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ABSTRACT

A new family of distributions, constructed by summing two corre-
lated gamma random variables, is studied. First, a simple closed-
form expression for their density is derived. Second, the three pa-
rameters characterizing such a density are estimated by using the
maximum likelihood (ML) principle. Numerical simulations are
conducted to compare the performance of the ML estimator against
those of the conventional estimator of moments. Finally, a multires-
olution multivariate gamma based modeling of Internet traffic illus-
trates the potential interest of the proposed distributions for the de-
tection of anomalies. Aggregated times series of IP packet counts
are split into adjacent non overlapping time blocks. The distribution
of the resulting time series are modeled by the proposed multivariate
gamma based distributions, over a collection of different aggregation
levels. The anomaly detection strategy is based on tracking changes
along time of the corresponding multiresolution parameters.

Index Terms— Multivariate gamma distributions, maximum like-
lihood estimator, Internet traffic, anomaly detection.

1. INTRODUCTION AND PROBLEM FORMULATION

Security issues in Internet constitute nowadays a major research topic.
Notably, the statistical detection of anomalies, such as distributed
denial-of-service (DDoS) attacks, has received much interest in the
literature [1–4] (and references therein). Often, detection schemes
are applied to aggregated times series of IP packet (or byte) counts.
It is commonly accepted that such time series (consisting of positive
random variables) can be well modeled by gamma distributions in-
dependently at each aggregation level. Also, such times series are
strongly correlated, having both short and long range dependencies
[3]. Low volume DDoS attacks, i.e., attacks that produce non no-
ticeable changes in the volume (mean or variance) of the traffic (a
relevant situation) are known to modify strongly short time correla-
tions (cf. e.g., [2, 5]). Based on such knowledge, the present contri-
bution proposes to study traffic time series, aggregated at different
levels, through a new statistical model based on multivariate gamma
distributions (MGDs). More precisely, a statistical model based on
sums of correlated gamma random variables is defined. The maxi-
mum likelihood estimators (MLEs) for its unknown parameters are
derived. This allows us to propose a new statistical anomaly detec-
tion scheme for Internet traffic, complementing the works of [3, 4].

The distribution of the sums of independent gamma random vari-
ables has been studied in [6]. A generalization to sums of correlated
gamma random variables has been used in [7] to assess performance
of wireless communication systems over Nakagami-fading channels.
However, it is a very complicated task to use the pdf in [7, Eq.

(5)] to estimate its unknown parameters. This contribution derives a
new closed-form expression for the pdf of the sum of two correlated
gamma random variables. This pdf is shown to be sufficiently simple
to derive the MLEs for its unknown parameters.

The remainder of the text is organized as follows. Section 2 in-
troduces MGDs and recalls some important properties of these distri-
butions. The distribution of the sum of two gamma random variables
resulting from this multivariate statistical model is then derived. Sec-
tion 3 shows that the parameters of the sum of two correlated gamma
random variables can be estimated by the ML method. The perfor-
mance of the resulting MLE are analyzed in Section 4 by means of
numerical simulations. The application to anomaly detection in In-
ternet traffic is discussed in Section 5. Conclusions are reported in
Section 6.

2. MULTIVARIATE GAMMA BASED DISTRIBUTIONS

2.1. Definition and properties

For any q ≥ 0 and for any affine polynomial1 P , a random vector
X = (X1, . . . , Xp) is distributed according to an MGD on (R+)d

with shape parameter q and scale parameter P (denoted as γq,P ) if
its Laplace transform (LT) is defined by (on a suitable domain of
existence) [8, 9]:

Lγq,P (z) = E
�
e−
�d

i=1 Xizi

�
= [P (z)]−q, (1)

where E(.) denotes the mathematical expectation. Determining the
conditions on q and P such that (1) is the LT of a probability distri-
bution defined on (R+)d is a difficult problem in the general case.
However, the problem is much easier in dimension d = 2. It can
be shown that [1 + p1z1 + p2z2 + p12z1z2]

−q is the LT of a proba-
bility distribution defined on (R+)2 (referred to as bivariate gamma
distribution) if and only if the following conditions are satisfied [9]:

p1 > 0, p2 > 0, p12 > 0, p1p2 − p12 ≥ 0. (2)

An interesting property about MGDs is that their marginal distribu-
tions are also MGDs. For instance, by setting zj = 0 for any j �= i
in (1), it can be easily seen that the marginal distribution of Xi, for
i = 1, ..., d is a gamma distribution with shape parameter q and scale
parameter pi, where pi is the coefficient of zi in P (z). Similarly, the
marginal distribution of (Xi, Xj) is a bivariate gamma distribution

1A polynomial P (z) with respect to z = (z1, . . . , zd) is affine if for
any j = 1, . . . , d, the one variable polynomial zj �→ P (z) has the form
Azj + B, where A and B are polynomials with respect to the zi’s with
i �= j.

34891-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



with shape parameter q and its scale parameter is the affine polyno-
mial P (zi, zj) = 1+pizi+pjzj+pijzij . Note that the definition (1)
implies that all marginal distributions have the same shape parameter
q. The reader is invited to consult [8–10] for having more properties
regarding these distributions. In particular, closed form expressions
for the moments, the correlation coefficient and the pdf of bivari-
ate gamma distributions have been derived. The next section derives
a simple closed form expression for the pdf of Xi + Xj which is
not available in the references above. We will explain later that this
distribution is interesting to detect anomalies in internet traffic.

2.2. Distribution of Xi + Xj

Theorem 2.1. For an MGD with LT (1), the pdf of Yij = Xi + Xj

denoted as p(yij) is

p(yij) =

�
2
√

πy2q−1
ij

�
e
− 2qyij

m(1−r)

(1− r)q(m/q)2qΓ(q)
f q+1

2

�
cy2

ij

4

�
IR+(yij), (3)

where r =
pipj−pij

pipj
, m = q(pi +pj), c = 4q2r

m2(1−r)2
, pi, pj , pij are

the coefficients of zi, zj , zizj in the affine polynomial P (z) defined
in (1), Γ(z) is the Gamma function, fq(z) =

�∞
k=0

zk

Γ(k+1)Γ(k+q)

and IR+(.) is the indicator function on R
+.

Proof. The proof given in this paper is based on the properties of
natural exponential families2. The LT of Yij = Xi + Xj can be
written

LYij (z) = E
�
e−zYij

�
= [1 + (pi + pj)z + pijz

2]−q.

The parameterizations (m, r, q) and (θ, c, q) with θ = (2q)/[m(1−
r)] lead to the following results:

LYij (z) =

�
1 +

m

q
z +

(1− r)m2

4q2
z2

�−q

,

=

�
1 + 2

θ

θ2 − c
z +

1

θ2 − c
z2

�−q

.

This last expression shows that the LT of Yij can be expressed as

LYij (z) =
Lμ(θ + z)

Lμ(θ)
, (4)

where Lμ(θ) = (θ2 − c)−q is the LT of the so-called generating
measure of the natural exponential family. By noting that the LT of
e−θyij μ(yij) is Lμ(θ + z), a direct consequence of (4) is that the
pdf of Yij can be written

p(yij) =
1

Lμ(θ)
e−θyij μ(yij). (5)

The pdf of Yij can then be determined by (5) providing the generat-
ing measure μ(yij) is known. The last part of the proof consists of
determining the generating measure μ(yij) with LT

Lμ(θ) = (θ2 − c)−q =
1

θ2q

1�
1− c

θ2

	q . (6)

It has been indicated before that the coefficients pi, pj and pij of the
bivariate gamma distribution of (Xi, Xj) satisfy the conditions (2).
As a consequence

c

θ2
= r =

pipj − pij

pipj
∈ [0, 1[.

2The authors are very grateful to Gérard Letac for the many interesting
discussions regarding MGDs and natural exponential families.

This allows one to use the following expansion for z = c
θ2

1

(1− z)q
=

∞

k=0

(q)k

Γ(k + 1)
zk,

where (q)k = q(q+1) . . . (q+k−1) = Γ(q+k)
Γ(q)

is the Pochhammer

symbol [11, p. 256]. After replacing the expansion above in (6), the
following result can be obtained:

Lμ(θ) =

∞

k=0

(q)k

Γ(k + 1)

ck

θ2q+2k
.

By using the classical definition of the gamma function Γ(p) =
θ−p

�∞
0

e−θxxp−1dx, the following result can be obtained

Lμ(θ) =

∞

k=0

(q)kck

Γ(k + 1)

� ∞

0

e−θx x2q+2k−1

Γ(2(q + k))
dx =

� ∞

0

e−θxμ(x),

with

μ(x) =

∞

k=0

(q)kck

Γ(k + 1)

x2q+2k−1

Γ[2(q + k)]
=
√

π
(x/2)2q−1

Γ(q)
fq+1/2(c(x/2)2).

This concludes the proof.

It is interesting to note that (3) is simpler that the expression of p(yij)
derived in [7, eq. (5)] which requires to evaluate products of infinite
series. Note also that the generalization of (3) to sums of more than
two gamma random variables is not straightforward. The next sec-
tion shows that the expression of p(yij) obtained in (3) can be used
to derive the MLEs of the unknown parameters characterizing the
distribution of Xi + Xj .

3. PARAMETER ESTIMATION

The pdf of the sum of correlated gamma variates derived in (3) is
characterized by the parameter vector θ = (m, r, q), where m is the
mean of the distribution (i.e. m = E[Xi]) and r is the correlation
coefficient of (Xi, Xj) [10]. This section addresses the problem
of estimating the unknown parameter vector θ from n independent
vectors Y1, . . . , Yn having the same pdf (3).

3.1. Maximum likelihood estimation

The MLE of θ is obtained by maximizing the joint log-likelihood

l(y; θ) = n log

√
π

Γ(q)
− nq log


(1− r)

m2

q2

�
− n

2qyn

m(1− r)

+

�
q − 1

2

� n

i=1

log yi +

n

i=1

log fq+1/2

�
cy2

i

4

�
.

where y = (y1, . . . , yn) and yn = 1
n

�n
i=1 yi. By differentiating

l(y; θ) with respect to m and r, the following results are obtained

− 2nq

m
+

2nqyn

m2(1− r)
− 2q2r

m3(1− r)
C(y, c, q) = 0, (7)

nq

1− r
− 2nqyn

m(1− r)2
+

q2

m2

1 + r

(1− r)3
C(y, c, q) = 0, (8)
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where

C(y, c, q) =

n�
i=1

y2
i

fq+ 3
2

�
cy2

i
4

�
fq+ 1

2

�
cy2

i
4

� .

Eliminating C(y, c, q) in (8) and replacing its expression in (7) yields
the following trivial MLE for parameter m:

�mMV = yn.

The estimation of r and q is more complicated. After replacing �mMV

in the log-likelihood function l(y; θ), the MLE of (r, q) can be ob-
tained by maximizing the following nonlinear function

g(r, q) =− nq log

�
y2

n

4q2
(1− r)

�
− 2nq(1− r)

+

n�
i=1

log fq+ 1
2

��cMV
y2

i

4

�
− n log Γ(q),

with �cMV = 4q2r
y2

n(1−r)2
. This maximization is conducted by using

a Newton-Raphson procedure initialized by a moment estimator of
(r, q). This initialization is described in the next section.

3.2. Moment estimator of (r, q) for MLE initialization

This section derives a moment estimator of (r, q) which will be
used to initialize the Newton-Raphson procedure for maximizing the
nonlinear function g(r, q). The moments of Yi can be computed
from the moments of MGDs derived for instance in [10]. For in-
stance, the following results will be useful in this paper: E[Yi] = m,

Var[Yi] = m2

2q
(1 + r) and E[(Yi − E[Yi])

3] = m2

2q2 (−1 + 3r).

The first equality shows that the MLE of m is also a moment estima-
tor computed from its first order moment. The other two equalities
show that a moment estimator of (r, q) can be obtained as the solu-
tion of the following system

�rMo =
1

2�q2
Mo

	
−y2

n

2
+
�qMo

n

n�
i=1

(yi − yn)2



, (9)

2�q2
Mo

n

n�
i=1

(yi − yn)3 − 3�qMo
yn

n

n�
i=1

(yi − yn)2 + 5y3
n = 0. (10)

Note that �qMo satisfies a second order equation whose number of
positive solutions depends on the sign of the estimated third order
moment �μ3 = 1

n

�n
i=1 (yi − yn)3. More precisely, Eq. (10) has

two positive solutions when �μ3 > 0 and a single positive solution
when �μ3 < 0. In the former case, prior information regarding the
value of q is required to determine the appropriate solution.

4. SIMULATION RESULTS FOR SYNTHETIC SIGNALS

The MLE for parameter m defined previously is unbiased, conver-
gent and efficient. Thus the performance of this estimator is fully
controlled by its variance defined by

var (�mMV) =
m2(1 + r)

2nq
.

This section studies the mean square errors (MSEs) of the MLE for
the parameter vector (r, q). Note that this MSE cannot be expressed
in closed form as for parameter m. Figures 1 and 2 display the MSEs
of �qMV and �rMV (log scale) as a function of the sample size log10 n
for 10000 Monte Carlo (MC) runs (the true parameters are r = 0.8,

m = 2 and q = 0.5). These MSEs are compared with the corre-
sponding Cramer Rao lower bounds (CRLB) (estimated by Monte
Carlo averages) and with the moment estimator errors. The MSEs of
the MLE are clearly close to the CRLBs for large sample sizes. Sig-
nificant improvement in estimation performance is obtained when
using the ML method with respect to the method of moments. It is
interesting to note that a similar behavior for these estimators has
been observed for bivariate gamma distributions [10].

5. ANOMALY DETECTION IN INTERNET TRAFFIC

Internet information flows are commonly analyzed in terms of aggre-
gated time series, XΔ0(k), consisting of the counts of IP packets per
time bin of size Δ0 as a function of time t = kΔ0, for k = 1, . . . , n.
A challenge in nowadays Internet monitoring amounts to detecting
anomalous (potentially aggressive) behaviors in the time course of
series XΔ0(k). To this end, several statistical detection schemes
were proposed (cf. e.g., [3] and references therein). The approach
developed in [3] indicates that the marginal distribution of XΔ0(k)
is satisfactory modeled by a gamma law, while its covariance is well
described with an ARFIMA(φ, d, θ) (where d is related to the long
memory Hurst parameter H = d + 1/2, while φ and θ denote the
ARMA parameters). Elaborating on intuitions developed in [3, 4],
the proposed anomaly detection scheme is based on a multiresolu-
tion multivariate gamma modeling, whose parameters characterize
the occurrence (or not) of anomalous behaviors along time.

More precisely, let XΔj (k) = XΔj−1(2k) + XΔj−1(2k + 1)
stands for the multiresolution description of the traffic aggregated at
levels Δj = 2jΔ0, for time k ∈ [1, 2−j ] and scales j = 1, . . . , J .
The time series XΔ0(k) is split into L non overlapping consecu-

tive series {X(l)
Δ0

(k), l = 1, . . . , L} for k = 1, . . . , n. The pro-

posed strategy estimates the parameters θ̂
(l)

j = (m̂
(l)
j , r̂

(l)
j , q̂

(l)
j ) of

the pdf (3) for X
(l)
Δj

(these parameters are the mean of XΔj (k), the

correlation coefficient between XΔj−1(k) and XΔj−1(k + 1) and
the shape parameter of the pdf). Our characterization scheme tracks

changes along time l of q̂
(l)
j , r̂

(l)
j as functions of the aggregation level

j. The intuitions beyond such a scheme are as follows: modern ma-
licious anomalies no longer correspond to volume (mean or vari-
ance) changes but rather to slight modifications in the correlations of
the sequence XΔ0(k). Theoretical analysis of the statistics of XΔj

show that this should significantly impact the evolution of qj and rj

with respect to j.

Let us illustrate this scheme at work on a simulated example.
Consider a synthetic aggregated time series XΔ0(k) (with n = 215)
whose marginal distribution is a gamma distribution γ2,3 and with
an ARFIMA(φ = 0.01, d = 0.3, θ = 0.7) covariance (these val-
ues are relevant for Internet traffic). A short duration (nA = 211)
anomaly is superimposed to XΔ0 . In consistence with empirical ob-
servations, the anomaly is independent of XΔ0 . It is chosen so as
to have little impact on the overall marginal distribution at Δ0, but
with its own specific covariance structure given by an ARMA(φA =
0.9, θA = 0) model. It is added to XΔ0 at a given arbitrary posi-
tion. Note that the peak intensity of the anomaly is around 25% in
packet count, has no impact on the mean value of the traffic, and is

completely invisible by eye inspection. The estimated q̂
(l)
j , r̂

(l)
j ob-

tained with L = 4 time series are shown in Figs. 3(a) and 3(b) as
functions of j, where L = 4 is chosen for clarity of the plots. These

plots clearly show that the estimated functions q̂
(l)
j , r̂

(l)
j are mostly

consistent from one time window to another in absence of anomaly
(solid red curve with circles). On the contrary, the time window
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that contains the superimposed anomaly yields clear changes in the
estimated functions q̂j , r̂j (solid black curve with diamonds). The
presence of an anomaly mostly affects qj at the coarsest aggrega-
tion levels in agreement with [3, 4]. In addition, the proposed anal-
ysis shows dramatic changes in rj , occurring mostly at the finest
aggregation levels, and related to the modification of the short time
correlations induced by the anomaly. This discrepancy can be quan-
tified making use of statistical distances (such as e.g., Mahalanobis
distance) and can serve as a basis for the design of more sensitive
statistical detection tests. Such tests are currently under investiga-
tion.

6. CONCLUSIONS

A simple closed-form expression for the pdf of sums of correlated
gamma random variables has been obtained. This closed-form pdf
has been used to derive maximum likelihood estimators for the cor-
responding parameters. The potential interest of using sums of cor-
related gamma random variables for anomaly detection in Internet
traffic has been illustrated. The detailed definition and performance
of anomaly detection schemes are being investigated. The results
obtained here can also be used in a number of other applications
involving sums of gamma random variables including wireless com-
munications [7] or image processing [12].
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[12] P. Réfrégier, Julien Fade, and Muriel Roche, “Estimation precision
of the degree of polarization from a single intensity image,” Optics
Letters, vol. 32, no. 7, pp. 739–741, April 2007.

log(100) log(1000) log(10000)
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log
10

 n

lo
g 10

 M
S

E

ML: q
Asympt. ML: q
Moment: q

Fig. 1. log10(MSE) of �qMV versus log10(n) (10000 MC runs).
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Fig. 3. Estimated parameters q̂j (left) and r̂j (right) as a function
of the (log of the) aggregation level. Red ’o’ correspond to time
windows without any anomaly, while black ’�’ correspond to the
window affected by the anomaly.
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