−3]

Φ α + · · · − Yα,M
β

[d−2]

Φ M
β ,

δ
[d−1]

C M
α = (d − 1) D

[d−2]

Φ M
α + · · · − Y M

α,PQ
β

[d−1]

Φ PQ
β ,

δ
[d]

C MN
α = d D

[d−1]

Φ MN
α + · · · − Y MN

α,PQR
β

[d]

Φ PQR
β ,

δ
[d+1]

C PQR
α = (d + 1) D

[d]

Φ PQR
α + · · · , (4.2)

where we indicated the most conspicuous parts of the p-form transformations. We included

the transformations associated to the (d+1)-form for reasons that will be explained shortly.

From the index structure it is obvious that YM
α must coincide with the embedding tensor.

The subsequent intertwining tensors can then be found by applying (2.19) which yields5

Yα,M
β = tαM

N YN
β − XMα

β ,

Y M
α,PQ

β = − δP
M Yα,Q

β − (XP )Q
β,M

α ,

Y MN
α,PQR

β = − δM
P Y N

α,QR
β − (XP )QR

β,MN
α . (4.3)

The presence of the generator tαM
N in the first equation is related to the conversion of the

special bracket notation employed in the previous sections.

5It is important to realize that (2.19) is only valid for p ≥ 3, which implies that these results cannot be

directly applied to low space-time dimensions. However, in that case the intertwining tensors are already

known and given by (2.21) and (2.22).
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It is, however, more instructive to cast these expressions into a different form, given by

YM
α = ΘM

α ,

Yα,M
β = δαΘM

β ,

Y M
α,PQ

β = −
∂QPQ

β

∂ ΘM
α

,

Y MN
α,PQR

β = −δM
P Y N

α,QR
β − XPQ

M δN
R δβ

α − XPR
N δM

Q δβ
α + XPα

β δN
R δM

Q , (4.4)

where sign factors have been adopted such that the above tensors are precisely consistent

with (4.3). In this form, it is straightforward to verify that the intertwining tensors satisfy

the mutual orthogonality property (2.24). For the first few tensors this is easy to prove,

YM
α Yα,N

β = δMΘN
β = QMN

β ≈ 0 ,

Yα,N
β Y N

β,PQ
γ = δα QPQ

γ ≈ 0 , (4.5)

where we recall the constraint written as in (2.3). In the second equation we used the fact that

the intertwining tensors are all G-covariant, so that the effect of transforming the embedding

tensor is equivalent to transforming the tensor according to its index structure.

The last orthogonality relation is proved differently. First we note the identity,

Y MN
α,PQR

β QMN
α = 0 , (4.6)

which holds identically without making reference to the quadratic constraint (2.2). This is

thus a non-trivial identity that is cubic in the embedding tensor. It follows by comparing

δP QQR
β = δP ΘN

α ∂QQR
β

∂ ΘN
α

=
(

− δM
P Y N

α,QR
β
)

QMN
α , (4.7)

to

δP QQR
β =

(

XPQ
M δN

R δβ
α + XPR

N δM
Q δβ

α − XPα
β δN

R δM
Q

)

QMN
α . (4.8)

This last equation follows from the fact that the tensor QQR
β transforms covariantly. Taking

the difference of the two equations (4.7) and (4.8) leads directly to (4.6).

The importance of this result will be discussed below, but we first note that the missing

orthogonality relation between the intertwiners follows from taking the derivative of (4.6)

with respect to the embedding tensor,

Y M
α,KL

β Y KL
β,PQR

γ = − Y KL
β,PQR

γ ∂QKL
β

∂ ΘM
α

=
∂Y KL

β,PQR
γ

∂ ΘM
α

QKL
β ≈ 0 . (4.9)

From (4.4) we can now directly read off the representation content of the (d−1)- and the

d-forms that follows from the hierarchy: the form of Yα,M
β and Y M

α,PQ
β shows that these

forms transform in the representations dual to the embedding tensor ΘM
β and the quadratic
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constraint QPQ
β, respectively. As such, they can naturally be coupled, acting as Lagrange

multipliers enforcing the property that the embedding tensor is space-time independent and

gauge invariant [14]. This idea has been worked out explicitly in the context of maximal

supergravity in three space-time dimensions, and we will demonstrate here that this idea can

be realized in a more general context. Hence we view the embeddding tensor as a space-

time dependent scalar field, transforming in the G-representation constrained by possible

representation constraints. To the original Lagrangian L0 which may depend on p-forms

with p ≤ d − 2, we then add the following interactions,

L = L0 + LC (4.10)

with

LC ∝ εµ1···µd
{

d g Cµ2···µd

M
α Dµ1ΘM

α + g2 Cµ1···µd

MN
α QMN

α
}

, (4.11)

where ΘM
α(x) is now a field. First we note that this Lagrangian is invariant under the

shift transformation of the d-rank tensor field, by virtue of the identity (4.6). Varying this

Lagrangian with respect to ΘM
α leads to the following variation,

δLC ∝ −g εµ1···µd δΘM
α

×
[

d Dµ1Cµ2···µd

M
α + g Y M

α,PQ
β Cµ1···µd

PQ
β + d g Aµ1 Yα,N

β Cµ2···µd

N
β

]

.

(4.12)

This result can be written as follows,

δLC ∝ −g εµ1···µd

[

Hµ1···µd

M
α + d gA[µ1

M Hµ2···µd] α + · · ·
]

δΘM
α , (4.13)

by including unspecified terms involving form fields of rank p ≤ d − 2. These terms are

assumed to originate from the Θ-variation of the Lagrangian L0, but they cannot be evaluated

in full generality as this depends on the details of this Lagrangian.

Qualitatively the above result is quite similar to that obtained in three space-time di-

mensions, but there are slight differences in the numerical factors, due to the fact that the

three-dimensional result involves the intertwining tensors for low p-values, whereas the result

here is based on generic p ≥ 3 intertwining tensors.

5 Concluding remarks

The gaugings accompanied by a p-form hierarchy can be considered as a class of deformations

of the original theory (which was invariant under the group G), induced by switching on

certain charges. These charges necessarily generate a subgroup of G, extended by a variety

of p-form gauge transformations. In principle, other deformations can be envisaged and one

may wonder whether they can be switched on at the same time and/or whether they are

completely independent.
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An example constitutes the massive deformation known from IIA supergravity in ten

dimensions [27], which is a priori unrelated to a gauging. However, let us reconsider the

orthogonality relation (2.6),

ΘM
α ZM

NP = 0 , (5.1)

which can be trivially satified by setting ΘM
α = 0. In view of the hierarchy (2.26), this

deformation corresponds to a sequence in which the lowest map Y [0] is absent such that the

hierarchy does not start from the scalar but from the vector fields. It would be interesting

to analyze the general conditions under which such additional deformations can be launched

from higher-ranks in the hierarchy, e.g. under which conditions the intertwining tensor Z

allows for components beyond those fixed by the embedding tensor (2.5).

There is one other aspect that should be stressed. The gaugings are controlled by the

coupling constant g, and one may consider taking the limit g → 0. In that limit the covari-

ant tensor hierarchy does not reduce to a trivial abelian set of tensor gauge fields but also

reproduces non-trivial terms of order g0. Consider as an example the covariant field strength

Hµνρ
MN , defined in (2.28), which contains Chern-Simons-like terms that are not of order g.

This feature, which may seem somewhat surprising, was first noted in five-dimensional max-

imal supergravity, where a Chern-Simons coupling is required by supersymmetry. However,

this Chern-Simons coupling is a special case of the Chern-Simons coupling that is required

by the gauge hierarchy [1]. To put it differently, if supersymmetry would not have implied

the presence of a Chern-Simons coupling, then this theory could not have been deformed by

gauge interactions.

Finally, let us mention that for groups G other than the exceptional series related to

maximal supergravity, the tensor hierarchy that we have exploited in this paper, may not

run continuously all the way from scalar fields to d-forms, but in principle break off at some

earlier stage. This happens e.g. for the groups G = GL(n) and G = SO(n, n) for which

the hierarchy breaks off after the vector and the 2-form fields, respectively. Accordingly, the

associated theories are not linked to specific space-time dimensions – but correspond to the

Tn torus reduction of pure gravity and bosonic string theory, respectively, in an arbitrary

dimension. The corresponding sequences (3.1) will thus exhibit an adequate gap in the

middle, while the structure of forms with p ≥ (d−3) remains the generic one that we have

discussed in section 4.

Acknowledgement

We are grateful to Hermann Nicolai for discussion. B.d.W. thanks the Ecole Normale

Supérieure for hospitality extended to him during the course of this work, which was sup-

ported by the Centre National de la Recherche Scientific (CNRS). The work of H.S. is sup-

ported by the Agence Nationale de la Recherche (ANR). This work is also partly supported

by EU contracts MRTN-CT-2004-005104 and MRTN-CT-2004-512194, and by NWO grant

047017015.

14



References

[1] B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl.

Phys. B716 (2005) 215, hep-th/0412173.

[2] B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of non-

abelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442, hep-th/0501243.

[3] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP

09 (2005) 016, hep-th/0507289.

[4] H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B725

(2005) 383, hep-th/0506237.

[5] J. Schön and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034,

hep-th/0602024.

[6] B. de Wit, H. Samtleben M. Trigiante, The maximal D = 4 supergravities, JHEP, 06

(2007) 049, arXiv:0705.2101 [hep-th]

[7] M. de Vroome and B. de Wit, Lagrangians with electric and magnetic charges in N = 2

supersymmetric gauge theories, JHEP 08 (2007) 064, arXiv:0707.2717 [hep-th].

[8] J.P. Derendinger, P.M. Petropoulos and N. Prezas, Axionic symmetry gaugings in N

= 4 supergravities and their higher-dimensional origin, Nucl. Phys. B785 (2007) 115,

arXiv:0705.0008 [hep-th].

[9] H. Samtleben and M. Weidner, Gauging hidden symmetries in two dimensions, JHEP

08 (2007) 076, arXiv:0705.2606 [hep-th].

[10] E. Bergshoeff, H. Samtleben and E. Sezgin, The gaugings of maximal D=6 supergravity,

JHEP 03 (2008) 068, arXiv:0712.4277 [hep-th].

[11] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three dimensions, Phys.

Rev. Lett. 86 (2001) 1686, hep-th/0010076;

[12] H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities

in three-dimensions, JHEP 0104 (2001) 022, hep-th/0103032.

[13] B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities in three dimensions:

A panoramic overview, Proc. 27th Johns Hopkins Workshop on Current Problems in

Particle Theory: Symmetries and Mysteries of M-Theory, Goteborg, Sweden, 24-26 Aug

2003, hep-th/0403014.

[14] B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies, and

M-Theory, JHEP 02 (2008) 044, arXiv 0801.1294 [hep-th].

15



[15] E.A. Bergshoeff, O. Hohm and T.A. Nutma, A note on E11 and three-dimensional gauged

supergravity, arXiv:0803.2989 [hep-th].

[16] S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory

on T d, Nucl. Phys. B509 (1998) 122-144, hep-th/9707217.

[17] A. Iqbal, A. Neitzke and C. Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5

(2002) 769-808, hep-th/0111068.

[18] P.C. West, E(11) origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052,

hep-th/0406150.

[19] F. Riccioni and P. West, The E(11) origin of all maximal supergravities JHEP 07 (2007)

063, arXiv:0705.0752 [hep-th].

[20] E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E(11) and the embedding tensor,

JHEP 09 (2007) 047, arXiv:0705.1304 [hep-th].

[21] F. Riccioni and P. West, E(11)-extended spacetime and gauged supergravities,

arXiv:0712.1795 [hep-th].

[22] N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113-225”,

hep-th/9809039.

[23] B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes,

Nucl. Phys. B305 (1988) 545.

[24] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-Theory as a matrix model: A

conjecture, Phys. Rev. D55 (1997) 5112, hep-th/9610043.

[25] E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody Spectrum of (Half-

)Maximal Supergravities, arXiv:0711.2035 [hep-th].

[26] F. Riccioni, A. Van Proeyen and P. West, Real forms of very extended Kac-Moody alge-

bras and theories with eight supersymmetries, JHEP 0805 (2008) 079, arXiv:0801.2763

[hep-th].

[27] L.J. Romans, Massive N=2a supergravity in ten dimensions, Phys. Lett. B169 (1986)

374.

16


