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Topological Complexity of Context-Freew-Languages :
A Survey

Olivier Finkel
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Laboratoire de I'informatique du Parallélismé
CNRS et Ecole Normale Supérieure de Lyon
46, Allee d'ltalie 69364 Lyon Cedex 07, France.
A ivier. Finkel @ns-1yon.fr

Abstract. We survey recent results on the topological complexity oftext-free
w-languages which form the second level of the Chomsky hibseof languages
of infinite words. In particular, we consider the Borel hietay and the Wadge hi-
erarchy of non-deterministic or deterministic contextefo-languages. We study
also decision problems, the links with the notions of amitygand of degrees of
ambiguity, and the special casewfpowers.

Keywords: Infinite words; pushdown automata; context-freg-{anguagesi-powers; Cantor
topology; topological complexity; Borel hierarchy; Wadbgerarchy; complete sets; decision
problems.

1 Introduction

The Chomsky hierarchy of formal languages of finite wordsr@vénite alphabet is
now well known, ]. The class of regular languages ata@py finite automata
forms the first level of this hierarchy and the class of confese languages accepted
by pushdown automata or generated by context-free gramimans its second level
[RBB96]. The third and the fourth levels are formed by thesslaf context-sensitive
languages accepted by linear-bounded automata or gethésaieype-1 grammars and
the class of recursively enumerable languages accepteddirygTmachines or gener-
ated by Type-0 grammar56]. In particular, contegeflanguages, firstly intro-
duced by Chomsky to analyse the syntax of natural languges, been very useful
in Computer Science, in particular in the domain of prograngranguages, for the
construction of compilers used to verify correctness ofpams, [HMUOL].

There is a hierarchy of languages of infinite words which iglegous to the Chom-
sky hierarchy but where the languages are formed by infindeds/ over a finite al-
phabet. The first level of this hierarchy is formed by the glabregularv-languages
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accepted by finite automata. They were first studied by Biicbrder to study deci-
sion probems for logical theories. In particular, Biichoyed that the monadic sec-
ond order theory of one successor over the integers is dadeidasing finite automata
equipped with a certain acceptance condition for infinitedgpnow called the Buchi
acceptance condition. Well known pioneers in this reasearea are named Muller,
Mc Naughton, Rabin, Landweber, ChoueKa, [MUi63, N4L66@38mn6H,Cho74]. The
theory of regulaw-languages is now well established and has found many apiplis
for specification and verification of non-terminating sysse see[[Tho3,Stad{a,PP04]
for many results and references. The second level of tharciey is formed by the class
of context-freev-languages. As in the case of languages of finite words ietiout that
anw-language is accepted by a (non-deterministic) pushdowenzaton (with Buchi
acceptance condition) if and only if it is generated by a ernfree grammar where
infinite derivations are considered. Context-free langsagf infinite words were first
studied by Cohen and Gol 77,C3r8a], Linfa, [LIh758Lin77], Boasson, Ni-
vat, [Niv7§|Niv77[Boa7]9,BN§0], Beauquie|, [Be#84], ske survey|[Sta9ya]. Notice
that in the case of infinite words Type-1 grammars and Typeabnghars accept the
samew-languages which are also thelanguages accepted by Turing machines with a
Biichi acceptance conditioh [CG1Bb,Std97a], see alsaitdaimental study of Engel-
friet and Hoogeboom oX-automata, i.e. finite automata equipped with a storage type
X, accepting infinite wordg,JEHP3].

Context-freev-languages have occurred recently in the works on gamesglary infi-
nite pushdown graphs, following the fundamental study ofiliawicz, [WalOQ[ThoOp]
(er0aHFmodc].

Since the sef* of infinite words over a finite alphabét is naturally equipped with
the Cantor topology, a way to study the complexity oflanguages is to study their
topological complexity. The first task is to locatelanguages with regard to the Borel
and the projective hierarchies, and next to the Wadge luleyarhich is a great refine-
ment of the Borel hierarchy. It is then natural to ask for dability properties and to
study decision problems like : is there an effective proceda determine the Borel
rank or the Wadge degree of any context-frelanguage ? Such questions were posed
by Lescow and Thomas i4]. In this paper we survey sonsemneresults on the
topological complexity of context-free-languages. Some of them were very surprising
as the two following ones:

1. there is al-counter finitary languagé such thatL“ is analytic but not Borel,
[Fin03b].

2. The Wadge hierarchy, hence also the Borel hierarchy-t#fhguages accepted
by real timel-counter Biichi automata is the same as the Wadge hierafchy o
languages accepted by Biichi Turing machirles, [Fin06al).

The Borel and Wadge hierarchiesrafn deterministicontext-freev-languages are not
effective. One can neither decide whether a given contedsf-language is a Borel
set nor whether it is in a given Borel cla%s3, or IT%. On the other handeterministic
context-freav-languages are located at a low level of the Borel hierartttgy are all
AY-sets. They enjoy some decidability properties althoughesimportant questions in
this area are still open. We consider also the links with titgons of ambiguity and of



degrees of ambiguity, and the special case-@owers, i.e. ofv-languages in the form
V«, whereV is a (context-free) finitary language. Finally we state s@eespectives
and give a list of some questions which remain open for furshedy.

The paper is organized as follows. In Section 2 we recall thtéons of context-free
w-languages accepted by Bichi or Muller pushdown autoniatpological notions
and Borel and Wadge hierarchies are recalled in Section Sedtion 4 is studied the
case of non-deterministic context-fredanguages while deterministic context-free
languages are considered in Section 5. Links with notioredfiguity in context free
languages are studied in Section 6. Section 7 is devote@ &picial case af-powers.
Perspectives and some open questions are presented iedtisins.

2 Context-free w-languages

We assume the reader to be familiar with the theory of formplénguageq[Tho9p,Stag7al.
We shall use usual notations of formal language theory.

When X' is a finite alphabet, aon-empty finite woraver Y is any sequence =
ai ...ax, Wherea; € X fori=1,... k,andk is anintegee> 1. Thelengthof x is &,
denoted byz|. Theempty wordhas no letters and is denoted byits length is0. For
x=ay...a, Wewritex(i) = a; andz[i] = z(1)...z(i) fori < k andz[0] = A. X*
is theset of finite wordgincluding the empty word) over.

ForV C X*, the complement of (in X*) is X* — V denoted/ .

The first infinite ordinalis w. An w-word over X is anw -sequencei; ...a,, .. .,
where for all integers > 1, a; € X. Wheno is anw-word over X', we write
o=0(1)a(2)...0(n)..., whereforalli, o(i) € X, ando[n] = o(1)o(2)...0(n)
foralln > 1 ando[0] = .

The usual concatenation product of two finite woadsndv is denoted:.v (and some-
times justuwv). This product is extended to the product of a finite werhd anv-word
v: the infinite wordu.v is then thev-word such that:

(ww)(k) = u(k)if k <|ul, and (uw.v)(k)=v(k —|ul|)if k> |ul.

The prefix relationis denoted=: a finite wordu is a prefixof a finite wordv (respec-
tively, an infinite wordv), denotedu C v, if and only if there exists a finite word
(respectively, an infinite worab), such thatv = w.w. The set of w-wordsover the
alphabet is denoted by~“. An w-languageover an alphabel’ is a subset of>«.
The complement (irlt*) of anw-languagd” C X is ¥“ — V, denoted/ .

ForV C X*, thew-power ofV is :

Ve={o=u...up...€ Z¥|Vi>1 u, € V}.
We now define pushdown machines and the class-cbntext-free languages.

Definition 1. A pushdown machine (PDM) is a 6-tupd = (K, X, T4, qo, Zo),
where K is a finite set of states), is a finite input alphabet]" is a finite pushdown
alphabet,gy € K is the initial state,Z, € I" is the start symbol, and is a mapping
from K x (X U {\}) x I'to finite subsets ok’ x I"* .

If v € I'" describes the pushdown store content, the leftmost synilbblevassumed



to be on “top” of the store. A configuration of a PDM is a pdlif, ) whereq € K and
yerl™.

Fora € YU {\}, B,y € I'*andZ € I, if (p,B) isin é(q,a,Z), then we write
a:(q, Zvy) —um (p,B7)

—7, IS the transitive and reflexive closure of,,. (The subscriptV/ will be omitted
whenever the meaning remains clear).

Leto = ajas...a, ... be anw-word overX'. an infinite sequence of configurations
r = (g, 7i)i>1 IS called a complete run aff on o, starting in configuratior(p, ), iff:

1. (q1,m) = (p,7)
2. for eachi > 1, there existd, € X U {\} satisfyingb; : (¢i,v:) —n (¢it+1, Yit1)
SUChthatllag...an... =biba... b, ...

For every such runin(r) is the set of all states entered infinitely often during run
A complete run of M on o , starting in configuratior{qo, Zy), will be simply called
“arunof M ong”.

Definition 2. A Buchi pushdown automaton is a 7-tuglé = (K, X, I, 6, qo0, Zo, F)
whereM' = (K, X, I, qo,Zp) is a PDM andF' C K is the set of final states. The
w-language accepted by is

L(M) ={0o € X“| there exists a complete runof M on ¢ such that/n(r)NF # 0}
Definition 3. A Muller pushdown automaton is a 7-tuplé = (K, X, I', 6, qo, Zo, F)
whereM’ = (K, X, I, 6, qo, Zo) is a PDM andF C 2 is the collection of designated
state sets. Thev-language accepted hy/ is

L(M) = {o € X¥ | there exists a complete runof A/ ono such that/n(r) € F}

Remark 4. We consider here two acceptance conditionsfavords, the Bichi and the
Muller acceptance conditions, respectively denoted Zptance and 3-acceptance in

[[an6d ] and(inf,M) and(inf, =) in [Eta974]. We refer the reader to

[CGT1 fla,EHD3] for consideration of weakeregtance conditions, and
to [GTWO2,PP(J4] for the definitions of other usual ones likbR, Street, or parity

acceptance conditions. Notice however that it seems tledatter ones have not been
much considered in the study of context-frenguages but they are often involved in
constructions concerning finite automata reading infinitzde.

Notation. In the sequel we shall often abbreviate “Muller pushdowromatton” by
MPDA and “Buchi pushdown automaton” by BPDA.

Cohen and Gold and independently Linna established a desition Theorem for
w-CFL. We shall need the notion of*Kleene closure” which we now firstly define:

Definition 5. For any familyL of finitary languages, the-Kleene closure of is :

Ww—KCO(L) = {U UV | Vi € [Ln] U, V; € L}



Theorem 6 (Linna [Lin75], Cohen and Gold |[CG77]). Let CFL be the class of
context-free (finitary) languages. Then for anylanguage L the following three con-
ditions are equivalent:

1. Le w—KC(CFL).
2. There exists & P D A that acceptd..
3. There exists &1 PD A that acceptd..

In [] are also studied-languages generated hycontext-free grammars and it
is shown that each of the conditions 1), 2), and 3) of the alithe®rem is also equiv-
alent to: 4)L is generated by a context-free gramraby leftmost derivations. These
grammars are also studied by Nivat [n [Nif77,Niy78]. Then e let the following
definition:

Definition 7. An w-language is a context-free-language iff it satisfies one of the
conditions of the above Theorem. The class of contextfla@guages will be denoted
byCFL,.

If we omit the pushdown store in the above Theorem we obtarckiaracterization of
languages accepted by classical Muller automata (MA) @hBéutomata (BA) :

Theorem 8. For any w-language L, the following conditions are equivalent:

1. L belongstav—KC(REG),

whereREG is the class of finitary regular languages.
2. There exists a MA that accepts
3. There exists a BA that accets

An w-language L satisfying one of the conditions of the above Theorem igdalh
regularw-language. The class of regularlanguages will be denoted BREG,,.

It follows from Mc Naughton’s Theorem that the expressive/ppof deterministic MA
(DMA) is equal to the expressive power of non deterministié,Me. that every regular
w-language is accepted by a deterministic Muller autom&fsau6$ PPJ4]. Notice
that Choueka gave a simplified proof of Mc Naughton’s Theoire ]. Another
variant was given by Rabin ifi [Ralj69]. Unlike the case oféimititomata, deterministic
MPDA do not define the same class af-languages as non determinisfi€ PD A.
Let us now define deterministic pushdown machines.

Definiton9. A PDM M = (K, X, TI,6,qo, Zo) is said to be deterministic iff for
eachq € K,Z € I'yanda € X

1. (g, a, Z) contains at most one element,
2. §(q, A, Z) contains at most one element, and
3. ifd(g, A, Z) is non empty, thed(q, a, Z) is empty for alla € 2.

It turned out that the class ab-languages accepted by determiniddi® D A is strictly
included into the class ofv-languages accepted by deterministcP D A. This lat-
est class is the clasBCF L, of deterministic context-free-languages. We denote
DCFL the class of deterministic context-free (finitary) langesg



Proposition 10 (|CG78a]).

1. DCFL, is closed under complementation, but is neither closed umdien, nor
under intersection.
2. DCFL, Cw—KC(DCFL) C CFL, (theseinclusions are strict).

3 Topology

3.1 Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions oflamyonvhich may be found
in [Mos80Q|LT94 Kec9®,Stadlla,PR04]. There is a naturatimet the se“ of infinite
words over a finite alphabef containing at least two letters which is called ghrefix
metricand defined as follows. Far, v € X andu # v let §(u, v) = 2~ lpret(u.v) where
lpref(u,v) 1S the first integen such that then + 1)%t letter of u is different from the
(n + 1)t letter ofv. This metric induces o’ the usual Cantor topology for which
open subsetsf X* are in the formiV. X«, whereWW C X*. AsetL C X is aclosed
setiff its complementy” — L is an open set. Define now tB®rel Hierarchyof subsets
of X«:

Definition 11. For a non-null countable ordinat, the classeXx andII! of the Borel
Hierarchy on the topological space“ are defined as follows:
Y is the class of open subsets¥%f, I1Y is the class of closed subsets¥f,
and for any countable ordinal > 2:
39 is the class of countable unions of subset&gfin U, <a I19.
0 ; i i 0
IT,, is the class of countable intersections of subsets‘ofn (, _,, =7.
Recall some basic results about these classes :
Proposition 12.

(@) X2 UL C 25, NII_ ,, for each countable ordinak > 1.
(b) Uy<aXl = Uy<oIId C 30 N1IIY, for each countable limit ordinat.
(c) AsetiW C X¥ isinthe classE? iff its complement is in the clad3?.

(d) 9 — 112 £ 0 andII? — X0 +# () hold for every countable ordinat > 1.

For a countable ordinal, a subset of>“ is a Borel set ofank « iff it is in X% U IT?,
i 0 0
but notinlJ, (25 UIL,).
There are also some subsets*8f which are not Borel. Indeed there exists another hi-
erarchy beyond the Borel hierarchy, which is called thegmtije hierarchy and which
is obtained from the Borel hierarchy by successive apptinatof operations of pro-
jection and complementation. The first level of the projextiierarchy is formed by
the class ofnalytic setsand the class ofo-analytic setavhich are complements of
analytic sets. In particular the class of Borel subset&89fis strictly included into the
classX1 of analytic setswhich are obtained by projection of Borel sets.



Definition 13. A subsetA of ¥* is in the classX] of analytic sets iff there exists
another finite set” and a Borel subseB of (X' x Y)“ such thatr € A — Jy € Y¥
such that(z, y) € B, where(x, y) is the infinite word over the alphabét x Y such
that (z,y)(i) = («(4),y(¢)) for each integei > 1.

Remark 14. In the above definition we could takein the clasd19. Moreover analytic
subsets of’“ are the projections of19-subsets o2« x w*, wherew® is the Baire

space, [Mosg0].

We now define completeness with regard to reduction by coatia functions. For a
countable ordinak > 1, a setF’ C X is said to be &9 (respectivelyI1?, >1)-
complete seiff for any setE C Y (with Y a finite alphabet)E € 29 (respectively,
E € IIY, E € X}) iff there exists a continuous functigh: Y~ — X« such thatt =
f7LH(F). 29 (respectiveyIIV)-complete sets, with an integer> 1, are thoroughly
characterized in[[StaB6].

In particularR = (0*.1)* is a well known example dfI$-complete subset df0, 1}«.
It is the set ofw-words over{0, 1} having infinitely many occurrences of the letter
Its complemen{0, 1} — (0*.1)~ is aXJ-complete subset df0, 1}~.

We recall now the definition of the arithmetical hierarchywoflanguages which form
the effective analogue to the hierarchy of Borel sets ofdirainks.

Let X be a finite alphabet. Anv-language L C X“ belongs to the clas¥,, if and
only if there exists a recursive relatidty, C (N)"~! x X* such that

L={ceX“|3a1...Qnan, (a1,...,an—1,0lan+1]) € R}

where(@); is one of the quantifierg or 3 (not necessarily in an alternating order). An
w-language L C X“ belongs to the clasH,, if and only if its complemenX*“ — L
belongs to the clas),. The inclusion relations that hold between the clagsgand
11,, are the same as for the corresponding classes of the Boralthig. The classes
X, andII,, are included in the respective clas$ and X2 of the Borel hierarchy,
and cardinality arguments suffice to show that these inohssare strict.

As in the case of the Borel hierarchy, projections of arithioaé sets (of the second
II-class) lead beyond the arithmetical hierarchy, to theydical hierarchy of w-
languages. The first class of this hierarchy is the (ligietfatassy; of effective analytic
setswhich are obtained by projection of arithmetical sets. AdanguageL C X¥
belongs to the clas&’] if and only if there exists a recursive relatidty, C (N) x
{0,1}* x X™* such that:

L={ce XY |3r(r € {0,1}* AVnIm((n,7[m],c[m]) € RL))}

Then an w-language L C X“ is in the classY; iff it is the projection of an w-
language over the alphah&t x {0, 1} which is in the clasdI,. The (lightface) class
11} of effective co-analytic sets simply the class of complements of effective analytic
sets. We denote as usual = X1 N I17.



Recall that that anv-language L C X* is in the classY; iff it is accepted by a non
deterministic Turing machine (readingwords) with a Blichi or Muller acceptance

condition [Sta97a].

The Borel ranks of (lightface)\! sets are the (recursive) ordinglsc w¥, wherew X
is the first non-recursive ordinal, usually called the Cheikdeene ordinal. Moreover,
for every non null ordinab < WX, there exist som&? -complete and someI? -
complete sets in the clags!.

On the other hand, Kechris, Marker and Sami provefiin [KN1388] the supremum of
the set of Borel ranks of (lightface)i-sets is the ordinaji. This ordinal is proved to
be strictly greater than the ordingl which is the first nomA} ordinal. In particular, the
ordinal~3 is strictly greater than the ordinal’®. Remark that the exact value of the
ordinalyi may depend on axioms of set theory, dee [KM£89,Fih06a] faerdetails.
Notice also that it seems still unknown whetteery non null ordinaly < ~4 is the
Borel rank of a (lightface} ' -set,

3.2 Wadge hierarchy

We now introduce the Wadge hierarchy, which is a great refaregraf the Borel hier-

archy defined via reductions by continuous functiops, [D]ja&d8}].

Definition 15 (Wadge ]).LetX, Y be two finite alphabets. Fak C X and
L' CY¥, Lis said to be Wadge reducible I8 (L <y, L') iff there exists a continuous
functionf : X* — Y“, such thatL = f~1(L').

L and L’ are Wadge equivalent ift <y, L’ andL’ <y L. This will be denoted by
L =w L'. And we shall say thalt <y L' iff L <y L’ butnotl’ <y L.

A setL C X% is said to be self dual iff. =y, L, and otherwise it is said to be non
self dual.

The relation<yy is reflexive and transitive, andy; is an equivalence relation.
Theequivalence classed =y are calledVadge degrees

The Wadge hierarchiy/ H is the class of Borel subsets of a $&t, whereX is a finite

set, equipped witkyy and with=y.

ForL C X“andL’' C Yv,if L <y L'andL = f~!(L') wheref is a continuous
function fromX* intoY“, thenf is called a continuous reduction bfto L'. Intuitively

it means thatf_ is less complicated thah' because to check whethere L it suffices

to check whethef (z) € L’ wheref is a continuous function. Hence the Wadge degree
of an w-language is a measure of its topological complexity.

Notice that in the above definition, we consider that a subsetX“ is given together
with the alphabeX . This is important as it is shown by the following simple exde
LetL; = {0,1}¥ C {0,1}* andLs; = {0,1}* C {0,1,2}*. So the languages,;
and L, are equal but considered over the different alphaBgts= {0,1} and X, =
{0,1,2}. Itturns out that.; <w Lo. InfactL; is openand closed inX{ while L is
closed but non open ixy.

We can now define thé/adge classf a setL:



Definition 16. Let L be a subset oK. The Wadge class df is :
[L]={L'| L' CY* for afinite alphabet” and L’ <y L}.

Recall that eacBorel classX? andII? is aWadge class

AsetL C XvisaX! (respectivelfI®)-complete seff for any setl’ C Y¥, L’ isin
30 (respectiveM1?) iff L' <y L . It follows from the study of the Wadge hierarchy
thata sef. C X“ is aX? (respectivelyII?)-complete seiff it is in 3% but not inIT?,
(respectively, il1% but notinx?).

There is a close relationship between Wadge reducibility games which we now
introduce.

Definition 17. LetL C X« andL’ C Y“. The Wadge gam@é’ (L, L’) is a game with
perfect information between two players, player 1 who isharge of L and player 2
who is in charge of ’.

Player 1 first writes a lettet; € X, then player 2 writes a lettdr; € Y, then player
1 writes a letteras € X, and so on.

The two players alternatively write lettess, of X for player 1 andb,, of Y for player
2.

Afterw steps, the player 1 has written anword ¢ € X* and the player 2 has written
anw-wordb € Y“. The player 2 is allowed to skip, even infinitely often, poed he
really writes anw-word inw steps.

The player 2 wins the play ift[e L < b € L], i.e. iff:

[(ae Landbe L') or (a ¢ Landb ¢ L’ and b is infinite)].

Recall that a strategy for player 1 is a function (Y U {s})* — X. And a strategy for
player 2 is a functiorf : X+ — Y U {s}.

o is a winning stategy for player 1 iff he always wins a play wihenuses the strategy
o, i.e. when then?” letter he writes is given by,, = o(b; ...b,_1), Whereb; is the
letter written by player 2 at stejpandb; = s if player 2 skips at step

A winning strategy for player 2 is defined in a similar manner.

Martin's Theorem states that every Gale-Stewart Gan& ), with X a borel set, is
determined, se¢ [Kec5]. This implies the following detieracy result :

Theorem 18 (Wadge)Let L C X“ and L’ C Y“ be two Borel sets, wher®& and
Y are finite alphabets. Then the Wadge gdiiéL, L) is determined : one of the two
players has a winning strategy. Add<y, L’ iff the player 2 has a winning strategy in
the gaméV (L, L').

Theorem 19 (Wadge).Up to the complement areyy, the class of Borel subsets of
X, for a finite alphabetX, is a well ordered hierarchy. There is an ordindl’ H|,
called the length of the hierarchy, and a md}. from W H onto |W H| — {0}, such
thatforallL,L' C X¥:

9L < df L' < L<w L' and

49 L =d% L < [L=w L' or L=y L'"].



The Wadge hierarchy of Borel setsfiifite rank has length'sy where'e is the limit
of the ordinalsy,, defined bya; = w; anday,+1 = wi™ for n a non negative integer,
w1 being the first non countable ordinal. Themn is the first fixed point of the ordinal
exponentiation of base;. The length of the Wadge hierarchy of Borel setsAff =
3% N II° is thew!® fixed point of the ordinal exponentiation of base, which is a
much larger ordinal. The length of the whole Wadge hieraahorel sets is a huge
ordinal, with regard to thet” fixed point of the ordinal exponentiation of basg It is

described in[[Wad§B,Dupp1] by the use of the Veblen funstion

4 Topological complexity of context-freew-languages

We recall first results about the topological complexity @jularw-languages. Topo-
logical properties of regulav-languages were first studied by L. H. Landweber in
[Lan69] where he characterized regulatanguages in a given Borel class. It turned
out that a regulaw-language is &13-set iff it is accepted by a deterministic Buichi au-
tomaton. On the other hand Mc Naughton’s Theorem impliesitbgularw-languages,
accepted by deterministic Muller automata, are booleanbioations of regulatv-
languages accepted by deterministic Buichi automata. Feysare boolean combina-
tions of IT3-sets hence\3-sets. Moreover Landweber proved that one can effectively
determine the exact level of a given regulalanguage with regard to the Borel hierar-
chy.

A great improvement of these results was obtained by Wagherdetermined in an
effective way, using the notions of chains and superch#ies\Wadge hierarchy of the

cIassREG)]. This hierarchy has length” and is now called the Wagner
hierarchy, [Sel9%,Sel0fa,SeldBb,SH98,Sta97a]. Witk ¥oo proved in [WY9p] that

one can compute in polynomial time the Wadge degree of a aegdbhnguage. Later
Carton and Perrin gave a presentation of the Wagner higraisihg algebraic notions
of w-semigroups,[[CPYP,CA7,PP04]. This work was completdduparc and Riss in
[DROF].

Context-freev-languages beyond the claAs) have been constructed for the first time
in [Fin01¢]. The construction used an operation of expaatioh of sets of finite or in-
finite words introduced by Duparc in his study of the Wadgedrighy [DupO[L]. We are
going now to recall these constructions although some géoresults on the topolog-
ical complexity of context-free-languages were obtained later |n [Finf)5a,Fif06a] by
other methods. However the methods{of [Fij01c] using Dupaperation of exponen-
tiation are also interesting and they gave other resultsnainiguity and onu-powers

of context-free languages we can not (yet ?) get by otheroasttsee Sectiorﬂs 6 aﬁd 7
below.

Wadge gave a description of the Wadge hierarchy of Boreliaefig/ad83].
recently got a new proof of Wadge's results and gave in [DIpAp01] a normal form

of Borel sets in the clasA?, i.e. an inductive construction of a Borel set of every given
degree smaller than the}” fixed point of the ordinal exponentiation of base. The
construction relies on set theoretic operations whichlaebunterpart of arithmetical




operations over ordinals needed to compute the Wadge degree

In fact Duparc studied the Wadge hierarchy via the study eftctimciliating hierarchy.
Conciliating sets are sets of finitg infinite words over an alphabéf, i.e. subsets of
X* U X* = X=¥, It turned out that the conciliating hierarchy is isomoipto the
Wadge hierarchy of non-self-dual Borel sets, via the cpoagenced — A? we now
recall :

For A C X=¥ andd a letter not inX, A? is thew-language oveX U {d} which is
defined by :
A ={z € (X U{d})” | z(/d) € A}

wherez(/d) is the sequence obtained frarmwhen removing every occurrence of the
letterd.

We are going now to introduce the operation of exponentiadfaconciliating sets.

Definition 20 (Duparc [Pup01]). Let X7 be a finite alphabet and-¢ ¥, and letz be
a finite or infinite word over the alphabgf = X' U {«}.

Thenz* is inductively defined by:

AT = A

and for a finite wordu € (X' U {«})*:

(uw.a) =u“.q,ifa€e X,

(u. «=) = u* with its last letter removed j.*“"| > 0,

e (u. «) =u(1).u(2)...v (Ju| = 1)if [u| >0,

(u. «=) = Xif [u*| =0,

and forw infinite:

(u)* = lim,e, (u[n])“, where, giverg, andv in X*,

v C limpe, By < InVp >n Gyllv]] = v.

(The finite or infinite wordim,, ¢, 3,, is determined by the set of its (finite) prefixes).

Remark 21. For z € X =¥, z*~ denotes the string, once every— occuring inx has
been “evaluated” to the back space operation, proceedingifteft to right insider. In
other wordsz“~ = x from which every interval of the forffu «— 7 (a € X) is removed.

For example ifu = (a «-)", forn aninteger> 1, oru = (a «)“, oru = (a ««)¥,
then(u)< = A. If u = (ab «)* then(u) = a* and ifu = bb(« a)* then(u) =b.

Let us notice that in Definitiop RO the limit is not defined irthsual way:

for example ifu = bb(« a)“ the finite wordu[n|* is alternatively equal té or to
ba: more preciselyu[2n + 1]~ = b andu[2n + 2] = ba for every integem >

1 (it holds also thatu[1] = b andu[2]* = bb). Thus Definition[2D implies that
limpe,, (u[n]) = bsou =b.

We can now define the operatign— A"~ of exponentiation of conciliating sets

Definition 22 (Duparc [Dup01]). For A C Y= and«¢ X, let

A” =g {z € (BU{))™ o= € A},



The operation~ is monotone with regard to the Wadge ordering and produce® so
sets of higher complexity.

Theorem 23 (Duparc [Dup0}] ).Let A C ¥<% andn > 1.if A? C (X U {d})*
is a X9-complete (respectivelfI’-complete) set, thend™~)? is a £ ;-complete
(respectivelyII_ ,-complete) set.

It was proved in c] that the class of context-free iitdiry languages (which are
unions of a context-free finitary language and of a conteaf-language) is closed
under the operatiodl — A~. On the other handl — A< is an operation from the
class of context-free infinitary languages into the classaftext-freew-languages.
This implies that, for each integer > 1, there exist some context-freelanguages
which arex?-complete and some others which &I8-complete.

Theorem 24 ( ]).For each non negative integer> 1, there exis&” -complete
context-freev-languages4,, andI1Y -complete context-free-languagess,,.

Proof. Forn = 1 consider the&={-complete regulav-language

A ={ae{0,1}¥ |3 «a(i)=1}

and thell{-complete regulac-language

By ={a€{0,1}*|Vi a(i)=0}.

These languages are context-freéanguages becauseE G, C CFL,,.
Now consider the2)-complete regulaw-language

Ay ={a e {0,1}¥|IT¥i a(i)=1}

and thelTI3-complete regulap-language

By ={a€{0,1}¥ |3 afi) =0},

where3d<“i means: " there exist only finitely marysuch that ..” , and
3“4 means: ” there exist infinitely manysuch that . .”.

A, and B are context-free-languages because they are reguldanguages.

To obtain context-free-languages of greater Borel ranks, consider row(respec-
tively, C; ) subsets of0, 1}=¢ such tha{ O, )? (respectively(C; )¢ ) areX?-complete
(respectivelyI)-complete ) .

For exampleD; = {z € {0,1}=% | i z(i) = 1} andC; = {\}.

We can apply: > 1 times the operation of exponentiation of sets.
More precisely, we define, for a sdtC X =w:

A~0 = A

A~ = A~ and

AN.(n+1) _ (Aw.n)w .

Now applyn times (for an integen > 1) the operation- (with different new letters
K1, €72, €73, .. ,«—n) to O, andC;.

By Theoren{ 23, it holds that for an integer> 1:
(O7™)4is ax? -complete subset df0, 1, «1, ..., «p, d}*.
(Crm)®is all? , ,-complete subset df0, 1, «1, ..., «,, d}*.



And itis easy to see th&);, andC are in the formE U F whereF is a finitary context-
free language and’ is a context-frees-language. Then thew-languageq O;")?
and(Cy™)4 are context-free. Hence the claS$"'L,, exhausts the finite ranks of the
Borel hierarchy: we obtain the context-fredanguagesi,, = (Of'("_l))d andB,, =
(C e forp > 3.

(I

This gave a partial answer to questions of Thomas and Le@[ about the hier-
archy of context-free-languages.

A natural question now arose: Do the decidability resultg.ah69] extend to context-
free w-languages? Unfortunately the answer is no. Cohen and Goleeg that one
cannot decide whether a given context-freéanguage is in the cladd?, ¢, or IT9,
[EG711. This result was first extended to all clas&#sandII?, for n an integer> 1,
using the undecidability of the Post Correspondence Pntn].

Later, the coding of an infinite number of erasets, n > 1, and an iteration of the
operation of exponentiation were used to prove that theist sgme context-free-
languages which are Borel of infinite ranE Finp30].

Using the correspondences between the operation of expatiem of sets and the
ordinal exponentiation of base,, and between the Wadge’s operation of sum of sets,
[[Wad83[DupO}i], and the ordinal sum, it was proved[in [Fifjchdt the length of the
Wadge hierarchy of the clagsF'L,, is at least, the first fixed point of the ordinal
exponentiation of base. Next were constructed som&? context-freev-languages

in e, Wadge degrees, wheeg is thew'” fixed point of the ordinal exponentiation of
basew, and also som&? -complete context-free-languages|[[Fin03p,Fin05b]. Notice
that the Wadge hierarchy abn-deterministicontext-freev-languages is not effective,

[Fin01d].

The question of the existence of non-Borel context-frelanguages was solved by
Finkel and Ressayre. Using a coding of infinite binary traégled in a finite alphabet
X, it was proved that there exist some non-Borel, and &é&mwomplete, context-free
w-languages, and that one cannot decide whether a givenxtdree w-language is
a Borel set, [Fin03b]. Amazingly there is a simple finitarpgaiagel” accepted by a
1-counter automaton such tHat’ is 31-complete; we shall recall it in Sectigh 7 below
ONw-powers.

But a complete and very surprising result was obtainedl inQ&§,Fin0da], which ex-
tended previous results. A simulation of multicounter auwdita byl-counter automata

was used in[[Fin0$p,Find6a]. We firstly recall now the definitof these automata, in
order to sketch the constructions involved in these sirarat

Definition 25. Let & be an integer> 1. A k-counter machinek-CM) is a 4-tuple
M=(K, X, A, q), whereK is a finite set of stateq, is a finite input alphabety, € K
is the initial state, andA C K x (X U{\}) x {0, 1}* x K x {0, 1, —1}* is the transition



relation. Thek-counter machine\ is said to be real time iffA C K x X x {0, 1}* x
K x {0,1,—1}*, i.e. iff there are not any-transitions.

If the machineM is in stateq andc¢; € N is the content of th&" counterC; then the
configuration (or global state) oM is the(k + 1)-tuple(q, c1, .. ., ck).

Fora € Y U{\}, ¢, € K and(ci,...,cx) € N¥ such thate; = 0forj € E C
{1,...,k}andc; > 0forj ¢ E,if (¢,a,%1,...,ik. ¢, j1,-..,Jk) € Awherei; =0
for j € Eandi; = 1for j ¢ E, then we write:

az(chlv---ack) — M (ql7cl +j1,...,Ck +.7k)

Thus we see that the transition relation must satisfy:
if (¢,a,41,...,%k,¢,j1,-..,Jk) € Aandi,, = 0 for somem € {1,...,k}, then
jm = 0o0r j,, = 1 (butj,, may not be equal te-1).

Leto = ajasz...a, ... be anw-word overX'. Anw-sequence of configuratioms=
(gi,ci,...cp)i>1 Is called a run ofM on o, starting in configuratior(p, c1, . .., cx),
iff:

Q) (q1,¢t,...ck)=(p,cay. .. cx) _ _
(2) for eachi > 1, there exist; € ¥ U {A} such thath; : (gi,cj,...c;) —m
(gi41,ciT, ... ci!) such that either ajas ... ay ... = biba...by ...

or biby...b,...isafinite prefix of ajas...a, ...

The runr is said to be complete whefas ... a, ... =biba... b, ...

For every such runin(r) is the set of all states entered infinitely often during run
A complete run- of M on o, starting in configurationqo, 0, ...,0), will be simply
called “arun of M ono”.

Definition 26. A Biichik-counter automaton is a 5-tuplet= (K, X, A, qo, F'), where
M'=(K, X, A, qo) is ak-counter machine and” C K is the set of accepting states.
The w-language accepted byt is

L(M)= {0 € X¥ | there exists arun r aM on¢ such thafin(r) N £ # (i}

The notion of Mullerk-counter automaton is defined in a similar way. One can se¢e tha
anw-language is accepted by a (real time) Bilcidounter automaton iff it is accepted
by a (real time) Muller-counter automatorf [EHP3]. Notice that this result is najen
true in the deterministic case.

We denoteBC (k) (respectivelyr-BC(k)) the class of Buichk-counter automata (re-
spectively, of real time Biichi-counter automata.

We denoteBCL(k),, (respectivelyr-BCL(%),,) the class of w-languages accepted
by Buchik-counter automata (respectively, by real time Bifgltiounter automata).

Remark that -counter automata introduced above are equivalent to pughdutomata
whose stack alphabet is in the fof#,, A} whereZ, is the bottom symbol which al-
ways remains at the bottom of the stack and appears only éimerd is another stack
symbol. The pushdown stack may be seen like a counter whagertds the integer



N if the stack content is the word? .Z,.

In the model introduced here the counter value cannot beased by more than 1 dur-
ing a single transition. However this does not change thesaév-languages accepted
by such automata. So the cldB€L(1),, is equal to the clast-ICL,,, introduced in
[Fin01d], and it is a strict subclass of the cla8¥L,, of context-free w-languages
accepted by Buchi pushdown automata.

We state now the surprising result proved[in [Fi06a], usmgticounter-automata.

Theorem 27 ([Fin064]). The Wadge hierarchy of the clasBCL(1),,, hence also of
the classCFL,, or of every clasg such thatr-BCL(1),, € CC X1, is the Wadge
hierarchy of the classU] of w-languages accepted by Turing machines withiehs
acceptance condition.

We now sketch the proof of this result. It is well known thaesvTuring machine can
be simulated by a (non real timg)counter automaton, se79]. Thus the Wadge
hierarchy of the clasBCL(2),, is also the Wadge hierarchy of the class:efanguages
accepted by Buchi Turing machines.

One can then find, from an-languagel. C X* in BCL(2),,, anotherw-language
0s(L) which will be of the same topological complexity but accepby areal-time
8-counter Biichi automaton. The idea is to add firstly a gi®@tspe called a queue to a
2-counter Buchi automaton in order to readvords in real-time. Then the queue can
be simulated by two pushdown stacks or by four counters. Sihislation is not done
in real-time but a crucial fact is that one can bound the nurabgansitions needed to
simulate the queue. This allows to pad the strings imith enough extra letters so that
the new words will be read in real-time by a 8-counter Buehtbanaton. The padding
is obtained via the functiofis which we define now.

Let X be an alphabet having at least two lettdrsbe a new letter not i, S be an
integer> 1, andfs : X — (X' U {E})“ be the function defined, for all € ¢, by:

0s(z) = 2(1).E5 2(2).ES” 2(3).E5" 2(4) ... a(n).ES" a(n+1).E5" ..
It turns out that ifL C X is in BCL(2),, then there exists an integ8r> 1 such that
0s(L)isinthe class-BCL(8).,, and, except for some special few cagesl) =w L.

The next step is to simulateraal-time 8-counter Biichi automaton, using onlyeal-
time 1-counter Buchi automaton.

Consider the product of the eight first prime numbers:
K =2.3.5.7.11.13.17.19 = 9699690

Then anv-wordz € X can be coded by the-word

h(z) = A.0% 2(1).B.05° 405" 2(2).B.0%" . A.05" 2(3).B... B.OK".A05X" 2(n).B. ..



whereA, B and0 are new letters not itl’. The mapping: : X« — (X U {A, B,0})*
is continuous. It is easy to see that théanguage:(X“)~ is an open subset ¢&' U
{4, B,0})“ and that it is in the classBCL(1),,.

If L(A) C X« is accepted by a real timgecounter Buchi automatod, then one can
construct effectively from4 a 1-counter Biichi automatof, reading words over the
alphabet” U { A, B, 0}, such thatl.(A)= h=(L(B)), i.e.

Ve e XY h(x) € L(B) «— x € L(A)

In fact, the simulation, during the reading bfz) by the 1-counter Biichi automa-
ton 3, of the behaviour of the real tim&counter Biichi automatod readingz, can
be achieved, using the coding of the contént co, ..., cs) of eight counters by the
product2°t.3%2. .. .. (17)°7.(19)°8, and thespecial shapeof w-words inh(X*) which
allows the propagation of the value of the counters4ofA crucial fact here is that
h(X*)~ isin the class-BCL(1),,. Thus thev-language

h(L(A) UR(Z)™ = L(B) Uh(X¥)~

is in the clasBCL(1),, and it has the same topological complexity asdhlanguage
L(A), (except the special few cases whéig(L(A)) < w).

One can see, from the construction®fthat at mos{ X’ — 1) consecutive\-transitions
can occur during the reading of anword = by B. It is then easy to see that the

languagep(h(L(A))Uh(X“)™) is anw-language in the classBCL(1),, which has
the same topological complexity as thdanguagéd.(.A), whereg is the mapping from
(X U{A, B,0})¥into (Y U{A, B, F,0})“, with F' a new letter, which is defined by:

d(x) = FELa(1).FEL 2(2). FE-1a3) ... FE~La(n). FE L a(ntl). FE-L .

Altogether these constructions are used in [Fih06a] togfitheorenf 37. As the Wadge
hierarchy is a refinement of the Borel hierarchy and, for amyntable ordinaty, 39-
complete sets (respectivel -complete sets) form a single Wadge degree, this implies
also the following result.

Theorem 28. LetC be a class ofo-languages such that:
r-BCL(1), C CC X1,

(@) The Borel hierarchy of the clagsis equal to the Borel hierarchy of the clasg.

(b) 74 = Sup {a | IL € C such thatL is a Borel set of rank}.

(c) For every non null ordinaby < w{X, there exists somE? -complete and some
IT? -completev-languages in the class.

Notice that similar methods have next be used to get anotir@rising result: the
Wadge hierarchy, hence also the Borel hierarchy, of infipitational relations accepted
by 2-tape Buichi automata is equal to the Wadge hierarchy oflfese¢-BCL(1),, or

of the class”}, [Fin06R].



5 Topological complexity of deterministic context-free
w-languages

We have seen in the preceeding section thahafi-deterministidinite machines ac-
ceptw-languages of the same topological complexity, as soonesadan simulate a
real timel-counter automaton.

This result is still true in thaleterministiccase if we consider only the Borel hier-
archy. Recall that regulas-languages accepted by Biichi automataHtesets and
w-languages accepted by Muller automata are boolean cotitisafIT)-sets hence
AY-sets. Engelfriet and Hoogeboom proved that this resuttalso for allw-languages
accepted byleterministic X-automata, i.e. automata equipped with a storage ¥/pe
including the cases df-counter automata, pushdown automata, Petri nets, Turaag m
chines. In particulary-languages acccepted by deterministic Biichi Turing nreeshi
areIT9-sets andv-languages acccepted by deterministic Muller Turing meesiare
AY-sets.

It turned out that this is no longer true if we consider the miiicer Wadge hierarchy to
measure the complexity af-languages. The Wadge hierarchy is suitable to distinguish
the accepting power of deterministic finite machines regdifinite words. Recall that
the Wadge hierarchy of regularlanguages, now called the Wagner hierarchy, has been
effectively determined by Wagner; it has length [Wag79{Sel9%,Sel98].

Its extension tadeterministiccontext-freew-languages has been determined by Du-
parc, its length i) [DFRO3 [DupOp]. To determine the Wadge hierarchy of theclas
DCFL,, Duparc first defined operations on DMPDA which corresponatttnal op-
erations of sum, multiplication by, and multiplication byw;, over Wadge degrees.
This way are constructed some DMPDA acceptintanguages of every Wadge degree
in the form :

dgV(A) = w;lj.é‘j + w;ljil.é‘j_l + ...+ w?l.él

wherej > 0is anintegerp; > nj—1 > ... > ng areintegers> 0, andd;, 6;—1,...,61
are non null ordinalsc w®.

On the other hand it is known that the Wadge degresf a boolean combination of
I19-sets is smaller than the ordina} thus it has a Cantor normal form :

nj nj—1 n
a:wl’.(Sjerlj .5j,1+...+w11.51

wherej > 0isanintegerp; > n;_1 > ... > ny areintegers> 0, andd;, 6;_1,..., 01
are non null ordinals: wy, i.e. non null countable ordinals. In a second step it is dov
in [Dup03], using infinite multi-player games, that if suah ardinal« is the Wadge
degree of a deterministic context-fredanguage, then all the ordinalg, d;_1, ..., 01
appearing in its Cantor normal form are smaller than thenaldi «w*. Thus the Wadge
hierarchy of the clas®CF'L,, is completely determined.



Theorem 29 (Duparc [Dup03]). The Wadge degrees of deterministic context-free
languages are exactly the ordinals in the form :

nj nj—1 n
a:wl’.(Sjerlj .j,1+...+w11.51

wherej > Ois anintegerp; > n;j_1 > ... > ng areintegers> 0, andé;, 6;_1,...,61
are non null ordinals< w®. ,
The length of the Wadge hierarchy of the cl&S F L, is the ordinal(w®)* = w“").

Notice that theWadge hierarchy @fC' F'L,, is not determined in an effective way in
[Pup03]. The question of the decidability of problems likgiven two DMPDA A and
B, doesL(A) <y L(B) hold ?” or “given a DMPDAA can we computéd?,, (L(.A))?”
naturally arises.

Cohen and Gold proved that one can decide whether an effgctivenw-language
in DCFL,, in an open or a closed sdt [CG77]. Linna characterizeddhianguages
accepted by DBPDA as thHY-sets inDCFL,, and proved in 7] that one can
decide whether an effectively giverrlanguage accepted by a DMPDA idH-set or
axy-set.

Using a recent result of Walukiewicz on infinite games plagadoushdown graphs,
[valog], these decidability results were extended in [EgiOvhere it was proved that
one can decide whetherdeterministiccontext-freev-language accepted by a given
DMPDA is in a given Borel clasx{, T1¢, =9, or II or even in the wadge class)
given by any regulaw-languageLr.

An effective extension of the Wagner hierarchy tolanguages accepted by Muller
deterministiaeal time blind (i. e. without zero-test}counter automata has been deter-
mined in [Fin01p]. Recall that bling-counter automata form a subclassleounter
automata hence also of pushdown automata. A bliwdunter Muller automaton is
just a Muller pushdown automatdd = (K, X, I', 6, qo, Zo, F) suchthatl” = {Zy, I'}
whereZ; is the bottom symbol and always remains at the bottom of twe sMore-
over every transition which is enabled at zero level is atsbéed at non zero level, i.e.
if 6(q,a,Zy) = (p,I"Zy), for somep,q € K, a € ¥ andn > 0, thend(q,a,I) =

(p, I"t1). But the converse may not be true, i.e. some transition manhbled at non
zero level but not at zero level. Notice that blilecounter automata are sometimes
called partially blindl-counter automata as if [Gré78].

The Wadge hierarchy of blind counter-languages, accepted by deterministic Muller
real time blind1-counter automata (MBCA), is studied ip [FinP1a] in a similay as
Wagner studied the Wadge hierarchy of reguldanguages in Waé}’9]. Chains and
superchains for MBCA are defined as Wagner did for Muller en#tta. The essential
difference between the two hierarchies relies on the exigt®f superchains of trans-
finite lengtha: < w? for MBCA when in the case of Muller automata the superchains
have only finite lengths. The hierarchy©flanguages accepted by MBCA is effective
and leads to effective winning strategies in Wadge gameasgdwset two players in charge
of w-languages accepted by MBCA. Concerning the length of thegé&dierarchy of
MBCA the following result is proved :

Theorem 30 (Finkel [Fin014]).




(@) The length of the Wadge hierarchy of blind countetanguages inA is w?.
(b) The length of the Wadge hierarchy of blind countetanguages is the ordinad*
(hence it is equal to the length of the Wagner hierarchy).

Notice that the length of the Wadge hierarchy of blind countdanguages is equal to
the length of the Wagner hierarchy although it is actuallyriatsextension of the Wag-

ner hierarchy, as shown already in item (a) of the above #momhe Wadge degrees
of blind countemw-languages are the ordinals in the form :

nj nj—1 n
a:wl’.(Sjerlj .5j,1+...+w11.51

wherej > 0isanintegerp; > n;j_1 > ... > ny areintegers> 0, andd;, 6;_1,..., 01
are non null ordinalsc w?. Recall that in the case of Muller automata, the ordinals
45,051, ...,01 are non-negative integers, i.e. non null ordinals.

Notice that Selivanov has recently determined the Wadgeattky of w-languages
accepted byleterministicTuring machines; its length igo %)« [Eel03h;Sel03a]. The
w-languages accepted by deterministic Muller Turing magehior equivalently which
are boolean combinations of arithmetiday-sets have Wadge degrees in the form :

nj nj—1 n
a:wl’.(Sjerlj .j,1+...+w11.51

wherej > Ois anintegerp; > nj—1 > ... > ng areintegers> 0, andd;, 6;—1,...,61
are non null ordinals: w{.

6 Topology and ambiguity in context-freew-languages

The notions of ambiguity and of degrees of ambiguity are wetwn and important
in the study of context-free languages. These notions haege bxtended to context-
freew-languages accepted by Buichi or Muller pushdown automdfan034]. Notice
that it is proved in [Fin03a] that these notions are indegenof the Biichi or Muller
acceptance condition. So in the sequel we shall only condideBichi acceptance
condition.

We now firstly introduce a slight modification in the definitiof a run of a Bichi
pushdown automaton, which will be used in this section.

Definition 31. Let A = (K, X, I, 6, qo, Zo, F') be a Bichi pushdown automaton.
Leto = ajas...a, ... be anw-word overX'. A run of A on ¢ is an infinite sequence
r = (qi, Vi, €:)i>1 Where(g;, v:)i>1 is an infinite sequence of configurations4find,
foralli > 1,¢;, € {0,1} and:

1. ((J17’71) = (CIOsz)

2. for eachi > 1, there exist$; € X' U {\} satisfying
bi : (qisvi) A (Gi1,Yis1)
and suchthataas...a,...=bibs...b, ...



As before thew-language accepted byt is
L(A) = {o € X¥| there exists a rum of A ono such that/n(r) N F' # 0}

Notice that the numbers € {0, 1} are introduced in the above definition in order to
distinguish runs of a BPDA which go through the same infiniiguence of configura-
tions but for which\-transitions do not occur at the same steps of the compuogatio

As usual the cardinal ab is denoted¥y and the cardinal of the continuum is denoted
2% The latter is also the cardinal of the set of real numberd thesetX“ for every
finite alphabet™ having at least two letters.

We are now ready to define degrees of ambiguity for BPDA and:émtext-freew-
languages.

Definition 32. Let.4 be a BPDA reading infinite words over the alphabétFor = €
X“ leta4(x) be the cardinal of the set of accepting runs4bn z.

Lemma 33 ([Fin034]).Let A be a BPDA reading infinite words over the alphabgt

Then for allz € X¥ it holds that a4 (x) € NU {Rq, 2%},

Definition 34. Let.4 be a BPDA reading infinite words over the alphabgt

(@) Ifsup{as(z) | z € £} € NU {280}, thenay = sup{a4(z) | » € Z¥}.

(b) If sup{aa(x) | x € X} = Ny and there is no word: € X such thatow 4 (z) =
Ro, thena g = Ny
(¥, does not represent a cardinal but is a new symbol that is thiced here to
conveniently speak of this situation).

(c) If sup{aa(z) | x € Z¥} = X¢ and there exists (at least) one worde X such
thata4(x) = Ny, thena4 = Ry

Notice that for a BPDAA, a4 = 0 iff A does not accept any-word.
We shall consider below that U {R;, Xo, 2%} is linearly ordered by the relatioq,
which is defined by Yk € N, k < k +1 < Ny < Rg < 2%,

Definition 35. For k € NU {R;, g, 2%} let

CFL,(a <k)={L(A) | AisaBPDAwitha <k}

CFL,(a<k)={L(A)| AisaBPDAwitha4 < k}

NA-CFL, = CFL,(a < 1)isthe class of non ambiguous context-frelanguages.
For every integek such thatk > 2, or k € {X;, R, 2%},

A(k) —CFL,=CFL,(a <k)—CFL,(a<k)

If L € A(k) — CFL, withk € Nk > 2, 0rk € {R;, R, 2%}, thenL is said to be
inherently ambiguous of degrée

Notice that one can define in a similar way the degree of anitiyigtia finitary context-
free language. 10/ is a pushdown automaton accepting finite words by final s{ates
by final states and topmost stack letter) thep € N or ay; = 8, or ay = No.
However every context-free language is accepted by a pushdatomatonV/ with
anr < Ry, [ABB96]. We denote the class of non ambiguous contextiirguages by
N A—CFLandthe class of inherently ambiguous context-free langsiagA — C'F'L.
Then one can state the following result.



Theorem 36 ([Fin034).
NA-CFL, C w—KC(NA—-CFL)
A-CFL, ¢ w—KC(A-CFL)

We now come to the study of links between topology and ambjigni context-free
w-languageq[Fin0¥a,FS03].

Using a Theorem of Lusin and Novikov, and another theorenmestdptive set theory,
see [Kec9b, page 123], Simonnet proved the following str@sglt which shows that
non-Borel context-fre@-languages have a maximum degree of ambiguity.

Theorem 37 (Simonnet3])LetL(A) be a context-free-language accepted by
a BPDAA such thatZL(.A) is an analytic but non Borel set. The setsfvords, which
have2®° accepting runs by, has cardinality2™°.

On the other hand, it turned out that, informally speakihg,dperatio/d — A~ con-
serves globally the degrees of ambiguity of infinitary catfieee languages (which are
unions of a finitary context-free language and of a conteea$-language). Then, start-
ing from known examples of finitary context-free languagea given degree of am-
biguity, are constructed i3a] some context-fremnguages of any finite Borel
rank and which are non-ambiguous or of any finite degree ofiguitly or of degree
Ny .

Theorem 38.

1. For each non negative integer > 1, there existx-complete non ambiguous
context-freew-languagesA,, and I1%-complete non ambiguous context-fiee
languages,,.

2. Letk be an integer> 2 or k& = R, . Then for each integen > 1, there exist
»0-complete context-free-languagesE, (k) and I19-complete context-free-
languagesF, (k) which are inA(k) — CF Ly, i.e. which are inherently ambiguous
of degreek.

Notice that thev-languagest,, and B,, are simply those which were constructed in the
proof of Theorenﬁ4. On the other hand it is easy to see thaBBi2A accepting the
context-frees-language which is Borel of infinite rank, constructedimi@3¢] using an
iteration of the operatiod — A™, has an infinite degree of ambiguity. Anecounter
Buchi automata accepting context-fredanguages of any Borel rank of an effecive
analytic set, constructed via simulation of multicountgicanata, may also have a great
degree of ambiguity. So this left open some questions wé détlil in the last section.

We indicate now a new result which follows easily from the girof Theorem[2]7
sketched in Sectid 4 above, spe [Fij06a]. Considerkmguagd. accepted by de-
terministic Muller Turing machine or equivalently bydeterministic 2-counter Muller
automaton. We get first an-languageds(L) € X which has the same topological
complexity (except for finite Wadge degrees), and which cepted by aeterministic
real time8-counter Muller automatoul.



Then one can construct frotd a 1-counter Muller automatoi$, reading words over
the alphabef’ U {4, B, 0}, such that(L(A)) U h(X¥)~ = L(B) U h(X“)~, where
h: XY — (2 U{A, B,0})* is the mapping defined in Secti¢h 4. Notice that the
counter Muller automatof§ which is constructed is now algteterministic.

On the other hand it is easy to see, from the decompositieengiv [Fin06h, Proof of
Lemma 5.3], that thes-languageh(X«)~ is accepted by a-counter Buchi automa-
ton which has degree of ambiguity 2 and théanguagel.(B) isin NA — CFL, =
CFL,(a < 1) because it is accepted bydeterministic 1-counter Muller automa-
ton. Then we can easily infer, usin3a, Theorem 5.)ptlat thew-language
hL(A)Uh(XY)” = L(B)Uh(X¥)” isinCFL,(a < 3). And thisw-language has
the same complexity ab(.A) Thus we can state the following result.

Theorem 39. For eachw-languagel accepted by @eterministic Muller Turing ma-
chine there is anw-languagel’ € CFL,(a < 3), accepted by d-counter Muller
automatoriD with ap < 3, such thatl, =y L'.

7 w-powers of context-free languages

The w-powers of finitary languages are-languages in the forn“, whereV is a
finitary language over a finite alphab®t They appear very naturally in the character-
ization of the clasREG,, of regularw-languages (respectively, of the clas$'L,,

of context-free w-languages) as the-Kleene closure of the familyz EG of regular
finitary languages (respectively, of the famil{f” of context-free finitary languages) .
The question of the topological complexity©ofpowers naturally arises and was raised

by Niwinski [Niw9(], Simonnet[Simg2], and Staigdr [Stal)7b

An w-power of a finitary language is always an analytic set bexétus either the
continuous image of a compact 4ét 1, ...,n}* for n > 0 or of the Baire space“.

The first example of finitary languadesuch that’.* is analytic but not Borel, and even
>1-complete, was obtained ifi [Find3b]. Amazingly the langai&gwas very simple
and even accepted bylacounter automaton. It was obtained via a coding of infinite
labelled binary trees.

We now give a simple construction of this langudgasing the notion of substitution
which we now recall. Asubstitutionis defined by a mapping : X — P(I™*), where
Y ={a,...,a,} andI" are two finite alphabets, : a; — L; where for all integers
i € [1;n], f(a;) = L; is a finitary language over the alphaliét

Now this mapping is extended in the usual manner to finite wofta;, ...a;,) =
L;, ...L;,, and to finitary languages C X*: f(L) = Uzer f(x). If for each integer
i € [1;n] the languagé.; does not contain the empty word, then the mapgimgay be
extended ta-words: f(z(1)...z(n)...)={ur...up...|Vi>1 wu; € f(x(i))}
and to w-languaged C X¥ by settingf (L) = Uzer f(x).

Let nowX = {0, 1} andd be a new letter not i’ and

D = {u.dw | u,v € X* and (Jv| = 2Ju|) or (Jv] =2ul+1)}



D C (¥ u{d})* is a context-free language accepted bi-eounter automaton. Let
g: X — P(XU{d})*) be the substitution defined bya) = a.D. ASW = 0*1

is regular,L. = g(W) is a context-free language and it is accepted hyaunter
automaton. Moreover one can prove thatl))~ is ¥1-complete, hence a non Borel
set. This is done by reducing to thislanguage a well-known example Bf -complete
set : the set of infinite binary trees labelled in the alphdbet } which have an infinite
branch in thd13-complete sef0*.1)«, see [Fin03b] for more details.

Remark 40. Thew-language(g(W))* is context-free. By Theorein]37 every BPDA
accepting(g(W))« has the maximum ambiguity arig(W))« € A(2%) — CFL,,.

On the other hand we can prove thg#?’) is a non ambiguous context-free language.
This is used in3] to prove that neither unambiguity nottaguity of context-free
languages are preserved under the operafibr- V¢,

Concerning Boreb-powers, it has been proved jn [Finp1c] that for each integer1,
there exist some-powers of context-free languages which Big-complete Borel sets.
These results were obtained by the use of a new operttien V'~ overw-languages,
which is a slight modification of the operatidh — V~. The new operatio — V=
conserves-powers and context-freeness. More precisely i W« for some context-
free languagéV, thenV™ = T for some context-free langua@éwhich is obtained
from W by application of a given context-free substitution. Anébitows easily from
[Dup0]] that if vV € 2 is aII%-complete set, for some integer> 2, thenV= is
all)  ,-complete set. Then, starting from thE)-complete sef0*.1)~, we get some
1% -completev-powers of context-free languages for each integer 3.

An iteration of the operatio’ — V'~ was used in[[Find4] to prove that there exists
a finitary languagé” such thati’ is a Borel set of infinite rank. The languagewas

a simple recursive language but it was not context-freeer_atith a modification of
the construction, using a coding of an infinity of erasersionesly defined inc],
Finkel and Duparc got a context-free langu&gsuch that’“ is a Borel set above the

classA?, [DFOT].

The question of the Borel hierarchy @fpowers of finitary languages has been solved
very recently by Finkel and Lecomte i07], where a vergpsising resultis proved,
showing that actuallyw-powers exhibit a great topological complexity. For eveoynn
null countable ordinak there exist som&? -completew-powers and also sonid? -
completev-powers. But thes-powers constructed i7] are notpowers of context-
free languages, except for the case dfpcomplete set. Notice also that an example of
a regular languagé such thatZ* is X9-complete was given by Simonnet in [Simh92],

see also[[Lec(5] .

8 Perspectives and open questions

We give below a list of some open questions which arise niiutde problems listed
here seem important for a better comprehension of contegtstlanguages but the list
is not exhaustive.



8.1 Effective results

In thenon-deterministicase, the Borel and Wadge hierarchies of contextsfrngua
ges are not effective, [FinQlc,FinQBb,FinD1d]. This isswprising since most decision
problems on context-free languages are undecidable. Owtliiee hand we can expect
some decidability results in the casedeterministiccontext-freev-languages. We have
already cited some of them : we can decide whether a detesticimiontext-freev-
language is in a given Borel class or even in the Wadge ¢l&sef a given regular
w-languagéd.. The most challenging question in this area would be to findfective
procedure to determine the Wadge degree abdanguage in the clas®CF'L,,,.

Recall that the Wadge hierarchy of the cld3§'F' L, is determined in a non-effective
way in [Dup03]. On the other hand the Wadge hierarchy of thescbf blind counter
w-languages is determined in an effective way, using notiéehains and superchains,
in [Fin014]. There is a gap between the two hierarchies tsecéhlind)1-counter au-
tomata are much less expressive than pushdown automataoQluketry to extend the
methods of[[Fin01a] to the study déterministiqpushdown automata.

Another question concerns the complexity of decidable lgrob. A first question would
be the following one. Could we extend the results of Wilke #ad to the class of blind
counterw-languages, i.e. is the Wadge degree of a blind countanguage computable
in polynomial time ? Otherwise what is the complexity of thisblem ? Of course the
question may be further posed for classesvdinguages which are located between
the classes of blind counterlanguages and of deterministic context-feeéanguages.
Another interesting question would be to determine the \Wadgrarchy ofu-languages
accepted by deterministic higher order pushdown autoneatn(firstly in a non effec-

tive way), [Eng8f},CWQ7].

8.2 Topology and ambiguity

Simonnet's Theorerh B7 states that non-Borel context«ré@nguages have a maxi-
mum degree of ambiguity, i.e. are in the cla@™°) — CFL,,. On the other hand,
there exist some non-ambiguous context-fremnguages of every finite Borel rank.
The question naturally arises whether there exist someanaliguous context-free-
languages which are Wadge equivalent to any gBerel context-freev-language (or
equivalently to angorel X -set, by TheorerﬂS). This may be connected to a result of
Arnold who proved in[[Arng3] that every Borel subset.BF, for a finite alphabef,

is accepted by aon-ambiguoufinitely branching transition system with Biichi accep-
tance condition. By Theore@SB,kﬁs an integee> 2 or k = X, then for each integer

n > 1, there exist2?-complete context-free-languages?,, (k) and IT%-complete
context-freew-languagesF,, (k) which are inA(k) — CFL,, i.e. which are inher-
ently ambiguous of degrée More generally the question arises : determine the Borel
ranks and the Wadge degrees of context-frdanguages in class€sF' L, (« < k) or
A(k) — CFL,, wherek € NU{X;, Rg, 2%} (k > 2inthe case ofA(k) — CFL,). A

first result in this direction is Theore[n|39 stated in Secfon



8.3 w-powers

The results of [[Fin01E,FinOb,Fir{d4,F107] show thapowers of finitary languages
have actually a great topological complexity. Concerningowers of context-free lan-
guages we do not know yet what are all their infinite Borel mrowever the results
of [] suggest thab-powers of context-free languages or even of languages ac-
cepted byl-counter automata exhibit also a great topological coniglex

Indeed Theorerﬂs states that therewalanguages accepted by Budhcounter au-
tomata of every Borel rank (and even of every Wadge degreaei @fffective analytic
set. On the other hand eaghlanguage accepted by a Biidhtounter automaton can
be written as a finite unioh = J, ., ,, U;.V;*, where for each integéy U; andV; are
finitary languages accepted bycounter automata. Then we can conjecture that there
exist somev-powers of languages accepted bgounter automata which have Borel
ranks up to the ordinaj, although these languages are located at the very low level i
the complexity hierarchy of finitary languages.

Recall that a finitary languageis a code (respectively, ancode) if every word of. ™
(respectively, every-word of L) has a unique decomposition in Words[Qf[].
Itis proved in 3] that iV is a context-free language such thé&t is a non Borel
set then there arg®e w-words of V¢ which have2®° decompositions in words df;

in particular,V is really not anv-code although it is proved i03] thEtmay be a
code (see the example V=g(W) givenin Secﬁbn 7). The follmnjuestion aboBorel
w-powers now arises : are there some context-free codeef@sgy,w-codes)/ such
thatV« is 32 -complete od1%-complete for a given countable ordinak 3 ?

References

ABB96. J.-M. Autebert, J. Berstel, and L. Boasson. Contege flanguages and pushdown
automata. IrHandbook of formal languages, Vol. pringer-Verlag, 1996.

ACO05. A.Andrettaand R. Camerlo. The use of complexity highies in descriptive set theory
and automata theorflask Quarterly 9(3):337-356, 2005.

Arn83.  A. Arnold. Topological characterizations of infeatbehaviours of transition systems. In
Proceedings of the International Conference on Automasaguages and Program-
ming, 10th Colloquium, Barcelona, Spain, July 18-22, 1988ume 154 ofLecture
Notes in Computer Sciengeages 28—38. Springer, 1983.

Bea84. Daniéle Beauquier. Some results about finite anditefoehaviours of a pushdown
automaton. IrProceedings of the International Conference Automataguages and
Programming, 11th Colloquium, Antwerp, Belgium, July 15-2984 volume 172 of
Lecture Notes in Computer Scienpages 187-195. Springer, 1984.

Ber79. J. Berstel.Transductions and context free languageeubner Studienbiicher Infor-
matik, 1979.

BN80. L.Boasson and M. Nivat. Adherences of languadesirnal of Computer and System
Science20(3):285-309, 1980.

Boa79. L. Boasson. Context-free sets of infinite words. Phoceedings of the Interna-
tional Conference Theoretical Computer Science, 4th Gif@ence, Aachen, Ger-
many, March 26-28, 197%0olume 67 ofLecture Notes in Computer Sciengages
1-9. Springer, 1979.

BP85.  J. Berstel and D. Perrifiheory of codesAcademic Press, 1985.



Cac02.

CDTO3.

CG77.

CG78a.

CG78b.

Chob56.

Cho74.

Cho78.

CP83.

CP97.

CP99.

CSO07.

CwO07.

DFO7.

DFRO1.

DROS.
Dup95.
DupO1.
Dup03.
EH93.

Eng83.

T. Cachat. Symbolic strategy synthesis for gamesushdown graphs. IRroceed-
ings of the International Conference ICALP 20@®lume 2380 of_ecture Notes in
Computer Sciencgages 704—715. Springer, 2002.

T. Cachat, J. Duparc, and W. Thomas. Solving pushdmmes with a¥’s-winning
condition. InProceedings of the 11th Annual Conference of the Europeaacdietion
for Computer Science Logic, CSL 200®lume 2471 ofLecture Notes in Computer
Sciencepages 322-336. Springer, 2003.

R.S. Cohen and A.Y. Gold. Theory ©oflanguages, parts one and twdournal of
Computer and System Scient8:169-208, 1977.

R.S. Cohen and A.Y. Goldv-computations on deterministic pushdown machines.
Journal of Computer and System Scier#275-300, 1978.

R.S. Cohen and A.Y. Goldv-computations on Turing machine3heoretical Com-
puter Science6:1-23, 1978.

N. Chomshy. Three models for the description of laggu IRE Transactions on
Information Theory2(3):113-124, 1956.

Y. Choueka. Theories of automata on omega-tapesnglified approachJournal of
Computer and System Scien8€):117-141, 1974.

Y. Choueka. Finite automata, definable sets, andaregypressions ovev™-tapes.
Journal of Computer and System Scierntg1):81-97, 1978.

Y. Choueka and D. Peleg. A note of omega-regular laeguBulletin of the EATCS
21:21-23, 1983.

O. Carton and D. Perrin. Chains and superchaing{f@tional sets, automata and
semigroupslnternational Journal of Algebra and Computatiof(7):673—-695, 1997.
O. Carton and D. Perrin. The Wagner hierarchyw-oftional sets. International
Journal of Algebra and Computatip8(5):597-620, 1999.

B. Cagnard and P. Simonnet. Baire and autoniasarete Mathematics and Theoret-
ical Computer Sciencé(2):255-296, 2007.

Thierry Cachat and Igor Walukiewicz. The complexitgames on higher order push-
down automata. available http://fr. arxiv. or g/ abs/ 0705. 0262, May
2007.

J. Duparc and O. Finkel. An-power of a context free language which is Borel above
AL In Proceedings of the International Conference Foundatioihthe Formal Sci-
ences V : Infinite Games, November 26th to 29th, 2004, Bornm&w; College Pub-
lications at King's College (Studies in Logic), 2007. to app

J. Duparc, O. Finkel, and J.-P. Ressayre. Compuiencgzand the fine structure of
Borel sets.Theoretical Computer Scienc257(1-2):85-105, 2001.

J. Duparc and M. Riss. The missing link éorational sets, automata, and semigroups.
to appear in International Journal of Algebra and Computati2005.

J. DuparcLa forme Normale des Borliens de rang finBhD thesis, Université Paris
VII, 1995.

J. Duparc. Wadge hierarchy and Veblen hierarchyt PdBorel sets of finite rank.
Journal of Symbolic Logi®6(1):56—86, 2001.

J. Duparc. A hierarchy of deterministic context feetanguages.Theoretical Com-
puter Science290(3):1253-1300, 2003.

J Engelfriet and H. J. Hoogeboom. X-automatavewords. Theoretical Computer
Science110(1):1-51, 1993.

J. Engelfriet. Iterated pushdown automata and aoxtplclasses. IProceedings
of the Fifteenth Annual ACM Symposium on Theory of Compu@Bg7 April 1983,
Boston, Massachusetts, US#fages 365-373. ACM, 1983.



http://fr.arxiv.org/abs/0705.0262

FinO1la.

FinO1b.

FinO1lc.

Fin01d.

Fin03a.

Fin03b.

Fin03c.

Fin04.

FinO5a.

Fin0O5b.

FinO5c.

FinO6a.

Fin06b.

FLO7.

FSO03.

Gre78.

GTWO02.

HMUO1.

HU79.

Kec95.

O. Finkel. An effective extension of the Wagner diehy to blind counter automata.
In Proceedings of Computer Science Logic, 15th Internatiddatkshop, CSL 2001
volume 2142 ot ecture Notes in Computer Scienpgages 369—-383. Springer, 2001.
O. Finkel. On the Wadge hierarchy of omega cont@d fanguages. IRroceedings
of the International Workshop on Logic and Complexity in @ater Science, held in
Honor of Anatol Slissenko for his 60th Birthdaages 69-79, Créteil, France, 2001.
O. Finkel. Topological properties of omega confes¢ languagesTheoretical Com-
puter Science262(1-2):669-697, 2001.

O. Finkel. Wadge hierarchy of omega context freguages. Theoretical Computer
Science269(1-2):283-315, 2001.

O. Finkel. Ambiguity in omega context free langusaddeoretical Computer Science
301(1-3):217-270, 2003.

O. Finkel. Borel hierarchy and omega context fregl@ages.Theoretical Computer
Science290(3):1385-1405, 2003.

O. Finkel. On omega context free languages whichBarel sets of infinite rank.
Theoretical Computer Scienc299(1-3):327-346, 2003.

O. Finkel. An omega-power of a finitary language wligch Borel set of infinite rank.
Fundamenta Informatica&2(3—4):333-342, 2004.

O. Finkel. Borel ranks and Wadge degrees of contertf-languages. IfProceed-
ings of New Computational Paradigms: First Conference om@uotability in Europe,
CiE 2005, Amsterdam, The Netherlangdslume 3526 ofLecture Notes in Computer
Sciencepages 129-138. Springer, 2005.

O. Finkel. On the length of the Wadge hierarchyafontext free languagesournal
of Automata, Languages and Combinatoyit8(4):439-464, 2005.

O. Finkel. On winning conditions of high Borel comyity in pushdown games$:un-
damenta Informaticae66(3):277—-298, 2005.

O. Finkel. Borel ranks and Wadge degrees of omegaxidinee languagesMathe-
matical Structures in Computer Sciend®(5):813-840, 2006.

O. Finkel. On the accepting power of two-tape Bizltomata. IrfProceedings of the
23rd International Symposium on Theoretical Aspects of iider Science, STACS
2006 volume 3884 ofLecture Notes in Computer Sciengages 301-312. Springer,
2006.

O. Finkel and D. Lecomte. There exist somgowers of any Borel rank. Ifro-
ceedings of the 16th EACSL Annual International Conferesrc€omputer Science
and Logic, CSL 2007, Lausanne, Switzerland, Septembeb]120D7 Lecture Notes
in Computer Science. Springer, 2007. to appear.

O. Finkel and P. Simonnet. Topology and ambiguity iegacontext free languages.
Bulletin of the Belgian Mathematical Society0(5):707—-722, 2003.

S.A. Greibach. Remarks on blind and partially blind way multicounter machines.
Theoretical Computer Scienc&:311-324, 1978.

E. Gradel, W. Thomas, and W. Wilke, editofsitomata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl semindoriy 2001] volume
2500 ofLecture Notes in Computer Scien&pringer, 2002.

J. E. Hopcroft, R. Motwani, and J. D. Ullmamtroduction to automata theory, lan-
guages, and computationAddison-Wesley Publishing Co., Reading, Mass., 2001.
Addison-Wesley Series in Computer Science.

J. E. Hopcroft and J. D. Ullmanintroduction to automata theory, languages, and
computation Addison-Wesley Publishing Co., Reading, Mass., 1979.igadWesley
Series in Computer Science.

A. S. KechrisClassical descriptive set theargpringer-Verlag, New York, 1995.



KMS89. A.S. Kechris, D. Marker, and R. L. Saniili Borel sets.Journal of Symbolic Logic

Lan69.

Lec02.

LecO05.

Lin75.
Lin76.

Lin77.

LT94.

Mih98.

Mos80.

Mul63.

Nau66.

Niv77.

Niv78.

Niw84.

Niw90.

PPO4.

Rab69.

Sel95.

Sel98.

Sel03a.

Sel03b.

54(3):915-920, 1989.

L.H. Landweber. Decision problems forautomata.Mathematical Systems Theory
3(4):376-384, 1969.

D. Lecomte. Sur les ensembles de phrases infiniefrgotiisles a partir d'un diction-
naire sur un alphabet fini. IBéminaire d’Initiation a I’Analyse, Vol..Université Paris
6, 2001-2002.

D. Lecomte. Omega-powers and descriptive set thetwyrnal of Symbolic Logic
70(4):1210-1232, 2005.

M. Linna. Onw-words andv-computationsAnn. Univ. Turku. Ser A 168:53, 1975.
M. Linna. On omega-sets associated with contex-femguages.Information and
Control, 31(3):272—-293, 1976.

M. Linna. A decidability result for deterministig-context-free language$heoretical
Computer Science:83-98, 1977.

H. Lescow and W. Thomas. Logical specifications of itdicomputations. In J. W.
de Bakker, Willem P. de Roever, and Grzegorz Rozenbergyreghk Decade of Con-
currency volume 803 otf_ecture Notes in Computer Scienpages 583-621. Springer,
1994.

D. Mihoubi. Characterization and closure properti linear omega-language$he-
oretical Computer Scienc&91(1-2):79-95, 1998.

Y. N. MoschovakisDescriptive set theoryNorth-Holland Publishing Co., Amsterdam,
1980.

D. E. Muller. Infinite sequences and finite machines.Ptoceedings of the Fourth
Annual Symposium on Switching Circuit Theory and Logicadife 28-30 October
1963, Chicago, lllinois, USApages 3-16. IEEE, 1963.

R. Mac Naughton. Testing and generating infinite secgs by a finite automaton.
Information and Contrql9:521-530, 1966.

M. Nivat. Mots infinis engendrés par une grammaigehtique.RAIRO Informatique
Théorique et Applications1:311-327, 1977.

M. Nivat. Sur les ensembles de mots infinis engenpe#sine grammaire algébrique.
RAIRO Informatique Théorique et Applicatiod(3):259-278, 1978.

D. Niwinski. Fixed-point characterization of cortdree co-languages.Information
and Contro| 61(3):247—-276, 1984.

D. Niwinski. A problem onu-powers. In1990 Workshop on Logics and Recognizable
Sets University of Kiel, 1990.

D. Perrin and J.-E. Pimfinite words, automata, semigroups, logic and gamekime
141 of Pure and Applied Mathematic&lsevier, 2004.

M. O. Rabin. Decidability of second-order theoried automata on infinite trees.
Transactions of the American Mathematical Sociég/1:1-35, 1969.

V.L. Selivanov. Fine hierarchy of regularlanguages. IrProceedings of the In-
ternational Joint Conference on the Theory and Practice aftv@are Development
TAPSOFT-95, in Aarhus, Denmarkolume 915 ofLecture Notes in Computer Sci-
ence pages 277-287. Springer, 1995.

V.L. Selivanov. Fine hierarchy of regulailanguages,Theoretical Computer Science
191:37-59, 1998.

V.L. Selivanov. Wadge degreesusianguages of deterministic Turing machines.
RAIRO-Theoretical Informatics and Applicatiordy(1):67—83, 2003.

V.L. Selivanov. Wadge degreeswefanguages of deterministic Turing machines. In
Proceedings of the International Conference STACS 20G8,&@nual Symposium on
Theoretical Aspects of Computer Science, Berlin, Germaolyme 2607 of_ecture
Notes in Computer Scienggages 97—-108. Springer, 2003.



SerO4a.
Ser04b.
Sim92.
Sta86.

Sta87.

Sta97a.

Sta97b.

SW74.

Tho90.

ThoO02.

Wad83.

Wag79.
Wal00.

WY95.

O. SerreContribution a I'étude des jeux sur des graphes de pracesspile PhD
thesis, Université Paris VII, 2004.

O. Serre. Games with winning conditions of high Booenplexity. InProceedings of
the International Conference ICALP 200/klume 3142 of ecture Notes in Computer
Sciencepages 1150-1162. Springer, 2004.

P. SimonnetAutomates et théorie descriptivehD thesis, Université Paris VII, 1992.

L. Staiger. Hierarchies of recursivdanguages. Elektronische Informationsverar-
beitung und Kybernetjk2(5-6):219-241, 1986.

L. Staiger. Research in the theory.efanguages.Journal of Information Process-
ing and Cybernetics23(8-9):415-439, 1987. Mathematical aspects of infoicaat
(Magdesprung, 1986).

L. Staigerw-languages. IHandbook of formal languages, Vol, fages 339-387.
Springer, Berlin, 1997.

L. Staiger. Ow-power languages. IhNew Trends in Formal Languages, Control,
Coperation, and Combinatoricsolume 1218 ol ecture Notes in Computer Science
pages 377-393. Springer-Verlag, Berlin, 1997.

L. Staiger and K. Wagner. Automatentheoretische wndnzatenfreie Charakter-
isierungen topologischer Klassen regularer Folgenmerigiektron. Informationsver-
arbeit. Kybernetik10:379-392, 1974.

W. Thomas. Automata on infinite objects. In J. van hem editor,Handbook of
Theoretical Computer Scienceolume B, Formal models and semantics, pages 135—
191. Elsevier, 1990.

W. Thomas. Infinite games and verification (extendesdract of a tutorial). IrPro-
ceedings of the International Conference on Computer Aldkrdication CAV 2002
volume 2404 ot ecture Notes in Computer Sciengages 58-64. Springer, 2002.

W. WadgeReducibility and determinateness in the Baire sp&teD thesis, University
of California, Berkeley, 1983.

K. Wagner. Ow-regular setsinformation and Contrql43(2):123-177, 1979.

I. Walukiewicz. Pushdown processes: games and nub@eking. Information and
Computation157:234-263, 2000.

T. Wilke and H. Yoo. Computing the Wadge degree, thesdliftz degree, and the
Rabin index of a regular language of infinite words in polymelrtime. In P.D. Mosses,
M. Nielsen, and M.l Schwartzbach, editofAPSOFT 95volume 915 ofLect. Notes

in Comp. Scj.pages 288-302. Springer Verlag, Berlin, Heidelberg, Newk Y1995.



