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Abstract—This contribution aims at performing a longitudinal
study of the evolution of the traffic collected every day for
seven years on a trans-Pacific backbone link (the MAWI dataset).
Long term characteristics are investigated both at TCP/IP layers
(packet and flow attributes) and application usages. The analysis
of this unique dataset provides new insights into changes in traffic
statistics, notably on the persistence of Long Range Dependence,
induced by the on-going increase in link bandwidth. Traffic in the
MAWI dataset is subject to bandwidth changes, to congestions,
and to a variety of anomalies. This allows the comparison of their
impacts on the traffic statistics but at the same time significantly
impairs long term evolution characterizations. To account for this
difficulty, we show and explain how and why random projection
(sketch) based analysis procedures provide practitioners with an
efficient and robust tool to disentangle actual long term evolutions
from time localized events such as anomalies and link congestions.
Our central results consist in showing a strong and persistent long
range dependence controlling jointly byte and packet counts. An
additional study of a 24-hour trace complements the long-term
results with the analysis of intraday variabilities.
Keywords: Traffic Analysis; Longitudinal study; Sketch; Robust

estimation; LRD

I. INTRODUCTION
The Internet is a fast evolving world, or beast, an implicit

corrolary often stated being that its robust and sustainable anal-
ysis and modeling are impossible and that obtained results may
prove to be outdated before being published. This contribution
investigates some of the realities beyond this statement and
proposes both methodological tools and objective elements of
answers to shed light on these issues. We conduct longitudinal
analyses of traffic statistics long-term evolutions, for traces
collected every day, for 15 minutes, from 2001 to 2008, over
trans-Pacific backbone links (the MAWI repository, providing
publicly available anonymized traces [1]). Our first major
observation is that packet and protocol characteristics remain
stable along the years; on the application side, the changes
of the applications used on the Internet does not seem to
have a major impact on those characteristics. The statistics
of aggregated packet or byte count timeseries at the TCP/IP
layer are then analyzed, with focus on the evolutions with
time of their marginal distributions (MDs) and of long range
dependence (LRD). One key difficulty in performing statisti-
cal longitudinal analysis is to disentangle smooth long term
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evolution features from day-to-day fluctuations, as there is no
single day without anomalies or specific events. Therefore,
our first contribution consists of proposing a robust estimation
method based on sketches (random projections) [2], [3], that
enables long term analyses without being affected by specific
traffic conditions or anomalies. Applied to the 7-year long
datasets, this robust estimation procedure brings new insights
into the on-going debate related to bandwidth increase and
statistical multiplexing causing the disappearance of long
range dependence. The second contribution lies in finding
that, once the impacts of local events such as anomalies
and congestions are filtered out, the traffic statistics remain
stable along years with persistent LRD and MDs being well
modeled with Gamma laws. A concern with this longitudinal
study is that data last only 15 min., starting systematically at
2:00 pm. One may question the representativity w.r.t. both the
natural intra-day variability and short duration observations. To
address this, 24-hour traces were analyzed. We report results
for data collected on March 19th 2008, as part of the Day
in the life of the Internet project [4]. They confirm that the
proposed analysis yields robust conclusions, biased neither by
the specific schedule nor by short time measurements.

II. RELATED WORK

Longitudinal studies: Traffic analyses often consist of snap-
shot studies of application behaviors, for instance, focused
on the impact of the latest killer application, likely to cause
changes in traffic statistical characteristics, e.g., web [5], P2P
[6], video streaming [7],... There have been fewer studies
quantifying the long term evolution of Internet traffic (statistics
and applications). One of them is based on NSFNET traces
(1988-1993) [8]. At that time, FTP and Mail accounted for
about half of the growing traffic volume, until web traffic
becomes majority. More recently [9], relations between packet
rate, bit rate, and traffic statistics are investigated based on
more than 4000 traces collected from 1998 to 2003. In
[10], traffic correlation structures before and after the web
emergence are compared, showing that web traffic affects at
least the finest time scales; however, evolution of longer range
correlations (such as LRD) is not reported. A recent study
focused on scanning activities on the LBL network for the
past 12 years [11].
Long Range Dependence: The discovery of LRD in Inter-
net traffic was epoch-making and raised fundamental issues



[12], [13]. Specifically, a characteristic related to LRD is the
high variability of traffic fluctuations, yielding degradations
of queueing performance [14]. Difficulties in empirically as-
sessing LRD in real traffic time series have been thoroughly
discussed [15]–[17], showing the relevance of a wavelet-
based analysis framework [16]. However, stability (or even
existence) of LRD traffic is an ongoing debate and claims were
made predicting its disappearance on backbone or when loads
increase (cf. e.g., [18], [19]). A number of authors discussed
the fact that LRD in Internet traffic can be induced by higher-
layer protocols [10], [15], as well as related to the heavy tail
natures of the distributions of the file size to be transferred
[5], [12]. The (heavy)-tail behaviors of IP flow size have
been continuously investigated (see e.g., [20]). However, the
practical validity of the control of LRD of heavy-tail in actual
traffic has only been assessed in recent studies [21] as (heavy)-
tail behaviors of IP flow size is an elusive characteristic to
estimate. Therefore, we here concentrate only on proposing a
robust and reliable method, combining LD and sketches, to
evaluate the relevance of LRD.

III. MAWI DATASET
A. Monitoring point
The MAWI traffic repository archives traffic data collected

from the WIDE backbone networks. The WIDE network
(AS2500) is a Japanese academic network connecting uni-
versities and research institutes. The MAWI repository has
been providing anonymized packet traces since 1999 (total
volume of available data exceeds 1TB as of April 2008, cf.
http://mawi.wide.ad.jp/ and [1]). A specific note
here is that the data used here are all publicly available on
the website.
Our main datasets are daily packet traces captured at

Samplepoint-B (hereafter B) from 2001/01 to 2006/06, then at
Samplepoint-F (hereafter F) from 2006/10 to 2008/03. These
are transit links of the WIDE network, and the link of B was
replaced in July 2006 by the link F. Traces just after the
upgrade are missing until 2006/10. At B, congestions were
frequently observed, the link was a 100Mbps, with 18Mbps
Committed Access Rate. The link for F is over-provisioned,
it started as a full 100Mbps link and upgraded to a 1Gbps
link with the capped bandwidth of 150Mbps in June 2007.
Daily packet traces are captured from 2:00 pm to 2:15 pm
everyday (Japanese Standard Time, UTC+9). The traces, with
anonymized IP addresses and without payloads, are made
available to the public along with a summary information web
page about the traffic. Occasionally, 24-hour or longer traces
are made captured. The 24-hour-long traces collected at F on
2008/03/19 is used in Sec. IV-E to show the consistency of
the obtained results. The WIDE transit link mostly carries
trans-Pacific commodity traffic between Japanese research
institutions and non-Japanese commercial networks, as WIDE
peers with most major domestic ASes at the Internet Exchange
Points it operates, and international traffic between academic
networks goes through other international research networks.
Traffic is also asymmetric as WIDE has other trans-Pacific

links, meaning that many flows can be observed in one
direction only. This compels us to study traffic separately for
each direction, labeled US2Jp, for traffic going to Japan, and
Jp2US, for outgoing traffic, as most traffic is between Japan
and the USA. The traffic is highly aggregated: A 15-minute-
long trace usually contains 300k-500k unique IP addresses,
and various kinds of anomalies.
Because the traces are taken on links used in real traffic

conditions, the ground truth is not always known about the
whys and whens for some specific events. For instance, there
is no control and only scarce explanation usually about why
the used bandwidth increases or not. One goal of this study
is to show that a proper methodology as proposed here gives
most of the information about what happened in a trace, both
in terms of statistics and flow or packet characteristics.

B. Throughput Evolution
Strong variability: Fig. 1 displays throughput evolutions, and
their intraday variabilities (measured as standard deviations
(STD) computed around 1s time window averages). A wide
range of throughput values and huge intraday variabilities
(STD varies by a factor of 10) are observed, together with
a global increase of throughput from 100 kbps in 2001 to
more than 12 Mbps in 2008. At B, the load steadily increases
over years up to the link capacity. The upgrade from B to F
induced a significant change in average throughput (currently
varying between 5 and 10 Mbps). The datasets enable then the
study of the evolution of the traffic over 7 years, under both
congested and over-provisioned conditions.
Congestion periods: B experienced several long lasting con-
gestions (shown in Fig. 1): US2Jp, from 2003/04 to 2004/10
and from 2005/09 to 2006/06; Jp2US, from 2005/09 to
2006/06. The byte throughput is close to constant with a low
level of fluctuations (80% drops in STD). Although drops
in STD are long in duration, they do not allow detection
of congestion, as short time fluctuations can locally have
amplitudes of same order.
Specific periods: Two periods with unusual traffic behavior
(gray-shaded areas in Fig. 1) call for specific comments. From
2003/05 to 2004/03, Jp2US traffic underwent a severe volume
decrease (Fig. 1, left). This had likely been caused by a
change in the routing policy or by upward link congestions.
Interestingly, despite this low volume, the traffic composition
and its statistical characterization have not been significantly
affected. From 2004/07 to 2005/04, US2Jp (Fig. 1, right),
strong fluctuations in packet number are observed (STD being
extremely high) due to massive activities of the Sasser worm
(see also Sec. III-C).

C. Protocol and Application Breakdown
Methodology: Protocols, applications and anomaly break-
downs (shown in Fig. 2 for both directions) are first obtained
from classical procedures, using protocol breakdown then a
Port number based identification. Unknown port numbers are
found associated to dynamic ports larger than 1024. Those
packets were shown to be mostly linked to P2P hiding, [6].
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Fig. 1. Throughput vs. years. Top: Pkt and Byte throughputs. Bottom: Intraday variability (log of the standard deviation, computed from 1s time windows).
Congestions are marked with solid lines (below for Pkt, at CAR bandwidth limitations for byte). Left: Jp2US; Right: US2Jp.

Fig. 2. Protocols / Applications / Anomalies breakdown vs. years. Bottom
to top : Ping, DNS, common services, MS vulnerabilities, Sasser, HTTP,
broadcast, suspected P2P, identified P2P, other TCP/UDP, GRE (US2Jp) or
INLSP (Jp2US).

A further refinement of the classification in terms of types of
applications is made possible by combining the Port number
based identification with heuristic rules (based on proportions
of types of packets, on sizes of packets, and so on) in the
spirit of [22]. This set of heuristic rules is not detailed here.
It was already used in post-processing of the packet level
anomaly detection procedure proposed and validated in [23].
Finally, using this specific anomaly detection method [23],
it is found that most of the remaining unidentified traffic
consists of anomalies. In the situation of this study, note that

this methodology is state-of-the-art because there is neither
access to the payload of the packets (so deep packet inspection
methods are not possible), nor any possibility to use traffic
classification method based on the reconstruction of the exact
sequence in the flows.
Protocols:Over the 7-year period, TCP and UDP continuously
conveyed more than 90% of packets. ICMP (Ping) presents
a noteworthy share of the packets, more frequent for Jp2US
traffic (!5%). Ping floods are quite common and have been
regularly and automatically detected along the 7 years. Partic-
ularly, a ping flood detected during 2003/08-12 lasts several
months, with a very high volume: more than 50% packets
for Jp2US, and around 25% for US2Jp, are ICMP packets. A
number of anomalies were long-lasting ones or contributed to
a significant proportion of traffic (locally more than 80% of
the link capacity). Also some unexpected protocols found is
GRE (around 5% of traffic, Jp2US) or INSLP a security layer
protocol (US2Jp).
TCP/UDP: A large proportion of packets consists of Web
traffic: At B, 40% of legitimate traffic for Jp2US, and 50−55%
for US2Jp. After the link upgrade to F, it increases to
roughly 60% for both directions. The second largest group
is P2P traffic. Common Internet services such as FTP, mail
(SMTP, POP, IMAP,. . . ), news protocols,... account together
for only about 5%; this remains stable over years. Most
remaining traffic is targeting Microsoft services (such as MS
RPC, MySQL, file sharing), up to 2% for US2Jp, which are
often associated to malicious activities. Streaming protocols
(Realserver, Shoutcast) represent 1 or 2%. At B Jp2US, DNS
traffic is larger (!15%) than for US2Jp (!5%). For F, this is
inverted, likely due to the anycast deployment of M-root DNS
server operated by WIDE.
Peer to Peer: In 2002, traffic using known P2P ports consti-
tutes around 30% of the packets, mostly Napster, and others
such as Gnutella and clones, Kazaa, WinMX, and Emule-
Edonkey. This identified P2P traffic tends to disappear over
the years to quasi invisible after 2004. Some (but only ! 2%)
P2P traffic (Bittorent) is still identified. However, P2P traffic
decline is only an appearance and actually corresponds to P2P
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Fig. 3. Packet sizes vs. years. Proportion of large (≥ 1400B), small (≤
144B), or medium (in-between) packets. Left: Jp2US; Right: US2Jp.

hiding [6]: port number based identification methods no longer
work, as modern P2P software uses random higher port num-
bers. And, indeed, a significant increase over recent years of
TCP and UDP traffic between high ports (≥ 4000) correlates
well with identified P2P decline. Aggregating identified and
unidentified P2P traffic yields a significant increase in absolute
volume at F (compared to B), yet a slight decrease of relative
share.
Anomalies: Applied to each day of the 7 year long dataset,
the detection procedure in [23] showed that usually around
half a dozen (often many more) of suspicious anomalous
events are identified in 15 min. traces. Some of them last
weeks, or months; others are short (from seconds to minutes)
– justifying the use of a multi-scale detection method like that
of [23]. One large anomaly corresponds to the Sasser worm
activity (2004/05 and 2005/05 mainly). Successive outbursts
(cf. Fig. 2) are observed (2004/08, 2004/12 and 2005/03):
Sasser was on the verge of disappearing twice, yet came back
as variants of the worm. Sasser activity accounts for more
than 50% of the US2Jp traffic, while is barely noticeable
for Jp2US (likely due to a better than average defense vs.
worms on academic computers). Besides those major events,
many other anomalies exist: recurrent ones are SYN scans
and floods towards HTTP. Anomalies targeting any and all
protocols and applications are also commonly found, usually in
close relation with the protocol popularity itself: specific types
of anomalies are indeed found depending on the analyzed
period: e.g., NNTP for the earlier days, SSH since 2004, MS
security holes from 2003/08.
Packet size distributions: Finally, packet size distributions is
reported in Fig. 3. As expected, most packets are either small
(≤ 144B signaling packets) or large (≥ 1400B – usually data
frames). The only notable evolution is the upgrade from B
to F, when the proportion of large packets increased: due to
congestion, there was a latent demand for more data exchange.
Yet, other statistics does not change at that time, as seen in
the next sections. This is a non-event for traffic analysis. Also,
we confirmed clear appearance of some typical intermediate
size of packet over 7 years, used by specific applications (e.g.,
660B used for P2P software). A consequence of the slow (if
any) evolution of packet size distribution is the high correlation
betweenH(B) andH(P ) that is reported later on in Sec IV-D.
Summary: Over the 7 years, for both B and F, the content
of (non anomalous) traffic does not change significantly. The

protocol/application breakdown reported here well matches
those provided in [9] for traffic collected in 1998-2003.
However, they are in clear contrast with those in the 90s when
most of the traffic consisted of FTP and email [8]. A salient
result lies in the fact that normal traffic is never observed!
Numerous and significant anomalies are consistently found
each day, ranging from major anomalies consuming more than
half of the throughput during several consecutive months to
short-lived anomalies existing only one day. These findings
underline the need for estimation procedures that untangle
anomaly impact from long term evolution when performing
longitunal studies of traffic.

IV. ROBUST STATISTICAL CHARACTERIZATION

For the statistical characterization of aggregated packet
(X∆) or byte count time series (X∆ and W∆), our goal is
not to propose self-consistent statistical models for Internet
traffic, but rather to focus on the long term evolutions of some
of its salient features, namely marginal distributions and LRD,
i.e., one and two-point statistics (cf. [12], [13], [17]). Hence,
analyses are confined here to these properties, overlooking
other interesting ones (e.g., short time correlations).

A. Statistical description

Marginal distributions and Gaussianity: The marginal dis-
tributions (MD) of X∆j and W∆j are analyzed via empirical
histograms, for ∆j = ∆02j , with j = 1, . . . , J , ∆0 = 1ms
and J = 10, that is from 1ms to 1s. Following [17], [23],
Gamma laws are used to model the necessarily positive
X∆ and W∆. A Γα,β distribution is defined as Γα,β(x) =
(x/β)(α−1) exp(−x/β)/(βΓ(α)). While the scale parameter
β mostly represents the volume, the shape parameter α is
used here as an indicator of closeness to Gaussianity. Indeed,
skewness and kurtosis, which are 0 for Gaussian, behave
respectively as 2/

√
α and 6/α, for Γ. Hence, the smooth

transition of Γ from exponential to Gaussian is controled by
1/α. The shape αj and scale βj parameters are systematically
estimated for X∆j and W∆j .
Spectrum and LRD: For stationary processes, two-point
statistics are analyzed via their spectrum fX(ν). LRD is
defined as: fX(ν) ∼ C|ν|−(2H−1), when |ν| → 0. H is
referred to as the Hurst parameter [12]. It is well-known
that LRD is best analyzed in a wavelet framework through
the relation: Sj = (1/nj)

∑nj

k=1 |dX(j, k)|2 ∼ C2j(2H−1),
when 2j → +∞ and where the dX(j, k) are the (Discrete)
Wavelet Coefficients of X∆0 , at scale 2j∆0 and time position
k2j∆0. By nature, wavelet coefficients indeed consist of
aggregated versions of X at level 2j∆0. The plots log2 Sj

versus log2 2j = j are commonly referred to as logscale
diagrams (LD), and serve as the basis for Hurst parameter
estimation [16].

B. Impact of the various traffic conditions

Internet traffic is not intrinsically stationary (daily or weekly
seasonality, anomalies,...). However, for 15-minute long traces,
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Fig. 4. Statistics in various traffic conditions. Aggregated (∆0 = 1ms) byte (W∆) or packet (X∆) count time series (top row); Marginal distributions
(MD) for ∆j = 4, 32, 64, 128ms, both as empirical histograms (bars) and Γ fits (lines) (middle row); Logscale Diagrams (LD) (bottom row). Ex1 (col.
1): B-US2Jp, 2005/07/11, anomaly-free. Ex2 (cols. 2&3): B-US2Jp, 2003/06/03, congestion (in term of Byte count (W∆), not on X∆). Ex3 (cols. 4 &5):
B-Jp2US, 2004/09/21, anomalies (network scan, spoofed flooding, attack on Realserver).

stationarity is fairly well satisfied, as discussed in Sec. IV-E,
and in consistence with [16].
Example 1 (Fig. 4, US2Jp, 2005/07/11, Ex1) has been
chosen because traffic is neither congested, restricted nor with
anomalies (assessed by a careful human inspection assisted
with the anomaly detection procedure of [23]). MDs, at various
∆j , are well modeled with Γ laws. The LD exhibits a knee-
shaped form with both short range dependencies (SRD) at fine
scales (from 1ms to less than 1s), and long range dependencies
(LRD), at coarse scales (from 1s to 500s, with estimated
H ! 0.95), separated by a typical scale 2j∗∆0 ! 1s.
This is consistent with observations (and models) reported in
the literature over the years [10], [17], [24], [25]. Common
knowledge is that fine scales are related to the packet arrival
process while coarse scales are related to flow characteristics,
notably the heavy tail packet number distributions. Note that
here, only Byte count is displayed but plots shown for X∆

and W∆ are comparable in typical situations.
Example 2 (Fig. 4 US2Jp, 2003/06/03, Ex2 2 & 3th col.
in Fig. 4) is collected under byte congestion. Clear changes
for W∆ mostly are observed. MD can still be modeled by Γ
laws, though the αj and βj (not reported here) significantly
differ from those of Ex1. The LD is strongly altered: LRD no
longer exists at coarse scales. This is due to the congestion,
inducing that the byte count remains quasi constant, and the
absence of variability implies that of LRD. However, there
is no reason for a change in heavy-tailness of packet number
distributions, hence calling into question this disappearance of
LRD. Moreover, X∆ is still displays LRD.
Example 3 (Jp2US, 2004/09/21, Ex3, 4 & 5th col. in Fig. 4)

Traffic here contains several attacks (identified using [23] and
validated by manual packet inspections): Network port scan
with SYN, single source SYN flooding, distributed spoofed
flooding, attack against a Realserver through TCP port 554.
LRD is not altered by these attacks: The LRD onset re-
mains around 2j∗∆0 ! 1s and the Hurst parameter is not
markedly varied. However, anomalies impact the range of fine
to intermediate scales of the LD, and therefore the SRD of
X∆0 . Simultaneously, MDs remain well modeled with Γ laws,
despite the occurrence of attacks. However, αj , hence the route
toward Gaussianity, is significantly modified when anomalies
occur (in consistence with [17], [23]): Changes in α j , for the
range of scales 1ms ≤ 2j∆0 ≤ 1s, can only result from a
change in the structure of the short time correlation in the
data. This is the grounding ingredient of the anomaly detection
procedure that was proposed in [23].

Discussion: These examples show that changes in traffic
conditions (congestions, anomalies,...) drastically affect the pa-
rameters of the statistical modeling. Observations drawn from
other days under congestion or with anomalies are consistent
with these reports and, as mentioned above, there is almost no
normal day (i.e., without numerous low-volume anomalies).
This is a severe difficulty in performing longitudinal statistical
study of traffic as intended here (especially automatic and
unsupervised): The risk being that the study boils down to
a long list of specific situations, without any possibility to
identify normal or expected behaviours, and hence no global
and long term features. To overcome this, a robust estimation
procedure is now proposed.
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C. Sketches for robust estimation

In statistical signal processing, robustness in estimation is
classically achieved by performing averages over independent
copies of equivalent data. Here, this would mean either split
data into shorter traces or average equivalent days, but 15min
long data are too short for trace spliting and identifying equiva-
lent days is a complex and dubious solution. Instead, following
[2], [3], [23], we turn to the use of random projections (usually
referred to as sketches).
Sketches: Let hn denote a k−universal hash table of size M

(computed using a fast-tabulation [26]). The original collection
of packets is split into M sub-traces, each of them consisting
of all packets with identical sketch output m = hn(A), where
the hashing key A is chosen as one of the packet attributes
(IPdst, IPsrc,. . . ). This amounts to performing random pro-
jections, preserving flow structures (packets belonging to a
given flow are assigned to the same sub-trace). Each sub-trace
is aggregated, X (m)

∆0
, m = 1, ..., M , and analyzed following

the procedures used for the original trace. Robust estimation
results from averaging, by means of median, over the sketch
outputs.
Example 1: Fig. 5, top row, shows aggregated sketched
(M = 8) for W∆ and their LDs. The M LDs display a
weak variability around a well-defined average: All sketches
are statistically equivalent. Hence, the median LD matches
perfectly (up to a vertical shift, due to the division by M )
the LD computed from the entire trace. The Hurst parameter
estimated from the median of the estimates over the M
sketches, Hm is consistent with Hg estimated from the whole
trace. This also shows that flow-sampling is compatible with
LD estimates, in a better way than flow-preserving averages.
Example 2: Fig. 5, second row, shows aggregated sketches
and their LDs for W∆. Each sub-traces has recovered a
significant variability, when the original showed almost none.
Accordingly, the sub-trace LDs exhibit back the knee-shape
form with j∗ ! 9 or 10 (0.5s to 1s) and estimated H in the
usual range [0.8, 1]. This indicates that they are characterized
by an unquestionable and significant LRD. Whereas the global
analysis of a trace under a congested day leads to the erroneous
conclusion that congestion eliminates LRD, a sketch based
analysis reveals that the network mechanisms at work to create
LRD remain equally and strongly active under congestion.
Moreover, a relevant estimation of the LRD parameters can
be automated by median over sketches.
Example 3: For Ex3, Fig. 5, last two bottom rows in
Bytes and Packets, all sub LDs are quasi identical, but two.
Inspection confirms that these two LDs correspond to sketch
output that convey the anomalies of that day. Computing the
LD median results in an analysis of the traffic covariance
structure that is not impacted by these significant anomalies.
The median LD differs from the one computed from the entire
traffic, mostly in the fine scale range (0.1s to 2s), in agreement
with previous findings [23]: Low volume anomalies mostly
affect short time-scales. The median-sketch based procedure
provides a relevant estimate for H even when anomalies are
present: Traffic LRD per se is not affected nor varied by low-
volume anomalies.
Summary: These case studies show that the proposed median-
sketch estimation procedure is statistically consistent and
provides robustness against severe traffic condition changes
(congestions, restrictions, low-volume anomalies,...). Analyses
have been carried over LDs, yet equivalent (not reported
here) conclusions are drawn when studying MDs (and the α j

and βj). These observations justify the crucial choice of the
median, instead of the simpler mean, to average estimates:
Median is a non linear procedure providing robustness against
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Fig. 7. Scatter plots of H(B) (byte) vs. H(P ) (packet). Global (top) and
median-sketch (bottom) estimates ; Jp2US (left) and US2Jp (right). Symbols
are: o: B without congestion; • : B with congestion; *: B anomaly (US2Jp)
or low-volume restricted traffic (Jp2US); $: F.

outliers (e.g., anomalies). The choice of M obviously resorts
to a trade-off: Larger M decreases the impact of outliers
(hence of anomalies); However, larger M also implies less
traffic in each output and hence a larger inter-sketch vari-
ability and larger confidence intervals for estimates. Empirical
investigations yield M = 8 as satisfactory. The procedure is
also consistent with networking issues: Sketches preserve flow
structure and can be confronted to flow sampling tools such
as NetFlow and sFlow.

D. Seven Years of Results

Results obtained with the robust median-sketch analysis
from the 7-year long dataset are now discussed.
Constancy along time and global fluctuations: There has
been a perplexingly large range of estimated H reported in
the literature over the years from various traffic analyses,
leading to the conclusion that LRD is a versatile property.
Whereas the estimate Hg computed from different days over
the entire dataset show large and wild fluctuations (cf. Fig. 6),
conclusions drawn from the median-sketch procedure are
markedly different. Median LDs remain with a constant knee-
type shape over the entire period. The separation scale 2 j∗∆0

is constantly in [0.5, 1.5]s and the median based estimate Hm

of H are almost always in the range 0.8 ≤ Hm ≤ 1 (cf.
Fig. 6), thus confirming a strong and persistent LRD.
Anomalies and Congestions: A number of estimated Hm

depart from the range 0.8 ≤ Hm ≤ 1 (e.g., during the Sasser
activity). Obviously, if traffic mostly consists of anomalies, or
if they are a dominant part of the traffic, estimates will be
impacted and the proposed procedure cannot help when using

a single hashing key (IPdst here). Robustness against those
anomalies can be achieved by taking the median over estimates
computed from different hashing keys (not shown here). Turn-
ing now to congested periods (notably US2Jp, bytes) indicate
that the global estimate Hg that is constantly close to 0.5
would erroneously validate the claim that congestions induce
the disappearance of LRD. Instead, median based estimates
speak for the persistence of a strong LRD (Hm ! 0.8). The
network mechanisms causing LRD [12], [21] are not altered
by congestion occurrence, neither is traffic returning to a
simple Poisson process. Indeed, qualitative analyses indicate
that there is no major change in the heavy-tail distributions
of the number of packet per flow, hence no change in LRD
(quantitative analyses of the heavy tail index are not possible
because of the 15-min. observation duration).
Bandwidth and bandwidth occupancy rate: Fig. 1 shows
that the bandwidth occupancy rate has been regularly increas-
ing on B (Jp2US) over the years up to saturation. Meanwhile,
Hm remained fairly constant. Also, the switch from B to
F is accompanied with a significant increase in bandwidth.
Fig. 6 indicates that the Hm for F are systematically closer
to the upper bound of (yet within) the range 0.8 ≤ Hm ≤ 1.
This suggests that bandwidth and/or bandwidth occupancy rate
changes do not cause nor suppress LRD and only marginally
impact the LRD parameter: Low bandwidth occupancy rate
favoring (slightly) higher H .
Bytes vs. Packets: Another debate regarding LRD consists
of deciding whether it should be measured on packet or
byte counts, or both. This is examined by means of scatter
plots, Fig. 7: H(B) (byte) vs. H(P ) (packet). For the global
Hg estimates (top), a large variability and dispersion are
observed, explained both by numerous outlier (anomaly) days
and long congestion periods yielding unreliable estimates
for H(B). This would lead to conclude that LRD observed
on both packet and byte counts are only partially related,
suggesting that they may be induced by different mechanisms.
Considering instead the median-sketch estimates Hm (bottom)
reveals a much clearer dependence, with ρm ! 0.95 indicating
Hm(B) ! Hm(P ). This confirms, experimentally from real
data, conceptual analyses of [12] or models (e.g., [24]) that
predict the same Hurst exponent for packet and byte counts.
Summary: The median-sketch based analysis of the 7-year
long dataset demonstrates that the LRD paradigm is a relevant
and central feature of Internet traffic statistics, even during
congestion or traffic restriction periods or anomaly occur-
rences. It also shows that the Hurst parameter remained con-
stant, and high, 0.8 ≤ H ≤ 1, along the years. It tends to be
slightly modulated by the bandwidth occupancy rate (loaded
link yields estimates closer to 0.8). Hence, this shows that
LRD is not suppressed, nor even diminished, with increased
bandwidth or statistical multiplexing. Moreover, knee-shaped
LDs (and LRD) were reported in [25] for traffic splitting or
merging at non congested routers. Our result complements this
by showing this is still valid on a link under congestion caused
by traffic merging.
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E. Results on a 24-hour long trace

A 24-hour long trace was collected on 2008/03/19, within
the Day in the life of Internet project [4]. By analysing it, we
address i) representativity of 15-minute long trace vs. intraday
variability or volume trends, and ii) stationarity over periods
longer than 15 minutes.
Intraday variability: Splitting the 24-hour long trace into 15-
minute long sub-traces enables consistent comparisons against
previous results. MDs are satisfactorily modeled with Gamma
laws. LDs systematically present the usual knee-type shape,
with ∆02j∗ ! 0.5s. After normalization to accout for the
smooth day-night modulation of the traffic volume, LDs still
reveal significant variability around the knee-type shape, cf.
Fig. 8(a). This is further confirmed in Fig. 8(b) where the
fluctuations of the estimated Hs are large. This is consistent
with the fact that, continuously along the day, a number of
low volume various anomalies are detected. Applied to the 96
sub-traces, the median-sketch procedure produces LDs almost
superimposing one onto the others and hence estimates for H
with far less variability. Again, our findings are that there is
a strong and persistent LRD (with constant Hurst parameter)
irrespectively of the time of the day, and that byte and packet
count median-sketch based estimates for H are closely tied
together (scatter plots not shown).

Stationarity time scale: Another debate is to question the
existence of LRD w.r.t. non stationary effects. Following [16],
the 24-hour trace is split into adjacent and non-overlaping sub-
traces over which LDs are computed independently. Fig. 8(c)
illustrates that the stationarity hypothesis cannot be rejected for
time scales up to at least 2h = 221∆0, and hence shows that
LRD can not be confused with any spurious non stationarities:
LRD measured on 15-min traces (in the range 1s to 1min)
clearly and consistently expands at coarser scales (1 min to
1h), confirming its existence and hence the meaningfulness of
the estimates reported in Sec. IV-D, even from short duration
traces.
Conclusions: Our findings are in favor of strong and constant
LRD irrespectively of the time of the day. The trace actually
collected lasted 72 hours. The other 48 hours yield equivalent
conclusions. The MAWI datasets contain other long traces
(one each year) whose analyses yield similar conclusions:
LRD is stable and constant within days and throughout years.

V. CONCLUSION
A unique day-by-day longitudinal analysis of a 7 year

(and one day) long dataset shows that the estimations of
traffic statistics exhibit a huge variability, largely due to
traffic condition variations (congestions, restrictions,. . . ) and



anomalies constantly but randomly occurring. This impairs
the possibility of drawing long term evolution conclusions.
Therefore, our first contribution is methodological: The re-
course to an estimation procedure based on sketches and
median average brings robustness for estimations, and enables
to disentangle long time evolution from day-by-day incidental
variabilities. Our second contribution is to show that the
statistics of Internet traffic remain stable along the entire
period. LRD (for both packet and byte) remains strong and
persistent: The LRD onset scale of time is always between
0.5s and 1s. Moreover, LRD persists over hours and the
LRD parameter H for bytes and packets are usually identical.
The same network mechanisms are creating a unique LRD
phenomenon over both count time series. The robust analysis
also showed that despite a significant reduction of volume
variability during congestion periods, traffic still presents a
strong and clear LRD. MDs remains constantly well modeled
with Γ distributions, and there is no evidence for a return to
Gaussianity. Non Gaussianity and LRD (and hence Poisson
modeling failure) are still a forefront property for traffic and
network engineering, even when the capacity or the loads
of the links are significantly increased. Our conclusions also
open rooms for further investigations: Could the bandwidth
occupancy ratio be a key control parameter rather than the
absolute statistical multiplexing gain? May an increase of any
of them be accounted for by a simple shift in time scales?
At the application level, traffic proportion are also stable, de-

spite the intuitive and heuristic claims often made, forecasting
dramatic changes in Internet traffic. The dominant uses remain
web traffic and P2P applications, with slowly shifting to P2P
modalities (higher ports,. . . ) in the recent years. Surprisingly,
traffic has been found to contain each and every day (for
7 years) a large number and a variety of anomalies. This
significantly questions the notion of normal or regular traffic,
and put the emphasis for the need and benefits of the proposed
robust median-sketch estimation procedure.
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