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ABSTRACT

It is often stated that the Internet is a living beast, con-
stantly evolving with time, the implicit corollary being that
its robust and sustainable analysis and modeling are impossi-
ble and that obtained results may prove to be outdated before
being published. This paper aims at investigating this state-
ment on a scientific basis. A longitudinal evolution study is
performed over the traffic collected every day for seven years
on a trans-Pacific backbone link (the MAWI dataset). Ana-
lyzing this unique dataset enables us to investigate long term
characteristics of traffic evolution, both at the TCP/IP lay-
ers (packet and flow attributes) and application usage. This
provides new insights into central issues, specifically: Does
link bandwidth increase and statistical multiplexing in-
duce an evolution of traffic towards Poisson, Gaussian-
ity and weaker Long Range Dependence? Traffic in the
MAWI dataset is subject to bandwidth changes, congestions,
and to a number of short and long lived anomalies. This al-
lows a comparison of their impacts on traffic statistical prop-
erties and yields an overview of traffic anomaly evolution.
Also, we show and explain how and why random projection
(sketch) based statistical procedures offer an efficient and ro-
bust tool to disentangle the impacts of actual long term evo-
lutions from those of time localized events (anomalies and/or
link congestions). A study of a 24-hour trace collected under
the A Day In the Life of the Internet project on March
19th, 2008 complements these results with an understanding
of the typical intraday traffic variability.

General Terms
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1. INTRODUCTION

One cannot attend a conference dedicated to the anal-
ysis of the Internet without hearing that the Internet
18 a living beast, subject to numerous, violent, constant
and rapid changes, the underlying implication, often im-
plicit, sometimes explicit, being that statistical analy-
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ses aiming at traffic modeling, resource optimization or
anomaly detection proposed at a specific times, for spe-
cific links, are likely to be out-of-date and irrelevant by
the time they are published. And, one can not deny that
time scales in Internet science evolution are much faster
than those of most, if not all, more traditional sciences.
Also, there is a consensus around observations of strong
and net changes in traffic volumes, link bandwidth or
capacity, number of Internauts, types of applications
and usages on the Internet over the last decade. De-
spite its apparent obviousness, this statement remains
yet mostly informal and global hence vague. It often
rises more questions than brings actual answers: What
does actually change? What does not? Are changes
mostly at the application layer or rather at the TCP /TP
layer? Do they impact traffic statistical modeling proce-
dure, anomaly detection schemes or network engineer-
ing procedures? Is the impact moderate or so drastic
that last-year findings are useless today?

This paper aims at investigating some of the reali-
ties beyond this statement on a scientific basis and at
proposing both methodological tools and objective ele-
ments of answer to shed light on these issues. To this
end, we analyze traffic traces collected every day, for
15 minutes, from 2001, Jan. 1st, to 2008, March, 19th,
over trans-Pacific backbone links (the MAWTI repository,
details in Sec. 3.1). Traffic circulating over such links
are highly asymmetric as clients on the Japanese side
mostly consist of academics while those on the US side
are mostly on commercial ISPs. Analyses are hence
conducted independently for the directions US to Japan
(US2Jp) and Japan to US (Jp2US). It is commonly ac-
cepted that commercial and academic traffic differs in
application and protocol mixture proportions, so that
conclusions drawn from the MAWI dataset can be con-
sidered general. Moreover, to the best of our knowledge,
no commercial traffic database collected over such a long
period of time is publicly available.

Longitudinal analyses of long-term evolutions of traf-
fic throughputs and protocol /application breakdown will
yield our first conclusion: protocol and application char-
acteristics remain surprisingly stable along the years (cf.



Sec. 3.2 and 3.3).

Then evolutions of the statistical characteristics rele-
vant to the TCP/IP layer (packet or byte count aggre-
gated time series) are analyzed. Following the frame-
work proposed in [8, 26], marginal distributions (MD)
are modeled as Gamma laws, and covariances, hence
long range dependence (LRD), is analyzed by means of
the standard wavelet based methodology proposed in
[28] (technical material recalled in Sec. 4.1). A great
difficulty in conducting a statistical longitudinal analy-
sis of traffic consists in disentangling smooth long term
evolution features from wild variations among day-to-
day fluctuations that are likely to occur because there
is no single day without anomalies or specific events.
The risk is then strong that a longitudinal study actu-
ally boils down to the long report of a collection of sin-
gularities. This is discussed in Sec. 4.2 from examples
chosen in purpose within the dataset. A major contri-
bution of our proposal therefore lies in the construction
of a robust estimation procedure based on sketches (or
random projections) [22, 24]. It is shown in Sec. 4.3
how and why it enables to conduct long term analy-
ses that are not polluted by specific traffic conditions or
the occurrences of anomalies. Applied to the 7-year long
datasets, this robust estimation procedure enables us to
bring new insights, both in terms of methodology and
of results, to the on-going debate related to bandwidth
increase and statistical multiplexing causing a return to
Poisson and Gaussian together with the disappearance
of long range dependence: Traffic is characterized with
a strong, stable and persistent LRD (cf. Sec. 5.1); MDs
are constantly well modeled with Gamma laws along
years, hence enabling us to revisit the Gaussianity is-
sue (cf. Sec. 5.2). The MAWI datasets contain periods
of congestions and of restricted traffic which permit to
analyze their respective impacts of traffic statistics, on
Gaussianity and long range dependence. Anomaly de-
tection is automated using the sketch-multiresolution
procedure previously proposed in [8]. Evolutions in di-
rection, type, nature and number of anomalies are de-
picted, and related anomalies are discussed in Sec. 5.3.

Another pitfall comes from the fact that collected
data last only 15 minutes, starting systematically at
2:00 pm: One may hence question representativity w.r.t.
the natural intra-day variability as well as w.r.t. short
duration. To address these points, a 24-hour trace col-
lected on March, 18-19th 2008, within the framework of
the world-wide A day in the life of the Internet project
[20], is analyzed. This allows an illustration of the ro-
bustness of our sketch based statistical analysis proce-
dure w.r.t. local anomalies. Also, it shows that our con-
clusions are not biased neither by this specific schedule
nor by short measurements (cf. Sec. 6). Conclusions
are drawn in Sec. 7.

2. RELATED WORK

Long Range Dependence: The discovery of LRD
in Internet traffic constitutes one of the most epoch-
making and fundamental issues in the recent Internet
traffic research [23, 25]. Specifically, a striking char-
acteristic related to LRD lies in the high variability
of traffic fluctuations, yielding degradations of queue-
ing performance [9]. Difficulties in empirically assessing
LRD in real traffic time series have been thoroughly dis-
cussed [18, 28], showing the relevance of a wavelet-based
analysis framework [28]. A number of authors discussed
the fact that LRD in Internet traffic can be induced by
higher-layer protocols [11, 31], as well as related to the
heavy tail natures of the distributions of the file size to
be transferred [7, 23]. The (heavy)-tail behaviors of IP
flow size have been continuously investigated (see e.g.,
[30] for a recent report). Moreover, the impact of bot-
tleneck and congestion on the existence and strength of
LRD has been investigated in, e.g., [29].

Back to Poisson traffic? However, stability (or
even existence) of LRD traffic is an ongoing debate and
a hot research topic. An open issue is the conjectured
disappearance of LRD as network loads increase, often
referred to as the impact of statistical multiplezing [4].
Equivalently, it is often stated that traffic tends to re-
turn to Poisson for high network loads: for instance,
Refs. [3, 4, 19] indicated that packet inter-arrival dis-
tributions tend to be well modeled with a Poisson pro-
cess, when backbone loads increase. An important issue
is in fact the time scales at which traffic is analyzed [13,
32]. For instance, it has been suggested that packet ar-
rivals in recent backbones are well-modeled by the Pois-
son model for sub-second timescales, by nonstationarity
at multi-second timescales, and that aggregated traffic
still exhibits LRD at large timescales [19]. Zhang et al.
[32] pointed out that backbone traffic time series are
weakly correlated at fine time scale (1-100ms). These
complex inter-relations between time scales have been
interpreted in terms of multifractal (e.g., [10]). How-
ever, Ref. [14] made a strong case against multifractal
models for Internet aggregated traffic and Ref. [13] in-
dicated that small scales are related to the flow packet
arrival process, which is consistent with a simple re-
newal process.

Gaussianity? In Ref. [32], it is shown that back-
bone traffic aggregated over 1s exhibits Gaussian-like
marginals. Evolution toward Gaussianity is indeed a
consequence of the return to Poisson and, as such, also
been investigated. For instance, HT'TP connection inter-
arrival distributions may be modeled with Weibull laws,
as the shape parameter is versatile enough to adjust
both Gaussian and heavier tail laws [10]. Ref. [21] an-
alyzed the Gaussianity of traffic MDs at a given time
scale, and discussed the evolution toward Gaussianity
with respect to aggregation levels and link loads. Fur-



thermore, Refs. [8, 26] showed that the marginal dis-
tribution of normal packet arrivals is well-modeled with
Gamma laws at various scales. This is used here to
investigate the evolution toward the Gaussianity issue.

Longitudinal studies: Traffic analyses often con-
sist of snapshot studies of application behaviors, for in-
stance, focused on the impact of the latest killer ap-
plication, likely to cause major changes in traffic sta-
tistical characteristics, e.g., web [7], P2P [1, 17], video
streaming [5],... There have been fewer studies aiming
at quantifying the long term evolution of Internet traf-
fic (statistics and applications). One of the oldest such
reports is based on NSFNET traces (1988-1993) [16].
At that time, FTP and Mail traffic accounted for about
50% of the growing traffic volume, until web traffic be-
comes majority. In Ref. [12], a relation between packet
rate and bit rate is investigated together with traffic
statistical properties, based on more than 4000 traces
collected from 1998 to 2003. Also, in Ref. [11], the
correlation structures (from traffic collected at several
measurement points) before and after the web are com-
pared. The Hurst parameter evolution is not reported;
However, it is pointed out that web traffic affects at
least the fine time scales. For anomalies, an evolution
of scanning activities through the LBL network for the
past 12.5 years has been highlighted in [2].

Contributions: Ref. [30] pointed out the need for a
general robust methodology to provide answers to these
issues. In this spirit, we propose a median-sketch based
method and provide analyses of the joint and long term
evolutions for a few key statistical parameters, related
to applications, protocols, anomalies, with a focus also
on statistics (LRD, MD,...).

3. MAWI DATASET

3.1 Monitoring point

The MAWTI traffic repository archives traffic data col-
lected from the WIDE backbone networks. The WIDE
network (AS2500) is a Japanese academic network con-
necting universities and research institutes. The MAWI
repository has been providing anonymized packet traces
to the public since 1999, and the total volume of the
publicly available data exceeds 1TB as of April 2008
(cf. http://mawi.wide.ad.jp/ and [6]).

Our main datasets are daily packet traces captured
at Samplepoint-B (hereafter B) from 2001 to 2006/06,
then at Samplepoint-F (hereafter F) from 2006/10 to
2008. These are transit links of the WIDE network, and
the link of B was replaced in July 2006 by the link F.
(However, traces just after the upgrade are missing unitl
2006/10.) At B, congestions were frequently observed;
the link was a 100Mbps, with 18 Mbps Committed Ac-
cess Rate. The link for F is over-provisioned, it started
as a full 100Mbps link and upgraded to a 1Gbps link

with the capped bandwidth of 150Mbps in June 2007.

Daily packet traces are captured from 2:00 pm to 2:15
pm everyday in Japanese Standard Time (UTC+9), and
the corresponding traces with IP addresses anonymized
and payloads removed are made available to the public
along with a summary information web page about the
traffic. Occasionally, 24-hour or longer traces for these
samplepoints are made available in the same manner.

The traffic of the WIDE transit link is mostly trans-
Pacific commodity traffic between Japanese research in-
stitutions and non-Japanese commercial networks, as
WIDE peers with all the major domestic ASes at the
Internet Exchange Points it operates, and international
traffic between academic networks goes through other
international research networks. The traffic of the tran-
sit link is also asymmetric as WIDE has other trans-
Pacific links, meaning that many flows can be observed
only in one direction. This forces us to study traffic
separately for each direction, being labeled US2Jp, for
traffic going to Japan, and Jp2US, for outgoing traffic,
as most traffic is between Japan and the USA. The traf-
fic is highly aggregated: A 15-minute-long trace usually
contains 300k-500k unique IP addresses, and contains
various kinds of anomalies.

The datasets allow us to examine the evolution of
the traffic over 7 years, under both congested and over-
provisioned conditions. We also use 24-hour-long traces
collected at F on 2008/03/19 to show in Sec. 6 that our
findings are consistent with other time slots.

3.2 Throughput Evolution

Strong variability: Fig. 1 displays throughput evo-
lutions, in bytes and packets, for both directions, and
their intraday variabilities (measured by means of stan-
dard deviations (STD) computed around 1s time win-
dow averages). The first striking feature lies both in
the wide range of observed throughput values and in
their huge intraday variabilities (STD varies by a factor
of 10). Also, there is a global increase of throughput
from 100 kbps in 2001 to slightly more than 12 Mbps
in 2008. At B, the load steadily increases over years up
to the link capacity. The upgrade from B to F induced
a significant change in average throughput (currently
varying between 5 and 10 Mbps).

Congestion periods: B experienced several long
periods of congestions (marked with solid lines in Fig. 1):
US2Jp, from 2003/04 to 2004/10 and from 2005/09 to
2006/06; Jp2US, from 2005/09 to 2006/06. The pe-
riods of congestion are accompanied with a significant
drop in STD (by a factor of 5 to 10). This means that
the byte throughput remains close to a constant value
with a very low level of fluctuations (this is important
when discussing LRD in Sec. 4). Note that these drops
in STD are long in duration, but their amplitude is not
sufficient to detect congestion periods as short time fluc-
tuations are of the same order.
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Figure 1: Throughput vs. years. Top: Pkt and Byte throughputs. Bottom: Intraday variability (measured in
log of the standard deviation, computed from 1s time windows). Congestion periods are symbolized by solid lines
beneath, or at the respective CAR bandwidth limitations for byte troughput. Left: Jp2US; Right: US2Jp.

Specific periods: Two periods with unusual traffic
behavior (gray-shaded areas in Fig. 1) necessitate spe-
cific comments. From 2003/05 to 2004/03, Jp2US traf-
fic underwent a severe volume decrease (Fig. 1, left). It
is suspected that this volume reduction may have been
caused by a change in the routing policy or by upward
link congestions. Interestingly, we found that, despite
this low volume, the traffic composition and its statisti-
cal characterization have not been significantly affected.

From 2004/07 to 2005/04, US2Jp (right on Fig. 1),
strong fluctuations in packet number are observed (STD
being extremely high). Our anomaly analyses reported
in Sec. 5.3 enable us to conclude that it corresponds to
a period of massive activities of the Sasser worm that
strongly impacts traffic statistical characteristics.

3.3 Protocol and Application Breakdown

Anomalies will be discussed in details in Sec. 5.3. In
the current section, we concentrate on traffic that can
be regarded as legitimate.

Protocols: Over the 7-year period, in both direc-
tions, TCP and UDP continuously conveyed more than
90% of packets. ICMP (Ping) presents a noticeable
share of the packets, and more frequent for Jp2US traf-
fic (~5%). At F, the situation is more even in this re-
spect. Many INSLP packets (a security layer protocol)
are also found in US2Jp traffic, from 2001 until early
2004. GRE (an encapsulation protocol) packets make
a noteworthy part of the Jp2US traffic, notably around
mid-2005 (more than 5% of traffic).

TCP/UDP contents: Details on the breakdown of
TCP/UDP packets is provided in Fig. 2. A majority
of them consists of Web traffic: At B, 40% for Jp2US
and 50 — 55%, for US2Jp. After the link upgrade to
F, it increases to roughly 60% for both directions. The
second largest group is related to Peer to Peer (P2P)
exchanges. Besides HTTP and P2P, common Internet
services such as FTP, mail (SMTP, POP, IMAP,...),

Peer to peer

“DNS L

4 5 6

1
7 2008

] !
7 2008

Figure 2: Application breakdown vs. years. Rela-
tive amounts of protocols (in legit traffic). Bottom to
top: DNS (light green), common services (SSH, FTP,
mail) (orange), HTTP (green), suspected P2P (red) and
identified P2P (light red). Left: Jp2US; Right: US2Jp.

news protocols, etc. account together for around 5%;
this ratio remains fairly stable over the years. Most of
the remaining TCP/UDP traffic is targetting Microsoft
services (such as MS RPC, MySQL, file sharing). This
amounts to a couple percent of the US2Jp traffic. Those
are probably anomalous and will be discussed further
later on. Broadcasting protocols such as Realserver or
Shoutcast also represent 1 or 2%. Finally, a quite large
number of DNS packets are also present: At B Jp2US,
from 2001 to 2006, DNS traffic is larger (~15%) than for
US2Jp (~5%). For F, the situation is nearly inverted,
likely due to the anycast deployment of M-root DNS
server operated by WIDE.

Peer to Peer: Traffic going to or from usual P2P
ports constitutes around 30% of packets in each direc-
tion in 2002. At that time, the most popular protocol
was Napster. Others such as Gnutella and its clones,
Kazaa, WinMX, and Emule-Edonkey are also identified.
This identified P2P traffic tends to disappear over the
years and is quasi invisible since 2004. Some P2P traffic
is still identified, mostly Bittorent (only around 2% of
the traffic). However, the decline of the P2P traffic is
only apparent and actually corresponds to a P2P hiding
phenomenon [17]. A naive identification method based
on source and destination port recognition no longer
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Figure 3: Packet sizes vs. years. Proportion of large
(> 1400B), small (< 144B), or medium (in-between)
packets. Left: Jp2US; Right: US2Jp.

works. Because of evolving P2P applications, firewall
policies, etc., modern P2P software makes use of ran-
dom ports as opposed to fixed ports. This is confirmed
by the observation that a significant increase in TCP
and UDP traffic volume between high ports (> 4000), in
the recent years, correlates with the decrease of identi-
fied P2P (cf. Fig. 2). Very few exchanges are conducted
between high ports except for P2P, be they data sharing
or (for a probably small part only) games. Hence, the
conjecture that a large amount of P2P traffic is hidden
there. Note that the dataset provides neither access to
packet payloads, nor to complete flow information (only
one direction of flow is usually available) so that more
elaborated identification procedures (such as proposed
in [17]) cannot be used here. P2P identification is any-
way beyond the scope of this paper. Aggregating iden-
tified and unidentified P2P traffic shows (as expected) a
significant increase in absolute volume at F (compared
at B), though its relative share decreased slightly. As a
side note, around half of (identified or suspected) P2P
traffic (in number of packets) is carried by UDP (mostly
small to medium size packets), which is usually signal-
ing and request traffic; the other half corresponds to
TCP and large packets, hence to file transfers.

Packet size distributions: Asexpected, most pack-
ets are either small (< 144B signaling packets) or large
(> 1400B — usually data frames), cf. Fig. 3. Medium-
size packets are less frequent, with a stable proportion
since 2005. There is one notable evolution along the
years: in the upgrade from B to F, the proportion of
large packets has significantly increased. Also, we con-
firmed clear appearance of some typical intermediate
size of packet over 7 years, probably used by specific
applications (e.g., 6608 used for P2P software).

Summary: These analyses show that, over the seven
years, for both B and F, the content of (non anoma-
lous) traffic does not change drastically. The proto-
col/application breakdown reported here well matches
those provided in [12] whose traffic collected in 1998-
2003. However, they are in clear contrast with those in
[16], in the 90es when the majority of the traffic was
FTP and email.

4. METHODOLOGY FOR ROBUST STATIS-
TICAL CHARACTERIZATION

Let us now turn to the TCP/IP layer statistical char-
acterization: analyses of aggregated packet or byte count
time series, XA and Wa. Following most of the studies
reported in the literature, we concentrate on marginal
distributions (one-point statistics) and on the covari-
ance function (two-point statistics). A perennial issue
lies in the determination of the aggregation time scale A
leading to a relevant statistical description. This is ad-
dressed by performing a multiresolution statistical char-
acterization, i.e., analyses jointly at various aggregation
levels. Also, our goal is not to propose self-consistent
statistical models for Internet traffic, but rather to fo-
cus on the long term evolutions of some of its salient
features, namely Gaussianity and LRD (cf. [18, 23, 25,
26]). Therefore, analyses are confined to the estima-
tion of parameters measuring these properties, overlook-
ing other interesting attributes (e.g., those quantifying
short time correlations).

4.1 Statistical description

Marginal distribution and Gaussianity: The mar-
ginal distributions (MD) of XA and Wa are estimated
by means of empirical histograms. They are analyzed
for A; = Aog2?, with j = 1,...,J, Ay = lms and
J = 10, that is from lms to 1s. Following [8, 26], we
use Gamma laws to model the necessarily positive Xa
and Wa. AT, g distribution is defined as 'y g(z) =
(z/B) >~V exp(~x/8)/(BT(a)). It has mean p = off
and variance 02 = af%. While the scale parameter (3
mostly feels the volume of the data, the shape parame-
ter «v is used here as an indicator of closeness to Gaus-
sianity. Indeed, skewness and kurtosis (relative third
and fourth moments), which are 0 for Gaussian, behave
respectively as 2/y/a and 3 + 6/«, for . Hence, 1/«
controls the smooth transition of I' from exponential to
Gaussian. The shape and scale parameters are system-
atically estimated for Pkt and Byte count aggregated at
the different A;, and denoted by o; and g;.

Covariance functions and LRD: For stationary
processes, two-point statistics are analyzed by means
of the covariance function E{X (¢)X (t 4+ 7)} (E denotes
the expectation) or of its Fourier transform, the spec-
trum fx(v). LRD is defined as: fx(v) ~ Clv|~(ZH-1),
when |v| — 0. H is referred to as the Hurst param-
eter [23, 28]. It is well-known that LRD is best ana-
lyzed in a wavelet framework through the relation: S; =
(1/n;) S0 ldx (4, k)2 ~ C29CH=D when 27 — +o0
and where the dx (j, k) are the (Discrete) Wavelet Coef-
ficients of Xa,, at scale 2/ A¢ and time position k27A,.
By nature, wavelet coefficients constitute multiresolu-
tion quantities, i.e., aggregated versions of X at level
27A¢. The plots log, S; versus log, 2/ = j are com-
monly referred to as logscale diagrams (LD), and serve
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anomaly-free. Ex2 (cols. 3&4): B-US2Jp, 2003/06/03, congestion. Exz3 (col. 5): B-Jp2US, 2004/09/21, anomalies

(network scan, spoofed flooding, attack on Realserver).

as the basis for Hurst parameter estimation [28].

4.2 TImpact of the variety of traffic conditions

Let us now illustrate these two statistical analyses
on traffic collected under different conditions. Internet
traffic is not intrinsically stationary (daily or weekly sea-
sonality, anomalous events,. . . ). However, for 15-minute
long traces, stationarity is fairly well satisfied, hence the
MD and LRD analyses described above are valid (cf.
e.g., [3, 28] and discussions in Sec. 6).

Example 1 (Ezl in Fig. 4) counsists of US2Jp traf-
fic collected on 2005/07/11, chosen because traffic is
neither congested or restricted nor with anomalies. A
careful human inspection (assisted with the anomaly
detection procedure of [8] recalled in Sec. 6) enables
us to conclude that it contains only a small number of
(low volume) sure or suspected anomalies. Traffic MD
at various A; are satisfactorily modeled by I' laws (2nd
row). The LD exhibits a classical knee-shaped form that
consists of two ranges of scales: short range dependen-
cies (SRD) at fine scales (from 1ms to less than 1s), and
long range dependencies (LRD), at coarse scales (from
1s to 500s), separated by a typical scale 29+ Ay ~ 1s.
LRD is evidenced by the linear part of the LD at coarse
scales (with estimated H ~ 0.95). Such a shape for
LDs is consistent with experimental observations con-
tinuously reported in the literature over the years [10,
13, 15, 26, 28] as well as with theoretical models such
as Cluster Point Processes [13]. Fine scales are related

to the packet arrival process while coarse scales are re-
lated to flow characteristics (notably heavy tail packet
number distributions).

Example 2 (Ez2 in Fig. 4) corresponds to traffic col-
lected under severe byte congestion (2003/06,/03, US2Jp).
Whereas the MD and LD for XA are similar to those of
FEx1, clear changes for Wa are observed. MD is still well
modeled by I' laws, though «; and 3; parameters differ
from those of Ex1 (values not reported, but differences
easily inferred from the plots: larger means, but smaller
variances). The LD shape is completely altered, notably
with a disappearance of LRD at coarse scales. This can
be easily interpreted: congestion implies that byte count
remains quasi constant (Fig. 4 shown by a significant
drop in standard deviation and hence in variability).
By construction, no variability implies no LRD. There-
fore, FEx2 illustrates that congestion impacts both the
route toward Gaussianity and the actual value of the
LRD parameter or even the existence of LRD. Conges-
tion much less affects Pkt count as its variability is not
strongly impacted by byte number saturation.

Example 3 (Ex3, 5th col. in Fig. 4) consists of traf-
fic (Jp2US, 2004/09/21) containing several low-volume
attacks: SYN flooding (~ 6% of traffic) looking for net-
work open ports, SYN flooding from a single source,
spoofed flooding (using spoofed IPsrc, 2% of traffic), at-
tack targetting a Realserver through TCP port 554 (2%
of traffic). It shows that LRD is usually not completely
altered by the occurrence of (low-volume) attacks: the



LRD onset remains around 29*Ag ~ 1s and the Hurst
parameter is not markedly varied. However, anomalies
impact the range of fine to intermediate scales of the LD,
and therefore the SRD of Xa,. Simultaneously, MDs re-
main well modeled with I' laws, despite the occurrence
of attacks. However, o, hence the route toward Gaus-
sianity, is significantly modified when anomalies occur
(in consistence with the findings in [8, 26]). This change
is in agreement with that observed in the fine scale range
of the LD. Indeed, a change in a; for the range of scales
Ims < 27A¢ < 1s can only result from a change in the
structure of the short time correlation in the data. This
is the grounding ingredient of the anomaly detection
procedure proposed in [8].

Discussion: These examples show that changes in
traffic conditions (traffic restrictions, congestions, low-
volume anomalies, major period of Sasser anomalies,. . . )
drastically modify the parameters of the statistical mod-
eling. Observations drawn from other days under con-
gestion or with anomalies are always consistent. The
study reported in Sec. 6 shows that there exists no day
without numerous low-volume anomalies. This is a se-
vere difficulty in performing long term evolution analy-
ses of statistical characteristics of traffic intended here:
there is a major risk that the study boils down to a long
list of singularities, abnormalities or specific situations,
with no possibility to identify normal days and hence to
extract any global and long term features. This signif-
icantly impairs the possibility of performing automatic
and unsupervised data analyses (a mandatory require-
ment to process a 7-year long dataset!) and hence of
relevantly addressing issues related to long term evo-
lution toward Gaussianity or LRD decrease or disap-
pearance. Overcoming this difficulty is one of our key
contributions and the solution proposed is referred to
as a robust estimation procedure.

4.3 Sketches for robust estimation

In statistical signal processing, robustness in estima-
tion is classically achieved by performing averages over
independent copies of equivalent data. In our case, this
would mean either split data into shorter traces or aver-
age equivalent days, but 15min long data are too short
for trace spliting and identifying equivalent days is a
complex and dubious solution. Instead, we turn to
the use of random projections (usually referred to as
sketches), following the seminal contributions describ-
ing the benefits of their use for traffic analyses [22, 24].

Sketches: Let h,, denote a k—universal hash table of
size M, computed using the fast-tabulation method in
[27]. The hashing key A is chosen as one of the packet
attributes (IPdst, IPsrc,...). The original collection of
packets is then split into M sub-traces, each of them
consisting of all packets with identical sketch output
m = h,(A). This amounts to performing random pro-
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Figure 5. Robust estimation. B-US2Jp, 2005/07/11,
no congestion: FExl. Top: Bytes; Bottom: Packets.
Left: Aggregated time series (1s) displayed cumula-
tively by sketch sub-trace; Right: LDs for global traffic
(thick line, ¢), for sketches (thin lines) and for median-
sketch (thick line, o).

jections, preserving flow structures (packets belonging
to a given flow are assigned to the same sub-trace).
Each sub-trace is then aggregated, X(AT), m=1,...M,
and analyzed following the procedures used for the orig-
inal trace. Robust estimation results from averaging,
by means of median, estimates obtained independently
from each sketch output.

Example 1: Fig. 5 shows aggregated sketched sub-
traces (M = 8) together with their LDs for Ezl. For
this quasi anomaly free day, the M LDs display a weak
variability around a well-defined average. Hence, the
median LD is close to any of them and matches perfectly
(up to a vertical shift, due to the division by M) the LD
computed from the entire trace. Notably, comparing
the estimates of the Hurst parameter obtained from the
whole trace, Hg, from the median of the estimates over
the M sketches, H,,, shows that they are perfectly con-
sistent (and within the confidence intervals one of the
other). As intuitively expected, all sketches are statis-
tically equivalent. This validates the consistency of the
median-sketch estimation procedure. It also shows that
flow-sampling is compatible with LD estimates, better
than ones being obtained by flow-preserving averages.

Example 2: Fig. 6 shows aggregated sketches and
their LDs for Fx2 (congestion) (Byte counts only). The
striking feature consists of each sub-traces having recov-
ered a significant variability, when the original shows al-
most none. Accordingly, the sub-trace LDs (and hence
their median) changed dramatically in shape (compared
to that obtained from the entire trace) and exhibit back
the knee-shape form with j, ~ 9 or 10 (0.5s to 1s) and
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Figure 6: Robust estimation. B-US2Jp, 2003/06/03,
with congestion: Ex2 (Byt). Left: Aggregated sketches
(1s); Right: LDs for global traffic (thick line, o),
sketches (thin lines) and median-sketch (thick line, o).

estimated H in the usual range [0.8,1]. This indicates
that sub-trace are characterized by a clear and unques-
tionable LRD. This is a major finding of the present
work: the global analysis of a trace under a congested
day leads to the erroneous conclusion that congestion
eliminates LRD. A sketch based analysis instead clearly
reveals that the network mechanisms at work to create
LRD remain equally and strongly active under conges-
tion. Moreover, a relevant analysis and estimation of
the LRD parameters can be automated by median over
sketches. This provides a first justification in favor of
qualifying this procedure as robust.

Example 3: Fig. 7 shows aggregated sketches and
their LDs for Ex3 (anomalies). One observes that all
sub-trace LDs almost superimpose but 2. Inspection
confirms that the LDs resisting superimposition con-
centrate on the significant anomalies detected that day.
Therefore, computing the median of the LDs results
in an analysis of the traffic covariance structure as if
not impacted by these significant anomalies. The me-
dian LD now significantly differs from the one computed
from the entire time series, whose shape is mostly dom-
inated by the contributions of the anomalies (global
LD is affected by the shape of the dominant sub-trace
LD, which may change from scale to scale). The dif-
ferences are mostly seen in the fine scale range (0.1s
to 2s), in agreement with our previous findings: low
volume anomalies mostly affect traffic SRD [8]. This
also indicates that the median-sketch based procedure
provides a relevant estimate for H even when anoma-
lies are present, and hence shows that traffic LRD per
se is not affected nor varied by low-volume anomalies.
These observations justify the crucial choice of the me-
dian, instead of the simpler mean, to average estimates:
median is a non linear procedure providing robustness
against outliers (here anomalies). This raises a ques-
tion of the choice of the number of sketch outputs M.
It obviously resorts to a trade-off: larger M decreases
the impact of outliers (hence of anomalies); However,
larger M also implies less traffic in each output and
hence a larger inter-sketch variability and larger confi-
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with severe anomalies: Fx3 (Pkt). Left: Aggregated
sketches (1s); Right: LDs for global traffic (line, ©),
sketches (thin lines) and median-sketch (thick line, o).

dence intervals for estimates. Empirical investigations
yield M = 8 as satisfactory. This gives a second jus-
tification for robust: median-sketch procedure provides
statistical estimates that are not (or weakly) impacted
by low-volume anomalies (be they short or long lived).
Obviously, if traffic mostly consists of major anomalies
(like the Sasser period already mentioned) producing a
dominant fraction of the traffic, estimates will be im-
pacted and the proposed median-sketch procedure can-
not help, as cannot any other procedure.

Summary: These case studies show that the pro-
posed median-sketch estimation procedure is statisti-
cally consistent and provides robustness against severe
traffic condition changes (congestions, restrictions, low-
volume anomalies,...). Analyses have been carried over
LDs, yet equivalent conclusions are drawn when study-
ing MDs (and the a; and §; parameters). This proce-
dure is also consistent with networking issues: sketches
preserve flow structure and hence can be confronted to
flow sampling tools such as NetFlow and sFlow.

Note that mitigating anomalies by sketches is achieved
only when the relevant hashing key is chosen (e.g., IPdst
hashing for scans). This is solved by using several hash-
ing keys in parallel (this is the rationale behind the de-
tection procedure described in [8] and used in Sec 6).

5. SEVEN YEARS OF RESULTS

When applied to the 7-year long MAWTI dataset, the
robust median-sketch analysis procedure yields the fol-
lowing results and conclusions.

5.1 Long Range Dependence

Constancy along time and global fluctuations:
The significant variabilities of the LDs computed from
the different days of the entire dataset yield large and
wild fluctuations along time for the estimate H, (cf.
Fig. 8). This could incite to conclude that LRD is a ver-
satile property significantly affected by changing traffic
conditions and anomaly occurrences. This may (partly)
explain the perplexingly large range of estimated H re-
ported in the literature over the years from various traf-
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Figure 8: LRD vs. years. Global (gray lines) and median-sketch (black lines) estimates of H vs. years 2001-2008.

fic analyses. Conclusions drawn from the median-sketch
procedure are markedly different and accurate. Median
LDs (comparable to those shown in Fig. 5 to 7) remain
with a strikingly constant knee-type shape over the en-
tire period. The separation scale 27*A is constantly
in [0.5,1.5]s and the median based estimate H,, of H
remains almost always in the range 0.8 < H,,, < 1 (cf.
Fig. 8)), indicating thus a strong and persistent LRD.
Anomalies: A number of estimates H,, still signif-
icantly depart from the range 0.8 < H,, < 1, for in-
stance, during the Sasser period (Fig. 8, top right, pe-
riod in gray). As explained, anomalies constitute most
of the traffic during that period so that no robust esti-
mation can be achieved. It has been manually checked
that the small number of residual large values for H,,
is explained by the use of a single hashing key (IPdst)
to obtain the plots in Fig. 8. Robustness against some
classes of anomalies is not achieved in this case and
would require taking the median over estimates com-
puted from different hashing keys (not shown here).
Congestions: Analyses of congested periods (no-
tably US2Jp, bytes, Fig. 8, bottom right) indicate that
the global estimate H, are constantly close to 0.5 er-
roneously validating the claim that congestions induce
the disappearance of LRD. Instead, even if closer to the
lower bound H =~ 0.8, median based estimates, clearly
speak for the persistence of a very strong LRD. There-
fore, the network mechanisms causing LRD are not (sig-
nificantly) altered or modified by congestion occurrence,
and the traffic is not returning to a simple Poisson pro-
cess. Notably, the celebrated result by Taqqu et al.
[23] relates LRD to the heavy-tail nature of the number
of packet per flow distributions. Qualitative analyses
enable us to indicate that congestions induce no ma-
jor change in the shape of such distributions, hence no
change in LRD. Quantitative analyses relating H to the
heavy tail index are not possible because the 15-minute

duration is too short. Ref. [15] indicates that knee-
shaped LDs (and LRD) were found on traffic splitting
or merging at non congested routers. Our result com-
plement this by showing this is still valid on a link under
congestion caused by traffic merging.

Bandwidth and bandwidth occupancy rate: Fig. 1
shows that the bandwidth occupancy rate has been reg-
ularly increasing on B (Jp2US) over the years up to
saturation. Meanwhile, H,, remained fairly constant.
Also, the switch from B to F is accompanied with a
significant increase in bandwidth. Fig. 8 indicates that
the H,, for F are systematically closer to the upper
bound of (yet within) the range 0.8 < H,, < 1. This
suggests that bandwidth and/or bandwidth occupancy
rate changes do not cause nor suppress LRD and only
marginally impact the LRD parameter: Low bandwidth
occupancy rate favoring (slightly) higher H.

Bytes vs. Packets: Another ongoing debate re-
garding LRD consists of deciding whether it should be
measured on packet or byte counts, or both. This is ex-
amined by means of scatter plots, Fig. 9: H(B) (byte)
vs. H(P) (packet). For the global H, estimates (top
row), despite a significantly positive correlation coeffi-
cients py ~ 0.65 (both directions), a large variability
and dispersion are observed, explained both by numer-
ous outlier (anomaly) days and long congestion periods
yielding unreliable estimates for H(B). This would lead
to conclude that LRD observed on both packet and byte
counts are only partially related, suggesting that they
may be induced by different mechanisms. Considering
instead the median-sketch estimates H,, (bottom row)
reveals a much clearer dependence, with p,, ~ 0.95 indi-
cating H,,(B) ~ H,,(P). This suggests that the same
network mechanisms are at work to create the same
LRD phenomenon in both byte and packet counts. This
is consistent with Taqqu’s fundamental theorem [23] as
well as with some traffic models (e.g., [13]) usually pre-
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Figure 9: Scatter plots of H(B) (byte) vs. H(P)
(packet). Global (top) and median-sketch (bottom)
estimates. Symbols are: o: B without congestion; e : B
with congestion; +: B anomaly (US2Jp) and restricted
traffic (Jp2US); o: F. Left: Jp2US; Right: US2Jp.

dicting the same Hurst exponent for packet and byte
counts. Our findings confirm experimentally from real
data these conceptual analyses, and complement them,
showing that this identity remains valid during conges-
tion periods and despite the occurrence of anomalies.

Summary: The median-sketch based analysis of the
MAWTI 7-year long dataset demonstrates that the LRD
paradigm has been and remains a relevant and central
feature of Internet traffic statistics, even during con-
gestion or traffic restriction periods or anomaly occur-
rences. It also shows that the Hurst remained constant,
and high, 0.8 < H < 1, along the years. It tends to be
slightly modulated by the bandwidth occupancy rate
(loaded link yields estimates closer to 0.8).

5.2 Tendency to Poisson or Gaussianity ?

Numerous studies claim that the on-going increase in
link bandwidth causes a return of traffic toward Poisson
distribution for packet interarrival process and, hence
mechanically, toward Gaussian aggregated times series
(cf. e.g., [3, 32]). Such a statement per se hides a num-
ber of involved issues, some being addressed here.

First, Gaussianity of marginal distributions (MD) is
in itself of only limited interest (see, for instance, [21]).
One should rather consider Gaussianity for joint n-point
distributions, as this is what actually matters for traf-
fic modeling, performance assessment and network engi-
neering. However, this is difficult to analyze in practice.
Instead, we here handle this indirectly, by analyzing

10

us2Jp

7 2008
Jp2Us

Figure 10: Indices for closeness to Gaussianity.
Top: indices «;, as a function of time, for different
values of 7 = 2,4,6,8,9. Bottom: normalized indices
o = aj/ay (J =9). Left: Jp2US; Right: US2Jp.

how MD evolve towards Gaussianity under an increase
of the aggregation level. Second, as mentioned earlier,
median-sketch LDs undergo little changes in shape de-
spite significant variations in bandwidth or in the num-
bers of packets, bytes, etc. Notably, the onset (the knee)
of the LRD scale range and the LRD parameters remain
remarkably constant. This is in contradiction with any
return to a Poisson behavior, which would indeed im-
ply the disappearance of LRD, or, at least, a significant
increase of the LRD onset scale 27*Ay. The previous
section showed that this onset scale remains within the
range [0.5, 1.5]s over the entire period. Third, traffic col-
lected on a large link is likely to appear more Gaussian
than traffic from smaller link, due to a pure aggregation
effect (central limit theorem), often referred to as sta-
tistical multiplezing or multiplexing gain [4]. The main
point is that evolution toward Gaussianity with respect
to an increase of the aggregation level matters more
than closeness to Gaussianity at a given level. There-
fore, there is a necessity to introduce some compen-
sation involving the bandwith and the throughput to
renormalize this closeness to Gaussianity accordingly.

Our contribution to this issue makes use of ¢, as in-
dicators for closeness to Gaussianity. Because anomalies
affect the evolution toward Gaussianity (cf. Sec. 5.3 and
[8]), we use the robust median-sketch estimates of «;.
Obviously, periods with major anomalies (e.g., Sasser)
modify globally the traffic statistics, hence they are not
considered when drawing conclusions about the long
term evolution of Gaussianity.

Fig. 10 (top row) shows «; for different aggregation
levels 29 Ay, as a function of time. There are various pe-
riods of specific interest. Top left plot (Jp2US), reveals
a regular increase of o; with time (from 2004/03 to the



end of 2006). Comparisons with Fig. 1 indicate that this
corresponds to a slow but regular increase of throughput
(especially in bytes). This confirms that departure from
(or closeness to) Gaussianity for aggregated traffic MD
are impacted by traffic volumes, whatever the granular-
ity. An analog conclusion can be drawn when observ-
ing the decrease in «; on top right plot (US2Jp, from
2003/03 to the end of 2004) related to a byte conges-
tion period and a concurrent packet decrease. This is in
agreement with findings reported in [3]. However, com-
paring 2005 at B to 2007 at F' in both directions shows
that the question is intricate. Packet, byte or flow rates
are higher at F yet producing smaller «; (hence distri-
butions that are farther to Gaussian) for the same j.
A deeper analysis shows that the bandwidth occupancy
ratio for F in 2007, is close to 50%, while it is close
to 90% for B in 2005. Also, the bandwidth occupancy
ratio for B in 2002 (Jp2US) is close to 50% yielding
a; of comparable order of magnitude to those at F in
2007 (Jp2US). This demonstrates that not only traffic
volumes but also bandwidth occupancy ratio controls
closeness to Gaussianity.

To further proceed, we renormalize a; as o} = a;/a.
This amounts to assuming, for an arbitrarily chosen ag-
gregation level 27 Ay, a level of closeness to Gaussianity
accounting for global traffic volume effects. In Fig. 10
(bottom row), one sees that these o/(j) remain, strink-
ingly far more constant along time (notably over the two
specific periods discussed above), and this for all j. This
is in no way a trivial effect that could be induced by the
chosen normalization procedure. It means that the evo-
lution toward Gaussianity as a function of the different
aggregation levels is kept constant along time, even at
the upgrade from B to F. This suggests that changes in
flow, byte or packet rates and/or bandwidth occupancy
affect closeness to Gaussianity at a given aggregation
level but do not impact the (speed of) evolution toward
Gaussianity. In other words, an increase in throughput
or bandwidth causes aggregated traffic to have MD be-
ing closer to Gaussian, but with unchanged speeds at
which the joint distributions evolve to Gaussian. Such
analyses and conclusions shed a new light of the issue of
traffic Gaussianity: from a network engineering point of
view, the evolution to Gaussianity is in itself far more
important than absolute Gaussianity at a given level.

5.3 Anomalies

Finally, many features of the traffic are caused by the
numerous anomalies found in the traces. The method-
ology proposed for robust analysis can be adapted to
anomaly detection: departure from the median-sketch
average behavior are considered anomalous. This auto-
mated anomaly detection procedure has been proposed
and validated in [8]. In a nutshell, one splits traffic by
sketching it in M outputs, using N different hash func-

11

14

Sasser

Jp2Us

Ping

Ping

ol

o
2001 2 3 4 5 6 7 2008 2001 2 3 4 5 6 7 2008

Figure 11: Number of detected anomalies using
the Sketch+Multiresolution method. Hash on IPsrc.
From top to bottom: “Suspected” (green): WWW,
P2P, GRE, DNS. Mostly attacks (yellow): various
mechanisms. “Sure attacks” (red): Ping/SYN floods,
spoofed,... Left: Jp2US; Right: US2Jp.

tions based on one of the packets attributes (usually
source or destination IP). A sketch output is declared
abnormal when the {a;, 3;}, obtained from MD com-
puted jointly from several aggregation levels (multires-
olution), differ significantly from the median taken over
the sketch outputs. Anomalies (together with their IP
attributes) are identified by tracking flows that are con-
sistently hashed in abnormal sketch outputs — hence
the use of several different hash functions. More details
on this anomaly detection tool are shown in [8].

Global features of anomalies: Applied to each day
of the 7 year long dataset, at B and F, the detection
procedure showed that around half a dozen (often many
more) of suspicious significant events are usually identi-
fied in each trace as shown in Fig. 11. Inspecting them
shows that they belong to numerous and different kinds
of anomalies with variety of lasting time. A systematic
detection and classification over the entire dataset is
beyond the goals of the present contributions. Instead,
we concentrate on two issues: recurrent anomalies and
most prominent ones.

It is often quite difficult to automatically determine
whether detected anomalies correspond to a real attack,
a defective host, or is legitimate but unusual traffic that
stands out in the trace. A decision requires a careful
inspection of the alert, by examination of packet at-
tributes, IPs, flows, host behaviors, etc. A preliminary
yet automated procedure, based on simple attribute
recognition, sorts alerts into three main categories (cf.
Fig. 11): “sure” attacks (e.g., SYN floods, PING floods,
packets with spoofing, etc.), unusual traffic patterns
that are mostly classified as attacks if inspected closely
(and manually), and “suspected” anomalies which are
traffic with usual protocols and could hence be legiti-
mate, but show unusual volume or statistical properties.

Most prominent anomalies: Ping flood, Sasser
worm: Some anomalies are extremely large and con-
tribute to a significant proportion of the traffic (more
than 80% of the link capacity) as shown in Fig. 12. A
first significant and long-lasting detected anomaly con-
sists of a ping flooding (2003/08-12). Ping floods are
quite common and can be regularly found during the
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seven years. This case is special in that it lasts sev-
eral months and with a very high volume: more than
half of the packets on the link in Jp2US, and around
25% in the other direction, are ICMP packets. Another
large detected anomaly has already been mentioned:
the famous Sasser worm activity, between 2004/05 and
2005/05 mainly. From the traffic breakdown in Fig. 12,
successive outbursts are observed (2004 /08, 2004 /12 and
2005/03): Sasser was on the verge of disappearance
twice, yet came back (probably variants of the worm).
This Sasser activity accounts for more than 50% of the
US2Jp traffic, while barely noticeable in the opposite di-
rection (which is likely due to a better defense against
worms).

Anomalies in WWW exchanges: We also found
that misbehaved HT'TP carried on the unusual amount
of large packets sent to Japanese servers in 2004/03-
05. It could be just upload but this often involves more
than 10° packets sent to a single server in each 15-min
trace. This hence seems to be an attack, even if cer-
tainty is not at hand (without packet payload, no back-
engineering of anomalies is possible). This is a typical
example of “suspected” anomalies in Fig. 11. Those
events are anomalous in every respect, yet one can not
completely rule out the possibility of its being legitimate
traffic.

Recurrent anomalies: Besides those major events,
there existed many other anomalies. SYN scans and
floods towards HTTP and other services are especially
very common. Anomalies targeting any and all proto-
cols and applications are regularly found, usually closely
related to the popularity of the protocol itself. In par-
ticular, we found appearance of typical types of anoma-
lies depending on the observed period; NNTP for the
earlier days, SSH since 2004, MS security holes related
from 2003/08, and so on.

Summary: The painting of a complete description
of all the anomalies in traffic and of their evolution
through 7 years remains a difficult exercise in a re-
stricted space. The salient point is that normal traf-
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Figure 13: One day: Throughput vs. hours.

fic seems to be never observed, numerous significant
anomalies are consistently found in each 15-minute long
daily traces; major anomalies that consume more than
half of the throughput during several consecutive months
are also found; there exist anomalies that continue over
the span of months, even years (some from or to the
same hosts). Hence, our findings underline the need for
estimation procedures that are robust against anoma-
lies, when performing long term evolution analyses.

6. RESULTS ON A 24-HOUR LONG TRACE

We now analyze a 24-hour long trace collected on
2008/03/19, within the framework of the A Day in the
Life of Internet project [20]. This enables us to address
i) representativity of 15-minute long trace vs. intraday
variability or volume trends and ii) stationarity over pe-
riods longer than 15 minutes.

Intraday variability: Splitting the 24-hour long
trace into 15-minute long sub-traces enables consistent
comparisons against previous results. MDs (not shown
here) are satisfactorily modeled with Gamma laws. LDs
systematically present the usual knee-type shape, with
Ao27* ~ 0.5s. Fig. 13 reveals a smooth modulation
of the traffic volume with respect to the hours of the
day, which simply amounts to a vertical shift in LDs.
This discrepancy is fixed by normalizing the traces w.r.t.
their volume. Yet, despite normalization, Fig. 14(a)
reveals a significant variability of the LDs around the
knee-type shape, affecting a large range of scales, from
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Figure 14: One day: Statistics (Jp2US). (a) LDs for 15min long traces (Left: Pkt; Right: Byte): Global (black

©) and median-sketch (blue o).

(b) Estimates for H vs. time: Global (gray), median-sketch (black). (c) LDs for

6h-long traces (Jp2US): Average LD over 15-min long traces (blue o) and LD computed fully on 6h trace (black ¢).

a few ms to the minute. Variability is further confirmed
in Fig. 14(b) where the fluctuations of the estimated Hs
are large. This is consistent with the fact that, contin-
uously along the day, a number of low volume various
anomalies were detected.

Applied to the 96 sub-traces, the median-sketch pro-
cedure produces LDs almost superimposing one onto the
others and hence estimates for H with far less variabil-
ity. Also, again, byte and packet count median-sketch
based estimates for H are found to be closely tied to-
gether (scatter plots not shown). Hence, as have been
expected, the median-sketch methodology proves robust
against intraday variability as well and permits to dis-
entangle smooth evolution along the day from local-
ized events (such as anomalies). Moreover, the median-
sketch procedure reveals a strong and persistent LRD
(with constant Hurst parameter) irrespectively of the
time of the day. This can be interpreted as follows.
Japan and the USA belonging to very different time
zones, traffic is always important and there always ac-
tive sessions (and Internauts), and hence the network
mechanisms producing LRD remain constantly active.

Stationarity time scale: There is an ongoing de-
bate questioning the existence of LRD w.r.t. non sta-
tionary effects, to which the analysis of a 24-hour long
trace can contribute. Inspired by the methodology de-
veloped in [28], the 24-hour trace is split into adjacent
and non-overlaping sub-traces over which LDs are com-
puted independently. Fig. 14(c) illustrates that the sta-
tionarity hypothesis cannot be rejected for time scales
up to at least 2h = 22! A, and hence shows that LRD
can not be confused with any spurious non stationari-
ties: LRD measured on 15-min traces (in the range 1s
to 1min) is clearly and consistently expanded at coarser
scales (1 min to 1h), confirming its existence and hence
the meaningfulness of the estimates reported in Sec. 5.
A careful analysis indicates a slight decrease of the es-
timated H when measured at the coarsest scales (1 min
to 1h), compared to those obtained from the range 1s to
1min. This is consistent with previous analyses indicat-
ing that, LRD being a coarse scale asymptotic property,
it may be difficult to measure H precisely when traces
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are not long enough [13]. This may explain that, for
F, H is slightly over estimated (> 1): the bandwidth
increase may imply that LRD should be actually mea-
sured at coarser scales, but only partially available for
15-min long traces. Still, our main conclusions (LRD
remains constant and strong) cannot be questioned.
Summary: The analysis of this 24-hour trace en-
ables us to further illustrate the relevance and potentials
of the proposed median-sketch estimation procedure: it
is robust against intraday variabilities. Also, this anal-
ysis reveals a strong and constant LRD irrespectively
of the time of the day. Hence, the long term evolution
study reported in Sec. 5.1 is not significantly dependent
on the specific data collection time. The trace actu-
ally collected lasted 72 hours. The other 48 hours yield
equivalent conclusions. Moreover, the MAWI datasets
contain several other long traces. For comparison, that
of 2005/09/22 has also been studied (not shown) and
yields similar conclusions, hence further validating the
stability of the statistical characterization along the years.

7. CONCLUSION

A unique day-by-day longitudinal analysis of a 7 year
(and one day) long dataset has been conducted. It
shows that the estimations of the parameters enter-
ing the traffic statistical characterization exhibit a huge
daily variability, likely due to traffic condition variations
(congestions, restrictions,...) as well as a wide variety
of low-volume anomalies constantly but randomly oc-
curring. Such wild fluctuations significantly impair the
possibility of drawing long term evolution conclusions.
Therefore, our first major contribution is methodologi-
cal: to disentangle long time evolution from day-by-day
incidental variabilities, we have proposed the recourse to
an estimation procedure based on sketches and median
average, and shown that it brings robustness against
congestions and low-volume anomaly impacts as well as
against intra-day variability.

The analysis of each day traffic yields our second ma-
jor contribution: the parameters describing the statisti-
cal characterization of Internet traffic remain surprising
stable along the entire period. LRD (for both packet



and byte) remains remarkably strong, persistent and
stable. The LRD onset scale of time remains stable (0.5s
to 1s). Our robust analysis showed (for one day traces)
that LRD persists over hours. Also, the LRD parame-
ter H for bytes and packets are closely related (almost
identical). This indicates that the same network mech-
anisms are creating a unique LRD phenomenon over
both count time series. The robust analysis also showed
that despite a significant reduction of volume variability
during congestion periods, traffic still presents a strong
and clear LRD. MDs are constantly well modeled with
Gamma distributions. This enabled us to argue that it
is not how a MD at a given aggregation level is close
to Gaussian that matters but rather how fast it evolves
toward Gaussianity under aggregation. We found that
this speed of evolution also remains stable along the
years. These persistence and stability of these two ma-
jor statistical properties lead us to conclude that they
are intrinsic and unavoidable features of aggregated In-
ternet traffic and also that there is no evidence for a
return to Poisson inter-arrival process, even when the
capacity or the loads of the links are significantly in-
creased. This might be seen as a pessimistic conclu-
sion w.r.t. traffic and network engineering: the failure
of the Poisson model still holds. However, the remark-
ably stable traffic characterization can also be exploited.
Our conclusions also open rooms for further investiga-
tions: Could the bandwidth occupancy ratio be a key
control parameter rather than the absolute statistical
multiplexing gain? May an increase of any of them be
accounted for by a simple shift in time scales?

At the application level, traffic proportion remains
also relatively stable, despite the intuitive and heuristic
claims often made, forecasting dramatic changes in In-
ternet traffic. The application usage has slowly shifted
from pure web traffic to P2P applications along the
whole period, together with changes in P2P modali-
ties (higher ports,...) in the recent years. Surprisingly,
traffic has been found to contain each and every day (for
7 years) a large number and a variety of anomalies. This
significantly questions the notion of normal or reqular
traffic and put the emphasis for the need and benefits
of the proposed robust median-sketch estimation proce-
dure. A further study will be to extend these analyses
to multiple measurement points, to obtain more global
view of traffic statistics.
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