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Abstract. We survey recent results on the topological complexity of context-free

ω-languages which form the second level of the Chomsky hierarchy of languages

of infinite words. In particular, we consider the Borel hierarchy and the Wadge hi-

erarchy of non-deterministic or deterministic context-free ω-languages. We study

also decision problems, the links with the notions of ambiguity and of degrees of

ambiguity, and the special case of ω-powers.
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1 Introduction

The Chomsky hierarchy of formal languages of finite words over a finite alphabet is now

well known, [49]. The class of regular languages accepted by finite automata forms the

first level of this hierarchy and the class of context-free languages accepted by push-

down automata or generated by context-free grammars forms its second level [3]. The

third and the fourth levels are formed by the class of context-sensitive languages ac-

cepted by linear-bounded automata or generated by Type-1 grammars and the class of

recursively enumerable languages accepted by Turing machines or generated by Type-0

grammars [15]. In particular, context-free languages, firstly introduced by Chomsky to

analyse the syntax of natural languages, have been very useful in Computer Science, in

particular in the domain of programming languages, for the construction of compilers

used to verify correctness of programs, [48].

There is a hierarchy of languages of infinite words which is analogous to the Chomsky

hierarchy but where the languages are formed by infinite words over a finite alphabet.

The first level of this hierarchy is formed by the class of regular ω-languages accepted

by finite automata. They were first studied by Büchi in order to study decision prob-

lems for logical theories. In particular, Büchi proved that the monadic second order

theory of one successor over the integers is decidable, using finite automata equipped



with a certain acceptance condition for infinite words, now called the Büchi acceptance

condition. Well known pioneers in this research area are named Muller, Mc Naughton,

Rabin, Landweber, Choueka, [61, 62, 68, 52, 16]. The theory of regular ω-languages is

now well established and has found many applications for specification and verifica-

tion of non-terminating systems; see [81, 78, 67] for many results and references. The

second level of the hierarchy is formed by the class of context-free ω-languages. As in

the case of languages of finite words it turned out that an ω-language is accepted by

a (non-deterministic) pushdown automaton (with Büchi acceptance condition) if and

only if it is generated by a context-free grammar where infinite derivations are consid-

ered. Context-free languages of infinite words were first studied by Cohen and Gold,

[19, 20], Linna, [56–58], Boasson, Nivat, [64, 63, 7, 8], Beauquier, [4], see the survey

[78]. Notice that in the case of infinite words Type-1 grammars and Type-0 grammars

accept the same ω-languages which are also the ω-languages accepted by Turing ma-

chines with a Büchi acceptance condition [21, 78], see also the fundamental study of

Engelfriet and Hoogeboom on X-automata, i.e. finite automata equipped with a storage

type X, accepting infinite words,[29].

Context-free ω-languages have occurred recently in the works on games played on in-

finite pushdown graphs, following the fundamental study of Walukiewicz, [85, 82] [74,

40].

Since the set Xω of infinite words over a finite alphabet X is naturally equipped with

the Cantor topology, a way to study the complexity of ω-languages is to study their

topological complexity. The first task is to locate ω-languages with regard to the Borel

and the projective hierarchies, and next to the Wadge hierarchy which is a great refine-

ment of the Borel hierarchy. It is then natural to ask for decidability properties and to

study decision problems like : is there an effective procedure to determine the Borel

rank or the Wadge degree of any context-free ω-language ? Such questions were asked

by Lescow and Thomas in [55]. In this paper we survey some recent results on the topo-

logical complexity of context-free ω-languages. Some of them were very surprising as

the two following ones:

1. there is a 1-counter finitary language L such that Lω is analytic but not Borel, [35].

2. The Wadge hierarchy, hence also the Borel hierarchy, of ω-languages accepted

by real time 1-counter Büchi automata is the same as the Wadge hierarchy of ω-

languages accepted by Büchi Turing machines, [41].

The Borel and Wadge hierarchies of non deterministic context-free ω-languages are not

effective. One can neither decide whether a given context-free ω-language is a Borel

set nor whether it is in a given Borel class Σ0
α or Π0

α. On the other hand deterministic

context-free ω-languages are located at a low level of the Borel hierarchy: they are all

∆
0
3-sets. They enjoy some decidability properties although some important questions in

this area are still open. We consider also the links with the notions of ambiguity and of

degrees of ambiguity, and the special case of ω-powers, i.e. of ω-languages in the form

V ω, where V is a (context-free) finitary language. Finally we state some perspectives

and give a list of some questions which remain open for further study.



The paper is organized as follows. In Section 2 we recall the notions of context-free

ω-languages accepted by Büchi or Muller pushdown automata. Topological notions

and Borel and Wadge hierarchies are recalled in Section 3. In Section 4 is studied the

case of non-deterministic context-free ω-languages while deterministic context-free ω-

languages are considered in Section 5. Links with notions of ambiguity in context free

languages are studied in Section 6. Section 7 is devoted to the special case of ω-powers.

Perspectives and some open questions are presented in last Section 8.

2 Context-free ω-languages

We assume the reader to be familiar with the theory of formal (ω)-languages [81, 78].

We shall use usual notations of formal language theory.

When X is a finite alphabet, a non-empty finite word over X is any sequence x =
a1 . . . ak, where ai ∈ X for i = 1, . . . , k , and k is an integer≥ 1. The length of x is k,

denoted by |x|. The empty word has no letters and is denoted by λ; its length is 0. For

x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k and x[0] = λ. X⋆

is the set of finite words (including the empty word) over X .

For V ⊆ X⋆, the complement of V (in X⋆) is X⋆ − V denoted V −.

The first infinite ordinal is ω. An ω-word over X is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ X . When σ is an ω-word over X , we write

σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ X , and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and some-

times just uv). This product is extended to the product of a finite word u and an ω-word

v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u|, and (u.v)(k) = v(k − |u|) if k > |u|.
The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v (respec-

tively, an infinite word v), denoted u ⊑ v, if and only if there exists a finite word w
(respectively, an infinite word w), such that v = u.w. The set of ω-words over the

alphabet X is denoted by Xω. An ω-language over an alphabet X is a subset of Xω.

The complement (in Xω) of an ω-language V ⊆ Xω is Xω − V , denoted V −.

For V ⊆ X⋆, the ω-power of V is :

V ω = {σ = u1 . . . un . . . ∈ Xω | ∀i ≥ 1 ui ∈ V }.

We now define pushdown machines and the class of ω-context-free languages.

Definition 1. A pushdown machine (PDM) is a 6-tuple M = (K,X, Γ, δ, q0, Z0),
where K is a finite set of states, X is a finite input alphabet, Γ is a finite pushdown

alphabet, q0 ∈ K is the initial state, Z0 ∈ Γ is the start symbol, and δ is a mapping

from K × (X ∪ {λ})× Γ to finite subsets of K × Γ ⋆ .

If γ ∈ Γ+ describes the pushdown store content, the leftmost symbol will be assumed

to be on “top” of the store. A configuration of a PDM is a pair (q, γ) where q ∈ K and

γ ∈ Γ ⋆.

For a ∈ X ∪ {λ}, β, γ ∈ Γ ⋆ and Z ∈ Γ , if (p, β) is in δ(q, a, Z), then we write

a : (q, Zγ) 7→M (p, βγ).



7→⋆
M is the transitive and reflexive closure of 7→M . (The subscript M will be omitted

whenever the meaning remains clear).

Let σ = a1a2 . . . an . . . be an ω-word over X . An infinite sequence of configurations

r = (qi, γi)i≥1 is called a complete run of M on σ, starting in configuration (p, γ), iff:

1. (q1, γ1) = (p, γ)
2. for each i ≥ 1, there exists bi ∈ X ∪ {λ} satisfying bi : (qi, γi) 7→M (qi+1, γi+1)

such that a1a2 . . . an . . . = b1b2 . . . bn . . .

For every such run, In(r) is the set of all states entered infinitely often during run r.

A complete run r of M on σ , starting in configuration (q0, Z0), will be simply called

“a run of M on σ”.

Definition 2. A Büchi pushdown automaton is a 7-tuple M = (K,X, Γ, δ, q0, Z0, F )
where M ′ = (K,X, Γ, δ, q0, Z0) is a PDM and F ⊆ K is the set of final states. The

ω-language accepted by M is

L(M) = {σ ∈ Xω | there exists a complete run r of M on σ such that In(r)∩F 6= ∅}

Definition 3. A Muller pushdown automaton is a 7-tuple M = (K,X, Γ, δ, q0, Z0,F)
where M ′ = (K,X, Γ, δ, q0, Z0) is a PDM and F ⊆ 2K is the collection of designated

state sets. The ω-language accepted by M is

L(M) = {σ ∈ Xω | there exists a complete run r of M on σ such that In(r) ∈ F}

Remark 4. We consider here two acceptance conditions for ω-words, the Büchi and

the Muller acceptance conditions, respectively denoted 2-acceptance and 3-acceptance

in [52] and in [20] and (inf,⊓) and (inf,=) in [78]. We refer the reader to [19, 20,

78, 29] for consideration of weaker acceptance conditions, and to [46, 67] for the def-

initions of other usual ones like Rabin, Street, or parity acceptance conditions. Notice

however that it seems that the latter ones have not been much considered in the study of

context-free ω-languages but they are often involved in constructions concerning finite

automata reading infinite words.

Notation. In the sequel we shall often abbreviate “Muller pushdown automaton” by

MPDA and “Büchi pushdown automaton” by BPDA.

Cohen and Gold and independently Linna established a characterization theorem for ω-

languages accepted by Büchi or Muller pushdown automata. We shall need the notion

of “ω-Kleene closure” which we now firstly define:

Definition 5. For any family L of finitary languages, the ω-Kleene closure of L is :

ω−KC(L) = {∪ni=1Ui.V
ω
i | ∀i ∈ [1, n] Ui, Vi ∈ L}

Theorem 6 (Linna [56], Cohen and Gold [19]). Let CFL be the class of context-free

(finitary) languages. Then for any ω-language L the following three conditions are

equivalent:



1. L ∈ ω−KC(CFL).
2. There exists a BPDA that accepts L.

3. There exists a MPDA that accepts L.

In [19] are also studied ω-languages generated by ω-context-free grammars and it is

shown that each of the conditions 1), 2), and 3) of the above Theorem is also equiva-

lent to: 4) L is generated by a context-free grammar G by leftmost derivations. These

grammars are also studied by Nivat in [63, 64]. Then we can let the following definition:

Definition 7. An ω-language is a context-free ω-language iff it satisfies one of the

conditions of the above Theorem. The class of context-free ω-languages will be denoted

by CFLω.

If we omit the pushdown store in the above Theorem we obtain the characterization of

languages accepted by classical Muller automata (MA) or Büchi automata (BA) :

Theorem 8. For any ω-language L, the following conditions are equivalent:

1. L belongs to ω−KC(REG),
where REG is the class of finitary regular languages.

2. There exists a MA that accepts L.

3. There exists a BA that accepts L.

An ω-language L satisfying one of the conditions of the above Theorem is called a

regular ω-language. The class of regular ω-languages will be denoted by REGω.

It follows from Mc Naughton’s Theorem that the expressive power of deterministic MA

(DMA) is equal to the expressive power of non deterministic MA, i.e. that every reg-

ular ω-language is accepted by a deterministic Muller automaton, [62, 67]. Notice that

Choueka gave a simplified proof of Mc Naughton’s Theorem in [16]. Another variant

was given by Rabin in [68]. Unlike the case of finite automata, deterministic MPDA
do not define the same class of ω-languages as non deterministic MPDA. Let us now

define deterministic pushdown machines.

Definition 9. A PDM M = (K,X, Γ, δ, q0, Z0) is said to be deterministic iff for

each q ∈ K,Z ∈ Γ , and a ∈ X:

1. δ(q, a, Z) contains at most one element,

2. δ(q, λ, Z) contains at most one element, and

3. if δ(q, λ, Z) is non empty, then δ(q, a, Z) is empty for all a ∈ X .

It turned out that the class of ω-languages accepted by deterministic BPDA is strictly

included into the class of ω-languages accepted by deterministic MPDA. This lat-

est class is the class DCFLω of deterministic context-free ω-languages. We denote

DCFL the class of deterministic context-free (finitary) languages.

Proposition 10 ([20]).

1. DCFLω is closed under complementation, but is neither closed under union, nor

under intersection.

2. DCFLω ( ω−KC(DCFL) ( CFLω (these inclusions are strict).



3 Topology

3.1 Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions of topology which may be found

in [60, 55, 50, 78, 67]. There is a natural metric on the set Xω of infinite words over a

finite alphabet X containing at least two letters which is called the prefix metric and

defined as follows. For u, v ∈ Xω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v)
is the first integer n such that u(n+ 1) is different from v(n + 1). This metric induces

on Xω the usual Cantor topology for which open subsets of Xω are in the form W.Xω,

where W ⊆ X⋆. A set L ⊆ Xω is a closed set iff its complement Xω − L is an open

set. Define now the Borel Hierarchy of subsets of Xω:

Definition 11. For a non-null countable ordinal α, the classes Σ0
α and Π

0
α of the Borel

Hierarchy on the topological space Xω are defined as follows:

Σ
0
1 is the class of open subsets of Xω, Π0

1 is the class of closed subsets of Xω,

and for any countable ordinal α ≥ 2:

Σ
0
α is the class of countable unions of subsets of Xω in

⋃
γ<αΠ

0
γ .

Π
0
α is the class of countable intersections of subsets of Xω in

⋃
γ<αΣ

0
γ .

Recall some basic results about these classes :

Proposition 12.

(a) Σ
0
α ∪Π

0
α ( Σ

0
α+1 ∩Π

0
α+1, for each countable ordinal α ≥ 1.

(b) ∪γ<αΣ
0
γ = ∪γ<αΠ

0
γ ( Σ

0
α ∩Π

0
α, for each countable limit ordinal α.

(c) A set W ⊆ Xω is in the class Σ0
α iff its complement is in the class Π0

α.

(d) Σ
0
α −Π

0
α 6= ∅ and Π

0
α −Σ

0
α 6= ∅ hold for every countable ordinal α ≥ 1.

For a countable ordinal α, a subset of Xω is a Borel set of rank α iff it is in Σ
0
α ∪Π

0
α

but not in
⋃

γ<α(Σ
0
γ ∪Π

0
γ).

There are also some subsets of Xω which are not Borel. Indeed there exists another hi-

erarchy beyond the Borel hierarchy, which is called the projective hierarchy and which

is obtained from the Borel hierarchy by successive applications of operations of pro-

jection and complementation. The first level of the projective hierarchy is formed by

the class of analytic sets and the class of co-analytic sets which are complements of

analytic sets. In particular the class of Borel subsets of Xω is strictly included into the

class Σ1
1 of analytic sets which are obtained by projection of Borel sets.

Definition 13. A subset A of Xω is in the class Σ
1
1 of analytic sets iff there exist a

finite alphabet Y and a Borel subset B of (X×Y )ω such that x ∈ A↔ ∃y ∈ Y ω such

that (x, y) ∈ B, where (x, y) is the infinite word over the alphabet X × Y such that

(x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

Remark 14. In the above definition we could take B in the classΠ0
2. Moreover analytic

subsets of Xω are the projections of Π0
1-subsets of Xω × ωω, where ωω is the Baire

space, [60].



We now define completeness with regard to reduction by continuous functions. For a

countable ordinal α ≥ 1, a set F ⊆ Xω is said to be a Σ
0
α (respectively, Π0

α, Σ1
1)-

complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ
0
α (respectively,

E ∈ Π
0
α, E ∈ Σ

1
1) iff there exists a continuous function f : Y ω → Xω such that E =

f−1(F ). Σ0
n (respectively Π

0
n)-complete sets, with n an integer ≥ 1, are thoroughly

characterized in [76].

In particularR = (0⋆.1)ω is a well known example of Π0
2-complete subset of {0, 1}ω.

It is the set of ω-words over {0, 1} having infinitely many occurrences of the letter 1.

Its complement {0, 1}ω − (0⋆.1)ω is a Σ
0
2-complete subset of {0, 1}ω.

We recall now the definition of the arithmetical hierarchy of ω-languages which form

the effective analogue to the hierarchy of Borel sets of finite rank.

Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn if and

only if there exists a recursive relation RL ⊆ (N)n−1 ×X⋆ such that

L = {σ ∈ Xω | Q1a1Q2a2 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

where Q1 is the existential quantifier ∃, and every other Qi, for 2 ≤ i ≤ n, is one of the

quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language L ⊆ Xω

belongs to the class Πn if and only if its complement Xω − L belongs to the class Σn.

The inclusion relations that hold between the classes Σn and Πn are the same as for

the corresponding classes of the Borel hierarchy. The classes Σn and Πn are included

in the respective classes Σ0

n
and Σ

0

n
of the Borel hierarchy, and cardinality arguments

suffice to show that these inclusions are strict.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the second

Π-class) lead beyond the arithmetical hierarchy, to the analytical hierarchy of ω-

languages. The first class of this hierarchy is the class Σ1
1 of effective analytic sets

which are obtained by projection of arithmetical sets. An ω-language L ⊆ Xω belongs

to the class Σ1
1 if and only if there exists a recursive relation RL ⊆ N× {0, 1}⋆ ×X⋆

such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-

language over the alphabet X × {0, 1} which is in the class Π2. The class Π1
1 of

effective co-analytic sets is simply the class of complements of effective analytic sets.

We denote as usual ∆1
1 = Σ1

1 ∩Π1
1 .

Recall that an ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by a non

deterministic Turing machine (reading ω-words) with a Büchi or Muller acceptance

condition [78].

The Borel ranks of ∆1
1 sets are the (recursive) ordinals γ < ωCK

1 , where ωCK
1 is the first

non-recursive ordinal, usually called the Church-Kleene ordinal. Moreover, for every

non null ordinal α < ωCK
1 , there exist some Σ0

α-complete and some Π0
α-complete sets

in the class ∆1
1.



On the other hand, Kechris, Marker and Sami proved in [51] that the supremum of the

set of Borel ranks of (effective) Σ1
1 -sets is the ordinal γ1

2 . This ordinal is proved to be

strictly greater than the ordinal δ12 which is the first non ∆1
2 ordinal. In particular, the

ordinal γ1
2 is strictly greater than the ordinal ωCK

1 . Remark that the exact value of the

ordinal γ1
2 may depend on axioms of set theory, see [51, 41] for more details. Notice

also that it seems still unknown whether every non null ordinal γ < γ1
2 is the Borel

rank of a Σ1
1 -set.

3.2 Wadge hierarchy

We now introduce the Wadge hierarchy, which is a great refinement of the Borel hier-

archy defined via reductions by continuous functions, [23, 83].

Definition 15 (Wadge [83]). Let X , Y be two finite alphabets. For L ⊆ Xω and L′ ⊆
Y ω, L is said to be Wadge reducible to L′ (L ≤W L′) iff there exists a continuous

function f : Xω → Y ω, such that L = f−1(L′).
L and L′ are Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted by

L ≡W L′. And we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.

A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be non

self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.

The equivalence classes of ≡W are called Wadge degrees.

The Wadge hierarchy WH is the class of Borel subsets of a set Xω, where X is a finite

set, equipped with ≤W and with ≡W .

For L ⊆ Xω and L′ ⊆ Y ω, if L ≤W L′ and L = f−1(L′) where f is a continuous

function fromXω into Y ω, then f is called a continuous reduction of L to L′. Intuitively

it means that L is less complicated than L′ because to check whether x ∈ L it suffices

to check whether f(x) ∈ L′ where f is a continuous function. Hence the Wadge degree

of an ω-language is a measure of its topological complexity.

Notice that in the above definition, we consider that a subset L ⊆ Xω is given together

with the alphabet X . This is important as it is shown by the following simple example.

Let L1 = {0, 1}ω ⊆ {0, 1}ω and L2 = {0, 1}ω ⊆ {0, 1, 2}ω. So the languages L1

and L2 are equal but considered over the different alphabets X1 = {0, 1} and X2 =
{0, 1, 2}. It turns out that L1 <W L2. In fact L1 is open and closed in Xω

1 while L2 is

closed but non open in Xω
2 .

We can now define the Wadge class of a set L:

Definition 16. Let L be a subset of Xω. The Wadge class of L is :

[L] = {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.

Recall that each Borel class Σ0
α and Π

0
α is a Wadge class.

A set L ⊆ Xω is a Σ0
α (respectively Π

0
α)-complete set iff for any set L′ ⊆ Y ω, L′ is in

Σ
0
α (respectively Π

0
α) iff L′ ≤W L . It follows from the study of the Wadge hierarchy



that a set L ⊆ Xω is a Σ
0
α (respectively, Π0

α)-complete set iff it is in Σ
0
α but not in Π

0
α

(respectively, in Π
0
α but not in Σ

0
α).

There is a close relationship between Wadge reducibility and games which we now

introduce.

Definition 17. Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L,L′) is a game with

perfect information between two players, player 1 who is in charge of L and player 2

who is in charge of L′.

Player 1 first writes a letter a1 ∈ X , then player 2 writes a letter b1 ∈ Y , then player

1 writes a letter a2 ∈ X , and so on.

The two players alternatively write letters an of X for player 1 and bn of Y for player

2.

After ω steps, player 1 has written an ω-word a ∈ Xω and player 2 has written an

ω-word b ∈ Y ω. Player 2 is allowed to skip, even infinitely often, provided he really

writes an ω-word in ω steps.

Player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for player 1 is a function σ : (Y ∪ {s})⋆ → X . And a strategy for

player 2 is a function f : X+ → Y ∪ {s}.
σ is a winning stategy for player 1 iff he always wins a play when he uses the strategy

σ, i.e. when the nth letter he writes is given by an = σ(b1 . . . bn−1), where bi is the

letter written by player 2 at step i and bi = s if player 2 skips at step i.
A winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart Game G(B), with B a Borel set, is

determined, i.e. that one of the two players has a winning strategy in the game G(B),
see [50]. This implies the following determinacy result :

Theorem 18 (Wadge). Let L ⊆ Xω and L′ ⊆ Y ω be two Borel sets, where X and

Y are finite alphabets. Then the Wadge game W (L,L′) is determined : one of the two

players has a winning strategy. And L ≤W L′ iff player 2 has a winning strategy in the

game W (L,L′).

Theorem 19 (Wadge). Up to the complement and ≡W , the class of Borel subsets of

Xω, for a finite alphabet X , is a well ordered hierarchy. There is an ordinal |WH |,
called the length of the hierarchy, and a map d0W from WH onto |WH | − {0}, such

that for all L,L′ ⊆ Xω:

d0WL < d0WL′ ↔ L <W L′ and

d0WL = d0WL′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is the limit

of the ordinals αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a non negative integer,

ω1 being the first non countable ordinal. Then 1ε0 is the first fixed point of the ordinal

exponentiation of base ω1. The length of the Wadge hierarchy of Borel sets in ∆
0

ω =
Σ

0

ω ∩ Π
0

ω is the ωth
1 fixed point of the ordinal exponentiation of base ω1, which is a



much larger ordinal. The length of the whole Wadge hierarchy of Borel sets is a huge

ordinal, with regard to the ωth
1 fixed point of the ordinal exponentiation of base ω1. It is

described in [83, 23] by the use of the Veblen functions.

4 Topological complexity of context-free ω-languages

We recall first results about the topological complexity of regular ω-languages. Topo-

logical properties of regular ω-languages were first studied by L. H. Landweber in [52]

where he characterized regular ω-languages in a given Borel class. It turned out that

a regular ω-language is a Π
0
2-set iff it is accepted by a deterministic Büchi automaton.

On the other hand Mc Naughton’s Theorem implies that regular ω-languages, accepted

by deterministic Muller automata, are boolean combinations of regular ω-languages

accepted by deterministic Büchi automata. Thus they are boolean combinations of Π0
2-

sets hence ∆0
3-sets. Moreover Landweber proved that one can effectively determine the

exact level of a given regular ω-language with regard to the Borel hierarchy.

A great improvement of these results was obtained by Wagner who determined in an

effective way, using the notions of chains and superchains, the Wadge hierarchy of the

class REGω, [84]. This hierarchy has length ωω and is now called the Wagner hierar-

chy, [69, 71, 72, 70, 78]. Wilke and Yoo proved in [86] that one can compute in polyno-

mial time the Wadge degree of a regular ω-language. Later Carton and Perrin gave a

presentation of the Wagner hierarchy using algebraic notions of ω-semigroups, [14, 13,

67]. This work was completed by Duparc and Riss in [27].

Context-free ω-languages beyond the class ∆0
3 have been constructed for the first time

in [32]. The construction used an operation of exponentiation of sets of finite or in-

finite words introduced by Duparc in his study of the Wadge hierarchy [23]. We are

going now to recall these constructions although some stronger results on the topolog-

ical complexity of context-free ω-languages were obtained later in [38, 41] by other

methods. However the methods of [32] using Duparc’s operation of exponentiation are

also interesting and it gave other results on ambiguity and on ω-powers of context-free

languages we can not (yet ?) get by other methods, see Sections 6 and 7 below.

Wadge gave a description of the Wadge hierarchy of Borel sets in [83]. Duparc recently

got a new proof of Wadge’s results and gave in [22, 23] a normal form of Borel sets in

the class ∆0
ω, i.e. an inductive construction of a Borel set of every given degree smaller

than the ωth
1 fixed point of the ordinal exponentiation of base ω1. The construction

relies on set theoretic operations which are the counterpart of arithmetical operations

over ordinals needed to compute the Wadge degrees.

Actually Duparc studied the Wadge hierarchy via the study of the conciliating hierarchy.

Conciliating sets are sets of finite or infinite words over an alphabet X , i.e. subsets of

X⋆ ∪ Xω = X≤ω. It turned out that the conciliating hierarchy is isomorphic to the

Wadge hierarchy of non-self-dual Borel sets, via the correspondenceA→ Ad we recall

now:



For a word x ∈ (X ∪ {d})≤ω we denote by x(/d) the sequence obtained from x by

removing every occurrence of the letter d. Then for A ⊆ X≤ω and d a letter not in X ,

Ad is the ω-language over X ∪ {d} which is defined by :

Ad = {x ∈ (X ∪ {d})ω | x(/d) ∈ A}.

We are going now to introduce the operation of exponentiation of conciliating sets.

Definition 20 (Duparc [23]). Let X be a finite alphabet, և/∈ X , and let x be a finite

or infinite word over the alphabet Y = X ∪ {և}.
Then xև is inductively defined by:

λև = λ,

and for a finite word u ∈ (X ∪ {և})⋆:

(u.a)և = uև.a, if a ∈ X ,

(u. և)և = uև(1).uև(2) . . . uև(|uև| − 1) if |uև| > 0,

(u. և)և = λ if |uև| = 0,

and for u infinite:

(u)և = limn∈ω(u[n])
և, where, given βn and v in X⋆,

v ⊑ limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

(The finite or infinite word limn∈ω βn is determined by the set of its (finite) prefixes).

Remark 21. For x ∈ Y ≤ω, xև denotes the string x, once every և occuring in x has

been “evaluated” to the back space operation, proceeding from left to right inside x. In

other words xև = x from which every interval of the form “a և ” (a ∈ X) is removed.

For example if u = (a և)n, for n an integer ≥ 1, or u = (a և)ω , or u = (a ևև)ω,

then (u)և = λ. If u = (ab և)ω then (u)և = aω and if u = bb(և a)ω then (u)և = b.

Let us notice that in Definition 20 the limit is not defined in the usual way:

for example if u = bb(և a)ω the finite word u[n]և is alternatively equal to b or to

ba: more precisely u[2n + 1]և = b and u[2n + 2]և = ba for every integer n ≥
1 (it holds also that u[1]և = b and u[2]և = bb). Thus Definition 20 implies that

limn∈ω(u[n])
և = b so uև = b.

We can now define the operation A→ A∼ of exponentiation of conciliating sets:

Definition 22 (Duparc [23]). For A ⊆ X≤ω and և/∈ X , let

A∼ =df {x ∈ (X ∪ {և})≤ω | xև ∈ A}.

The operation ∼ is monotone with regard to the Wadge ordering and produces some

sets of higher complexity.

Theorem 23 (Duparc [23] ). Let A ⊆ X≤ω and n ≥ 1. if Ad ⊆ (X ∪ {d})ω is

a Σ
0
n-complete (respectively, Π0

n-complete) set, then (A∼)d is a Σ
0
n+1-complete (re-

spectively, Π0
n+1-complete) set.

It was proved in [32] that the class of context-free infinitary languages (which are unions

of a context-free finitary language and of a context-freeω-language) is closed under the



operation A → A∼. On the other hand A → Ad is an operation from the class of

context-free infinitary languages into the class of context-free ω-languages. This im-

plies that, for each integer n ≥ 1, there exist some context-free ω-languages which are

Σ
0
n-complete and some others which are Π0

n-complete.

Theorem 24 ([32]). For each non negative integer n ≥ 1, there exist Σ0
n-complete

context-free ω-languages An and Π
0
n-complete context-free ω-languages Bn.

Proof. For n = 1 consider the Σ0
1-complete regular ω-language

A1 = {α ∈ {0, 1}ω | ∃i α(i) = 1}
and the Π0

1-complete regular ω-language

B1 = {α ∈ {0, 1}ω | ∀i α(i) = 0}.
These languages are context-free ω-languages because REGω ⊆ CFLω.

Now consider the Σ0
2-complete regular ω-language

A2 = {α ∈ {0, 1}ω | ∃<ωi α(i) = 1}
and the Π0

2-complete regular ω-language

B2 = {α ∈ {0, 1}ω | ∃ωi α(i) = 0},
where ∃<ωi means: ” there exist only finitely many i such that . . .” , and

∃ωi means: ” there exist infinitely many i such that . . .”.

A2 and B2 are context-free ω-languages because they are regular ω-languages.

To obtain context-free ω-languages of greater Borel ranks, consider now O1 (respec-

tively, C1 ) subsets of {0, 1}≤ω such that (O1)
d (respectively, (C1)

d ) are Σ0
1-complete

( respectively Π
0
1-complete ) .

For example O1 = {x ∈ {0, 1}≤ω | ∃ i x(i) = 1} and C1 = {λ}.

We can apply n ≥ 1 times the operation of exponentiation of sets.

More precisely, we define, for a set A ⊆ X≤ω:

A∼.0 = A
A∼.1 = A∼ and

A∼.(n+1) = (A∼.n)∼ .

Now apply n times (for an integer n ≥ 1) the operation ∼ (with different new letters

և1, և2, և3, . . . , ևn) to O1 and C1.

By Theorem 23, it holds that for an integer n ≥ 1:

(O∼.n
1 )d is a Σ0

n+1-complete subset of {0, 1,և1, . . . ,ևn, d}ω.

(C∼.n
1 )d is a Π

0
n+1-complete subset of {0, 1,և1, . . . ,ևn, d}ω.

And it is easy to see that O1 and C1 are in the form E∪F where E is a finitary context-

free language and F is a context-free ω-language. Then the ω-languages (O∼.n
1 )d

and (C∼.n
1 )d are context-free. Hence the class CFLω exhausts the finite ranks of the

Borel hierarchy: we obtain the context-free ω-languages An = (O
∼.(n−1)
1 )d and Bn =

(C
∼.(n−1)
1 )d, for n ≥ 3. �



This gave a partial answer to questions of Thomas and Lescow [55] about the hierarchy

of context-free ω-languages.

A natural question now arose: Do the decidability results of [52] extend to context-free

ω-languages? Unfortunately the answer is no. Cohen and Gold proved that one cannot

decide whether a given context-free ω-language is in the class Π
0
1, Σ0

1, or Π0
2, [19].

This result was first extended to all classes Σ0
n and Π

0
n, for n an integer ≥ 1, using the

undecidability of the Post Correspondence Problem, [32].

Later, the coding of an infinite number of erasers ևn, n ≥ 1, and an iteration of the

operation of exponentiation were used to prove that there exist some context-free ω-

languages which are Borel of infinite rank, [36].

Using the correspondences between the operation of exponentiation of sets and the or-

dinal exponentiation of base ω1, and between the Wadge’s operation of sum of sets, [83,

23], and the ordinal sum, it was proved in [33] that the length of the Wadge hierarchy of

the class CFLω is at least ε0, the first fixed point of the ordinal exponentiation of base

ω. Next were constructed some ∆
0
ω context-free ω-languages in εω Wadge degrees,

where εω is the ωth fixed point of the ordinal exponentiation of base ω, and also some

Σ
0
ω-complete context-free ω-languages, [31, 39]. Notice that the Wadge hierarchy of

non-deterministic context-free ω-languages is not effective, [33].

The question of the existence of non-Borel context-free ω-languages was solved by

Finkel and Ressayre. Using a coding of infinite binary trees labeled in a finite alphabet

X , it was proved that there exist some non-Borel, and even Σ
1
1-complete, context-free

ω-languages, and that one cannot decide whether a given context-free ω-language is

a Borel set, [35]. Amazingly there is a simple finitary language V accepted by a 1-

counter automaton such that V ω is Σ1
1-complete; we shall recall it in Section 7 below

on ω-powers.

But a complete and very surprising result was obtained in [38, 41], which extended

previous results. A simulation of multicounter automata by 1-counter automata was

used in [38, 41]. We firstly recall now the definition of these automata, in order to sketch

the constructions involved in these simulations.

Definition 25. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-tuple

M=(K,X,∆, q0), where K is a finite set of states, X is a finite input alphabet, q0 ∈ K
is the initial state, and∆ ⊆ K×(X∪{λ})×{0, 1}k×K×{0, 1,−1}k is the transition

relation. The k-counter machineM is said to be real time iff: ∆ ⊆ K×X×{0, 1}k×
K × {0, 1,−1}k, i.e. iff there are not any λ-transitions.

If the machineM is in state q and ci ∈ N is the content of the ith counter Ci then the

configuration (or global state) ofM is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ X ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ N
k such that cj = 0 for j ∈ E ⊆

{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ where ij = 0

for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)



Thus we see that the transition relation must satisfy:

if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k}, then

jm = 0 or jm = 1 (but jm cannot be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over X . An ω-sequence of configurations r =
(qi, c

i
1, . . . c

i
k)i≥1 is called a run ofM on σ, starting in configuration (p, c1, . . . , ck),

iff:

(1) (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for each i ≥ 1, there exists bi ∈ X ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) such that either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run, In(r) is the set of all states entered infinitely often during run r.

A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be simply

called “a run of M on σ”.

Definition 26. A Büchi k-counter automaton is a 5-tupleM=(K,X,∆, q0, F ), where

M′=(K,X,∆, q0) is a k-counter machine and F ⊆ K is the set of accepting states.

The ω-language accepted byM is

L(M)= {σ ∈ Xω | there exists a run r ofM on σ such that In(r) ∩ F 6= ∅}

The notion of Muller k-counter automaton is defined in a similar way. One can see that

an ω-language is accepted by a (real time) Büchi k-counter automaton iff it is accepted

by a (real time) Muller k-counter automaton [29]. Notice that this result is no longer

true in the deterministic case.

We denote BC(k) (respectively, r-BC(k)) the class of Büchi k-counter automata (re-

spectively, of real time Büchi k-counter automata.

We denote BCL(k)ω (respectively, r-BCL(k)ω) the class of ω-languages accepted

by Büchi k-counter automata (respectively, by real time Büchi k-counter automata).

Remark that 1-counter automata introduced above are equivalent to pushdown automata

whose stack alphabet is in the form {Z0, A} where Z0 is the bottom symbol which al-

ways remains at the bottom of the stack and appears only there and A is another stack

symbol. The pushdown stack may be seen like a counter whose content is the integer

N if the stack content is the word AN .Z0.

In the model introduced here the counter value cannot be increased by more than 1 dur-

ing a single transition. However this does not change the class of ω-languages accepted

by such automata. So the class BCL(1)ω is equal to the class 1-ICLω, introduced in

[33], and it is a strict subclass of the class CFLω of context-free ω-languages accepted

by Büchi pushdown automata.

We state now the surprising result proved in [41], using multicounter-automata.

Theorem 27 ([41]). The Wadge hierarchy of the class r-BCL(1)ω, hence also of the

class CFLω, or of every class C such that r-BCL(1)ω ⊆ C⊆ Σ1
1 , is the Wadge



hierarchy of the class Σ1
1 of ω-languages accepted by Turing machines with a Büchi

acceptance condition.

We now sketch the proof of this result. It is well known that every Turing machine

can be simulated by a (non real time) 2-counter automaton, see [49]. Thus the Wadge

hierarchy of the class BCL(2)ω is also the Wadge hierarchy of the class of ω-languages

accepted by Büchi Turing machines.

One can then find, from an ω-language L ⊆ Xω in BCL(2)ω, another ω-language

θS(L) which will be of the same topological complexity but accepted by a real-time

8-counter Büchi automaton. The idea is to add firstly a storage type called a queue to a

2-counter Büchi automaton in order to read ω-words in real-time. Then the queue can

be simulated by two pushdown stacks or by four counters. This simulation is not done

in real-time but a crucial fact is that one can bound the number of transitions needed to

simulate the queue. This allows to pad the strings in L with enough extra letters so that

the new words will be read in real-time by a 8-counter Büchi automaton. The padding

is obtained via the function θS which we define now.

Let X be an alphabet having at least two letters, E be a new letter not in X , S be an

integer ≥ 1, and θS : Xω → (X ∪ {E})ω be the function defined, for all x ∈ Xω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1

. . .

It turns out that if L ⊆ Xω is in BCL(2)ω then there exists an integer S ≥ 1 such that

θS(L) is in the class r-BCL(8)ω, and, except for some special few cases, θS(L) ≡W L.

The next step is to simulate a real-time 8-counter Büchi automaton, using only a real-

time 1-counter Büchi automaton.

Consider the product of the eight first prime numbers:

K = 2× 3× 5× 7× 11× 13× 17× 19 = 9699690

Then an ω-word x ∈ Xω can be coded by the ω-word

h(x) = A.0K .x(1).B.0K
2

.A.0K
2

.x(2).B.0K
3

.A.0K
3

.x(3).B . . . B.0K
n

.A.0K
n

.x(n).B . . .

where A, B and 0 are new letters not in X . The mapping h : Xω → (X ∪ {A,B, 0})ω

is continuous. It is easy to see that the ω-language h(Xω)− is an open subset of (X ∪
{A,B, 0})ω and that it is in the class r-BCL(1)ω.

If L(A) ⊆ Xω is accepted by a real time 8-counter Büchi automaton A, then one can

construct effectively from A a 1-counter Büchi automaton B, reading words over the

alphabet X ∪ {A,B, 0}, such that L(A)= h−1(L(B)), i.e.

∀x ∈ Xω h(x) ∈ L(B)←→ x ∈ L(A)



In fact, the simulation, during the reading of h(x) by the 1-counter Büchi automaton

B, of the behaviour of the real time 8-counter Büchi automaton A reading x, can be

achieved, using the coding of the content (c1, c2, . . . , c8) of eight counters by the prod-

uct 2c1 × 3c2 × . . . × (17)c7 × (19)c8 , and the special shape of ω-words in h(Xω)
which allows the propagation of the value of the counters of A. A crucial fact here is

that h(Xω)− is in the class r-BCL(1)ω. Thus the ω-language

h(L(A)) ∪ h(Xω)− = L(B) ∪ h(Xω)−

is in the class BCL(1)ω and it has the same topological complexity as the ω-language

L(A), (except the special few cases where dW (L(A)) ≤ ω).

One can see, from the construction of B, that at most (K − 1) consecutive λ-transitions

can occur during the reading of an ω-word x by B. It is then easy to see that the ω-

language φ(h(L(A))∪h(Xω)−) is an ω-language in the class r-BCL(1)ω which has

the same topological complexity as the ω-language L(A), where φ is the mapping from

(X ∪ {A,B, 0})ω into (X ∪ {A,B, F, 0})ω, with F a new letter, which is defined by:

φ(x) = FK−1.x(1).FK−1.x(2).FK−1.x(3) . . . FK−1.x(n).FK−1.x(n+1).FK−1 . . .

Altogether these constructions are used in [41] to prove Theorem 27. As the Wadge

hierarchy is a refinement of the Borel hierarchy and, for any countable ordinal α, Σ0
α-

complete sets (respectively,Π0
α-complete sets) form a single Wadge degree, this implies

also the following result.

Theorem 28. Let C be a class of ω-languages such that:

r-BCL(1)ω ⊆ C⊆ Σ1
1 .

(a) The Borel hierarchy of the class C is equal to the Borel hierarchy of the class Σ1
1 .

(b) γ1
2 = Sup {α | ∃L ∈ C such that L is a Borel set of rank α}.

(c) For every non null ordinal α < ωCK
1 , there exists some Σ

0
α-complete and some

Π
0
α-complete ω-languages in the class C.

Notice that similar methods have next be used to get another surprising result: the

Wadge hierarchy, hence also the Borel hierarchy, of infinitary rational relations accepted

by 2-tape Büchi automata is equal to the Wadge hierarchy of the class r-BCL(1)ω or

of the class Σ1
1 , [42, 43].

5 Topological complexity of deterministic context-free

ω-languages

We have seen in the previous section that all non-deterministic finite machines accept

ω-languages of the same topological complexity, as soon as they can simulate a real

time 1-counter automaton.

This result is still true in the deterministic case if we consider only the Borel hier-

archy. Recall that regular ω-languages accepted by Büchi automata are Π
0
2-sets and



ω-languages accepted by Muller automata are boolean combinations of Π0
2-sets hence

∆
0
3-sets. Engelfriet and Hoogeboom proved that this result holds also for all ω-languages

accepted by deterministic X-automata, i.e. automata equipped with a storage type X,

including the cases of k-counter automata, pushdown automata, Petri nets, Turing ma-

chines. In particular, ω-languages accepted by deterministic Büchi Turing machines are

Π
0
2-sets and ω-languages accepted by deterministic Muller Turing machines are ∆

0
3-

sets.

It turned out that this is no longer true if we consider the much finer Wadge hierarchy to

measure the complexity of ω-languages. The Wadge hierarchy is suitable to distinguish

the accepting power of deterministic finite machines reading infinite words. Recall that

the Wadge hierarchy of regularω-languages, now called the Wagner hierarchy, has been

effectively determined by Wagner; it has length ωω [84, 69, 70].

Its extension to deterministic context-freeω-languages has been determined by Duparc,

its length is ω(ω2) [26, 24]. To determine the Wadge hierarchy of the class DCFLω,

Duparc first defined operations on DMPDA which correspond to ordinal operations of

sum, multiplication by ω, and multiplication by ω1, over Wadge degrees. In this way are

constructed some DMPDA accepting ω-languages of every Wadge degree in the form :

d0W (A) = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . .+ ωn1
1 .δ1

where j > 0 is an integer, nj > nj−1 > . . . > n1 are integers≥ 0, and δj , δj−1, . . . , δ1
are non null ordinals < ωω.

On the other hand it is known that the Wadge degree α of a boolean combination of

Π
0
2-sets is smaller than the ordinal ωω

1 thus it has a Cantor normal form :

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . .+ ωn1
1 .δ1

where j > 0 is an integer, nj > nj−1 > . . . > n1 are integers≥ 0, and δj , δj−1, . . . , δ1
are non null ordinals < ω1, i.e. non null countable ordinals. In a second step it is proved

in [24], using infinite multi-player games, that if such an ordinal α is the Wadge de-

gree of a deterministic context-free ω-language, then all the ordinals δj , δj−1, . . . , δ1
appearing in its Cantor normal form are smaller than the ordinal < ωω. Thus the Wadge

hierarchy of the class DCFLω is completely determined.

Theorem 29 (Duparc [24]). The Wadge degrees of deterministic context-freeω-languages

are exactly the ordinals in the form :

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . .+ ωn1
1 .δ1

where j > 0 is an integer, nj > nj−1 > . . . > n1 are integers≥ 0, and δj , δj−1, . . . , δ1
are non null ordinals < ωω.

The length of the Wadge hierarchy of the class DCFLω is the ordinal (ωω)ω = ω(ω2).

Notice that theWadge hierarchy of DCFLω is not determined in an effective way in

[24]. The question of the decidability of problems like: “given two DMPDA A and B,



does L(A) ≤W L(B) hold ?” or “given a DMPDA A can we compute d0W (L(A))?”

naturally arises.

Cohen and Gold proved that one can decide whether an effectively given ω-language in

DCFLω is an open or a closed set [19]. Linna characterized the ω-languages accepted

by DBPDA as the Π
0
2-sets in DCFLω and proved in [58] that one can decide whether

an effectively given ω-language accepted by a DMPDA is a Π
0
2-set or a Σ

0
2-set.

Using a recent result of Walukiewicz on infinite games played on pushdown graphs,

[85], these decidability results were extended in [32] where it was proved that one can

decide whether a deterministic context-free ω-language accepted by a given DMPDA

is in a given Borel class Σ0
1, Π0

1, Σ0
2, or Π0

2 or even in the wadge class [L] given by any

regular ω-language L.

An effective extension of the Wagner hierarchy to ω-languages accepted by Muller

deterministic real time blind (i. e. without zero-test) 1-counter automata has been de-

termined in [30]. Recall that blind 1-counter automata form a subclass of 1-counter

automata hence also of pushdown automata. A blind 1-counter Muller automaton is

just a Muller pushdown automaton M = (K,X, Γ, δ, q0, Z0,F) such that Γ = {Z0, I}
where Z0 is the bottom symbol and always remains at the bottom of the store. More-

over every transition which is enabled at zero level is also enabled at non zero level, i.e.

if δ(q, a, Z0) = (p, InZ0), for some p, q ∈ K , a ∈ X and n ≥ 0, then δ(q, a, I) =
(p, In+1). But the converse may not be true, i.e. some transition may be enabled at non

zero level but not at zero level. Notice that blind 1-counter automata are sometimes

called partially blind 1-counter automata as in [47].

The Wadge hierarchy of blind counter ω-languages, accepted by deterministic Muller

real time blind 1-counter automata (MBCA), is studied in [30] in a similar way as

Wagner studied the Wadge hierarchy of regular ω-languages in [84]. Chains and su-

perchains for MBCA are defined as Wagner did for Muller automata. The essential

difference between the two hierarchies relies on the existence of superchains of trans-

finite length α < ω2 for MBCA when in the case of Muller automata the superchains

have only finite lengths. The hierarchy of ω-languages accepted by MBCA is effective

and leads to effective winning strategies in Wadge games between two players in charge

of ω-languages accepted by MBCA. Concerning the length of the Wadge hierarchy of

MBCA the following result is proved :

Theorem 30 (Finkel [30]).

(a) The length of the Wadge hierarchy of blind counter ω-languages in ∆
0

2
is ω2.

(b) The length of the Wadge hierarchy of blind counter ω-languages is the ordinal ωω

(hence it is equal to the length of the Wagner hierarchy).

Notice that the length of the Wadge hierarchy of blind counter ω-languages is equal to

the length of the Wagner hierarchy although it is actually a strict extension of the Wag-

ner hierarchy, as shown already in item (a) of the above theorem. The Wadge degrees

of blind counter ω-languages are the ordinals in the form :

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . .+ ωn1
1 .δ1



where j > 0 is an integer, nj > nj−1 > . . . > n1 are integers≥ 0, and δj , δj−1, . . . , δ1
are non null ordinals < ω2. Recall that in the case of Muller automata, the ordinals

δj , δj−1, . . . , δ1 are non-negative integers, i.e. non null ordinals < ω.

Notice that Selivanov has recently determined the Wadge hierarchy of ω-languages ac-

cepted by deterministic Turing machines; its length is (ωCK
1 )ω [72, 71]. Theω-languages

accepted by deterministic Muller Turing machines or equivalently which are boolean

combinations of arithmetical Π0
2 -sets have Wadge degrees in the form :

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . .+ ωn1
1 .δ1

where j > 0 is an integer, nj > nj−1 > . . . > n1 are integers≥ 0, and δj , δj−1, . . . , δ1
are non null ordinals < ωCK

1 .

6 Topology and ambiguity in context-free ω-languages

The notions of ambiguity and of degrees of ambiguity are well known and important in

the study of context-free languages. These notions have been extended to context-free

ω-languages accepted by Büchi or Muller pushdown automata in [34]. Notice that it

is proved in [34] that these notions are independent of the Büchi or Muller acceptance

condition. So in the sequel we shall only consider the Büchi acceptance condition.

We now firstly introduce a slight modification in the definition of a run of a Büchi

pushdown automaton, which will be used in this section.

Definition 31. Let A = (K,X, Γ, δ, q0, Z0, F ) be a Büchi pushdown automaton.

Let σ = a1a2 . . . an . . . be an ω-word over X . A run of A on σ is an infinite sequence

r = (qi, γi, εi)i≥1 where (qi, γi)i≥1 is an infinite sequence of configurations of A and,

for all i ≥ 1, εi ∈ {0, 1} and:

1. (q1, γ1) = (q0, Z0)
2. for each i ≥ 1, there exists bi ∈ X ∪ {λ} satisfying

bi : (qi, γi) 7→A (qi+1, γi+1)
and ( εi = 0 iff bi = λ )

and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

As before the ω-language accepted by A is

L(A) = {σ ∈ Xω | there exists a run r of A on σ such that In(r) ∩ F 6= ∅}

Notice that the numbers εi ∈ {0, 1} are introduced in the above definition in order to

distinguish runs of a BPDA which go through the same infinite sequence of configura-

tions but for which λ-transitions do not occur at the same steps of the computations.

As usual the cardinal of ω is denoted ℵ0 and the cardinal of the continuum is denoted

2ℵ0 . The latter is also the cardinal of the set of real numbers or of the set Xω for every

finite alphabet X having at least two letters.



We are now ready to define degrees of ambiguity for BPDA and for context-free ω-

languages.

Definition 32. Let A be a BPDA reading infinite words over the alphabet X . For x ∈
Xω let αA(x) be the cardinal of the set of accepting runs of A on x.

Lemma 33 ([34]). Let A be a BPDA reading infinite words over the alphabet X . Then

for all x ∈ Xω it holds that αA(x) ∈ N ∪ {ℵ0, 2ℵ0}.

Definition 34. Let A be a BPDA reading infinite words over the alphabet X .

(a) If sup{αA(x) | x ∈ Xω} ∈ N ∪ {2ℵ0}, then αA = sup{αA(x) | x ∈ Xω}.
(b) If sup{αA(x) | x ∈ Xω} = ℵ0 and there is no word x ∈ Xω such that αA(x) =
ℵ0, then αA = ℵ−0 .

(ℵ−0 does not represent a cardinal but is a new symbol that is introduced here to

conveniently speak of this situation).

(c) If sup{αA(x) | x ∈ Xω} = ℵ0 and there exists (at least) one word x ∈ Xω such

that αA(x) = ℵ0, then αA = ℵ0

Notice that for a BPDA A, αA = 0 iff A does not accept any ω-word.

We shall consider below that N ∪ {ℵ−0 ,ℵ0, 2
ℵ0} is linearly ordered by the relation <,

which is defined by : ∀k ∈ N, k < k + 1 < ℵ−0 < ℵ0 < 2ℵ0 .

Definition 35. For k ∈ N ∪ {ℵ−0 ,ℵ0, 2
ℵ0} let

CFLω(α ≤ k) = {L(A) | A is a BPDA with αA ≤ k}
CFLω(α < k) = {L(A) | A is a BPDA with αA < k}
NA−CFLω = CFLω(α ≤ 1) is the class of non ambiguous context-freeω-languages.

For every integer k such that k ≥ 2, or k ∈ {ℵ−0 ,ℵ0, 2
ℵ0},

A(k)− CFLω = CFLω(α ≤ k)− CFLω(α < k)
If L ∈ A(k) − CFLω with k ∈ N, k ≥ 2, or k ∈ {ℵ−0 ,ℵ0, 2

ℵ0}, then L is said to be

inherently ambiguous of degree k.

Notice that one can define in a similar way the degree of ambiguity of a finitary context-

free language. If M is a pushdown automaton accepting finite words by final states

(or by final states and topmost stack letter) then αM ∈ N or αM = ℵ−0 or αM =
ℵ0. However every context-free language is accepted by a pushdown automaton M
with αM ≤ ℵ

−
0 , [3]. We denote the class of non ambiguous context-free languages by

NA−CFL and the class of inherently ambiguous context-free languages by A−CFL.

Then one can state the following result.

Theorem 36 ([34]).

NA−CFLω ( ω−KC(NA−CFL)

A−CFLω * ω−KC(A−CFL)



We now come to the study of links between topology and ambiguity in context-free

ω-languages [34, 45].

Using a Theorem of Lusin and Novikov, and another theorem of descriptive set theory,

see [50, page 123], Simonnet proved the following strong result which shows that non-

Borel context-free ω-languages have a maximum degree of ambiguity.

Theorem 37 (Simonnet [45]). Let L(A) be a context-free ω-language accepted by a

BPDA A such that L(A) is an analytic but non Borel set. The set of ω-words, which

have 2ℵ0 accepting runs by A, has cardinality 2ℵ0 .

On the other hand, it turned out that, informally speaking, the operation A → A∼

conserves globally the degrees of ambiguity of infinitary context-free languages (which

are unions of a finitary context-free language and of a context-free ω-language). Then,

starting from known examples of finitary context-free languages of a given degree of

ambiguity, are constructed in [34] some context-free ω-languages of any finite Borel

rank and which are non-ambiguous or of any finite degree of ambiguity or of degree

ℵ−0 .

Theorem 38.

1. For each non negative integer n ≥ 1, there exist Σ0
n-complete non ambiguous

context-free ω-languages An and Π
0
n-complete non ambiguous context-free ω-

languages Bn.

2. Let k be an integer ≥ 2 or k = ℵ−0 . Then for each integer n ≥ 1, there exist

Σ
0
n-complete context-free ω-languages En(k) and Π

0
n-complete context-free ω-

languages Fn(k) which are in A(k)−CFLω, i.e. which are inherently ambiguous

of degree k.

Notice that the ω-languages An and Bn are simply those which were constructed in the

proof of Theorem 24. On the other hand it is easy to see that the BPDA accepting the

context-free ω-language which is Borel of infinite rank, constructed in [36] using an

iteration of the operation A→ A∼, has an infinite degree of ambiguity. And 1-counter

Büchi automata accepting context-free ω-languages of any Borel rank of an effective

analytic set, constructed via simulation of multicounter automata, may also have a great

degree of ambiguity. So this left open some questions we shall detail in the last section.

We indicate now a new result which follows easily from the proof of Theorem 27

sketched in Section 4 above, see [41]. Consider an ω-language L accepted by a deter-

ministic Muller Turing machine or equivalently by a deterministic 2-counter Muller

automaton. We get first an ω-language θS(L) ⊆ Xω which has the same topological

complexity (except for finite Wadge degrees), and which is accepted by a deterministic

real time 8-counter Muller automatonA.

Then one can construct from A a 1-counter Muller automaton B, reading words over

the alphabet X ∪ {A,B, 0}, such that h(L(A)) ∪ h(Xω)− = L(B) ∪ h(Xω)−, where

h : Xω → (X ∪ {A,B, 0})ω is the mapping defined in Section 4. Notice that the 1-

counter Muller automaton B which is constructed is now also deterministic.

On the other hand it is easy to see, from the decomposition given in [41, Proof of Lemma



5.3], that the ω-language h(Xω)− is accepted by a 1-counter Büchi automaton which

has degree of ambiguity 2 and the ω-language L(B) is in NA−CFLω = CFLω(α ≤
1) because it is accepted by a deterministic 1-counter Muller automaton. Then we can

easily infer, using [34, Theorem 5.16 (c)] that the ω-language h(L(A)) ∪ h(Xω)− =
L(B)∪h(Xω)− is in CFLω(α ≤ 3). And this ω-language has the same complexity as

L(A) Thus we can state the following result.

Theorem 39. For each ω-language L accepted by a deterministic Muller Turing ma-

chine there is an ω-language L′ ∈ CFLω(α ≤ 3), accepted by a 1-counter Muller

automatonD with αD ≤ 3, such that L ≡W L′.

7 ω-Powers of context-free languages

The ω-powers of finitary languages are ω-languages in the form V ω, where V is a

finitary language over a finite alphabet X . They appear very naturally in the character-

ization of the class REGω of regular ω-languages (respectively, of the class CFLω

of context-free ω-languages) as the ω-Kleene closure of the family REG of regular

finitary languages (respectively, of the family CF of context-free finitary languages) .

The question of the topological complexity of ω-powers naturally arises and was raised

by Niwinski [66], Simonnet [75], and Staiger [79].

An ω-power of a finitary language is always an analytic set because it is either the

continuous image of a compact set {0, 1, . . . , n}ω for n ≥ 0 or of the Baire space ωω.

The first example of finitary language L such that Lω is analytic but not Borel, and

even Σ
1
1-complete, was obtained in [35]. Amazingly the language L was very simple

and even accepted by a 1-counter automaton. It was obtained via a coding of infinite

labelled binary trees.

We now give a simple construction of this language L using the notion of substitution

which we now recall. A substitution is defined by a mapping f : X → P(Γ ⋆), where

X = {a1, . . . , an} and Γ are two finite alphabets, f : ai → Li where for all integers

i ∈ [1;n], f(ai) = Li is a finitary language over the alphabet Γ .

Now this mapping is extended in the usual manner to finite words: f(ai1 . . . ain) =
Li1 . . . Lin , and to finitary languages L ⊆ X⋆: f(L) = ∪x∈Lf(x). If for each integer

i ∈ [1;n] the language Li does not contain the empty word, then the mapping f may be

extended to ω-words: f(x(1) . . . x(n) . . .) = {u1 . . . un . . . | ∀i ≥ 1 ui ∈ f(x(i))}
and to ω-languages L ⊆ Xω by setting f(L) = ∪x∈Lf(x).

Let now X = {0, 1} and d be a new letter not in X and

D = {u.d.v | u, v ∈ X⋆ and (|v| = 2|u|) or (|v| = 2|u|+ 1) }

D ⊆ (X ∪ {d})⋆ is a context-free language accepted by a 1-counter automaton. Let

g : X → P((X ∪ {d})⋆) be the substitution defined by g(a) = a.D. As W = 0⋆1
is regular, L = g(W ) is a context-free language and it is accepted by a 1-counter

automaton. Moreover one can prove that (g(W ))ω is Σ1
1-complete, hence a non Borel



set. This is done by reducing to this ω-language a well-known example of Σ1
1-complete

set : the set of infinite binary trees labelled in the alphabet {0, 1}which have an infinite

branch in the Π0
2-complete set (0⋆.1)ω, see [35] for more details.

Remark 40. The ω-language (g(W ))ω is context-free. By Theorem 37 every BPDA

accepting (g(W ))ω has the maximum ambiguity and (g(W ))ω ∈ A(2ℵ0) − CFLω.

On the other hand we can prove that g(W ) is a non ambiguous context-free language.

This is used in [45] to prove that neither unambiguity nor ambiguity of context-free

languages are preserved under the operation V → V ω.

Concerning Borel ω-powers, it has been proved in [32] that for each integer n ≥ 1,

there exist someω-powers of context-free languages which are Π0
n-complete Borel sets.

These results were obtained by the use of a new operation V → V ≈ over ω-languages,

which is a slight modification of the operation V → V ∼. The new operation V → V ≈

preserves ω-powers and context-freeness. More precisely if V = Wω for some context-

free language W , then V ≈ = Tω for some context-free language T which is obtained

from W by application of a given context-free substitution. And it follows easily from

[23] that if V ⊆ Xω is a Π
0
n-complete set, for some integer n ≥ 2, then V ≈ is a

Π
0
n+1-complete set. Then, starting from the Π

0
2-complete set (0⋆.1)ω, we get some

Π
0
n-complete ω-powers of context-free languages for each integer n ≥ 3.

An iteration of the operation V → V ≈ was used in [37] to prove that there exists a

finitary language V such that V ω is a Borel set of infinite rank. The language V was a

simple recursive language but it was not context-free. Later, with a modification of the

construction, using a coding of an infinity of erasers previously defined in [36], Finkel

and Duparc got a context-free language V such that V ω is a Borel set above the class

∆
0
ω, [25].

The question of the Borel hierarchy of ω-powers of finitary languages has been solved

very recently by Finkel and Lecomte in [44], where a very surprising result is proved,

showing that actually ω-powers exhibit a great topological complexity. For every non-

null countable ordinal α there exist some Σ
0
α-complete ω-powers and also some Π

0
α-

complete ω-powers. But the ω-powers constructed in [44] are not ω-powers of context-

free languages, except for the case of a Σ
0
2-complete set. Notice also that an example

of a regular language L such that Lω is Σ
0
1-complete was given by Simonnet in [75],

see also [54] .

8 Perspectives and open questions

We give below a list of some open questions which arise naturally. The problems listed

here seem important for a better comprehension of context-free ω-languages but the list

is not exhaustive.

8.1 Effective results

In the non-deterministic case, the Borel and Wadge hierarchies of context-freeω-langua

ges are not effective, [32, 35, 33]. This is not surprising since most decision problems



on context-free languages are undecidable. On the other hand we can expect some de-

cidability results in the case of deterministic context-freeω-languages. We have already

cited some of them : we can decide whether a deterministic context-free ω-language is

in a given Borel class or even in the Wadge class [L] of a given regular ω-language L.

The most challenging question in this area would be to find an effecive procedure to

determine the Wadge degree of an ω-language in the class DCFLω.

Recall that the Wadge hierarchy of the class DCFLω is determined in a non-effective

way in [24]. On the other hand the Wadge hierarchy of the class of blind counter ω-

languages is determined in an effective way, using notions of chains and superchains,

in [30]. There is a gap between the two hierarchies because (blind) 1-counter automata

are much less expressive than pushdown automata. One could try to extend the methods

of [30] to the study of deterministic pushdown automata.

Another question concerns the complexity of decidable problems. A first question would

be the following one. Could we extend the results of Wilke and Yoo to the class of blind

counterω-languages, i.e. is the Wadge degree of a blind counterω-language computable

in polynomial time ? Otherwise what is the complexity of this problem ? Of course the

question may be further asked for classes of ω-languages which are located between the

classes of blind counter ω-languages and of deterministic context-free ω-languages.

Another interesting question would be to determine the Wadge hierarchy ofω-languages

accepted by deterministic higher order pushdown automata (even firstly in a non effec-

tive way), [28, 11].

8.2 Topology and ambiguity

Simonnet’s Theorem 37 states that non-Borel context-free ω-languages have a maxi-

mum degree of ambiguity, i.e. are in the class A(2ℵ0) − CFLω. On the other hand,

there exist some non-ambiguous context-free ω-languages of every finite Borel rank.

The question naturally arises whether there exist some non-ambiguous context-free ω-

languages which are Wadge equivalent to any given Borel context-free ω-language (or

equivalently to any Borel Σ1
1 -set, by Theorem 28). This may be connected to a result

of Arnold who proved in [2] that every Borel subset of Xω, for a finite alphabet X , is

accepted by a non-ambiguous finitely branching transition system with Büchi accep-

tance condition. By Theorem 38, if k is an integer≥ 2 or k = ℵ−0 , then for each integer

n ≥ 1, there exist Σ0
n-complete context-free ω-languages En(k) and Π

0
n-complete

context-free ω-languages Fn(k) which are in A(k) − CFLω, i.e. which are inher-

ently ambiguous of degree k. More generally the question arises : determine the Borel

ranks and the Wadge degrees of context-free ω-languages in classes CFLω(α ≤ k) or

A(k)−CFLω where k ∈ N∪ {ℵ−0 ,ℵ0, 2
ℵ0} ( k ≥ 2 in the case of A(k)−CFLω). A

first result in this direction is Theorem 39 stated in Section 6.

8.3 ω-Powers

The results of [32, 35, 37, 44] show that ω-powers of finitary languages have actually

a great topological complexity. Concerning ω-powers of context-free languages we do

not know yet what are all their infinite Borel ranks. However the results of [41] suggest

that ω-powers of context-free languages or even of languages accepted by 1-counter



automata exhibit also a great topological complexity.

Indeed Theorem 28 states that there are ω-languages accepted by Büchi 1-counter au-

tomata of every Borel rank (and even of every Wadge degree) of an effective analytic

set. On the other hand each ω-language accepted by a Büchi 1-counter automaton can

be written as a finite union L =
⋃

1≤i≤n Ui.V
ω
i , where for each integer i, Ui and Vi are

finitary languages accepted by 1-counter automata. Then we can conjecture that there

exist some ω-powers of languages accepted by 1-counter automata which have Borel

ranks up to the ordinal γ1
2 , although these languages are located at the very low level in

the complexity hierarchy of finitary languages.

Recall that a finitary language L is a code (respectively, an ω-code) if every word of

L+ (respectively, every ω-word of Lω) has a unique decomposition in words of L, [6].

It is proved in [45] that if V is a context-free language such that V ω is a non Borel

set then there are 2ℵ0 ω-words of V ω which have 2ℵ0 decompositions in words of V ;

in particular, V is really not an ω-code although it is proved in [45] that V may be a

code (see the example V=g(W) given in Section 7). The following question about Borel

ω-powers now arises : are there some context-free codes (respectively,ω-codes) V such

that V ω is Σ0
α-complete or Π0

α-complete for a given countable ordinal α < γ1
2 ?
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73. O. Serre. Contribution à l’étude des jeux sur des graphes de processus à pile. PhD thesis,
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