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Résumé We study experimentally the slow growth of a single crack in a glassy film of polycarbonate
submitted to uniaxial and constant imposed load. Flame-shaped macroscopic zones of plastic deformation
appear at the tips of the crack and the formation of these plastic zones involves a necking instability. In order
to understand the crack growth dynamics, we study first the growth dynamics of the plastic zones alone,
i.e. without crack, at constant imposed load. We find that the growth velocity of the neck can be very well
described by the same Eyring’s factor than the one describing the creep flow of polycarbonate. In addition,
we discover that a surface oscillation with a very large wavelength to amplitude ratio occurs during the
neck propagation, and that both wavelength and amplitude are proportional to the film thickness. Finally,
we succeed to model analytically the dependance of the instantaneous crack velocity with experimental
variables using Dugdale-Barenblatt static description of crack tip plastic zones associated to an Eyring’s
law and an empirical dependence with the crack length that may come from a residual elastic field.

PACS. 46.50.+a Fracture mechanics, fatigue and cracks – 61.41.Be Polymers, elastomers, and plastics –
81.40.Lm Deformation, plasticity, and creep – 68.35.Ct Interface structure and roughness

1 Introduction

Strength of solids is still characterized in handbooks by
specifying a certain critical stress (for instance, a tensile
stress) above which the solid is expected to break apart.
However, it has been known since at least the 1940s [1,2]
that a solid submitted to a subcritical stress, i.e. a stress
lower than the critical one, will break anyway after a cer-
tain amount of time. This phenomenon called delayed,
time-dependent or subcritical failure may have catastro-
phic consequences. Therefore, understanding the mecha-
nisms of subcritical rupture of solids has been mainly a
concern for engineers but has also become an important
goal of fracture physics in order to improve the resistance
of structures. According to reported experimental works
[1,2,3,4,5,6,7], the dependence of the rupture time with
applied stress σ can be described in many kinds of ma-
terials (glasses, polymers, metal alloys, semi-conductors,
rocks...) by an Arrhenius law with an energy barrier de-
creasing with σ. This proposed universality is surprising
since these materials have micro-structures and rheologi-
cal properties very different from one another, and the
rupture dynamics is certainly expected to be dependent
on those properties. To lift this paradox, one must go
beyond usual characterization based on global properties
such as rupture time or essential work of fracture. Instead,
it is worth studying experimentally the full time-resolved
rupture dynamics, from the stress application to the final
breakdown of the sample. A convenient system to start

with is a two-dimensional solid with a single macroscopic
initial crack submitted to a uniaxial constant load.

In this context, recent experimental studies [7] have
shown that subcritical crack growth in paper sheets can
be successfully described by a thermally activated mecha-
nism inspired from previous theoretical works concerning
elastic brittle media [8,9,10]. Experimental study of slow
crack growth in a visco-plastic material under stress has
been also a very active topic [11,12,13]. General theoretical
frameworks [14,15,16] have been proposed to predict the
dependence of the crack growth velocity with experimen-
tal parameters using characteristic material time-response
functions such as its compliance. However, these models
involve complex integro-differential equations which are
hardly tractable in practical situations where visco-plastic
effects are strong. Consequently, the experimental time
evolution of the instantaneous crack growth dynamics can
not be captured easily by current models.

In order to provide more experimental insight in our
understanding of visco-plastic effects during slow crack
growth, we have performed an experimental study of the
slow growth of a single crack in amorphous polymer films
submitted to uniaxial and constant imposed load. The
films are made of polycarbonate which is a highly non-
brittle glassy material. We observe that a large flame-
shaped area where the material is plastically deformed, so
called the plastic zone, forms ahead of each crack tip. The
formation of the plastic zone involves a necking instability
that we study separately on rectangular strips without any
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cracks. We observe the growth of the necking instability
at constant imposed load and show that it is determined
by the same Eyring’s factor than the one describing creep
flow of polycarbonate. In addition, we discover that the
material drawn during the plastic flow at the neck under-
goes a surface instability with a wavelength and ampli-
tude that depend on the thickness of the sample. Then,
we study in detail the dynamics of crack propagation. We
observe that there is some scatter in the crack dynamics
due to uncontrollable effective initial experimental condi-
tions. Nevertheless, we are able to propose an analytical
expression for the instantaneous crack growth velocity as a
function of experimental parameters [17]. The law involves
a Dugdale-Barenblatt static description of crack tip plas-
tic zones associated to an Eyring’s law and an empirical
dependence with the crack length that may come from a
residual elastic field.

2 The experimental set-up and the fracture

experiments

The experiments consist in loading 125µm thick iso-
tropic polycarbonate films with uniaxial and constant im-
posed stress σ. The polycarbonate films used are Bayer
Makrofol R© DE and have the properties of bulk material.
The experimental set-up is made of a tensile machine dri-
ven by a motor (Micro Controle UE42) controlled electro-
nically to move step by step (Micro Controle ITL09). The
samples are mounted on the tensile machine with both
ends attached with adhesive tape and rolled twice over ri-
gid bars clamped on jaws. The motor controls the displace-
ment of one jaw (400 steps per micrometer) while the other
jaw is rigidly fixed to a gage (Hydrotonics-TC) which mea-
sures the force applied to the sample. The samples are loa-
ded by increasing the distance between the jaws. A feed-
back loop allows to adjust the displacement in order to
keep the applied force F constant with a precision better
than 0.5N and a response time less than 10ms. This set-
up is mainly used to study the growth of cracks in films
during creep tests but it allows to perform various tensile
experiments.

During the experiments, we light the samples from the
back and the transmitted light is collected by a high speed
digital camera (Photron Ultima 1024) at a resolution of
512*1024 pixels2. This allows to follow the dynamical phe-
nomenon occurring in the samples, either the growth of a
crack or the growth of a plastic zone. We observe that
the global deformation of the polycarbonate film during
a creep experiment is correlated, at least in the accele-
rating phase, in a reproducible way to the growth dyna-
mics of the object of interest (crack or plastic zone). We
take advantage of this property by triggering the camera
at fixed increment of sample deformation (about one mi-
cron) rather than at fixed increment in time. This avoids
saturation of the onboard memory card when the pheno-
menon dynamics is slow and makes the acquisition rate
faster when dynamics becomes faster and starts to have
an effect on global deformation. We acquire around one
thousand images per experiment.

The main experiments presented in this paper consist
in the growth of a single linear crack in a polycarbonate
film submitted to uniaxial and constant imposed force.
Before each experiment, a crack of length ℓi is initiated at
the center of the polycarbonate sample (height H = 21cm
(same direction as the crack), length L = 24cm, thickness
e = 125µm) using calibrated blades of different lengths
(from 0.5 to 3cm). Then, a constant force F (from 750
to 1000N) is applied to the film perpendicularly to the
crack direction, so that we get a mode 1 crack opening
configuration. Using the camera, we follow the growth of
the fracture and its process zones, under constant applied
stress σ = F/eH until the total rupture of the sample.
The applied stress σ is chosen such that crack growth is
slow, i.e. smaller than a critical one σc, above which crack
propagation occurs in a few seconds.

3 Basic mechanical properties of

polycarbonate films

In order to characterize the material in which the crack
will grow, we perform some preliminary experiments on
polycarbonate films (height 21cm, length 24cm), without
crack, submitted to uniaxial deformation at a constant de-
formation rate. A typical experimental stress-strain curve
is presented in Fig. 1. The polymer films show the clas-
sical behavior of an elasto-plastic material with a quasi-
elastic behavior for small strains followed by a bell profile
and a plateau. It is well-known that the plateau is follo-
wed for larger strains (not shown in Fig. 1) by a strain-
hardening curve up to rupture. The different characte-
ristic values observed on this graph are in good agree-
ment with the ones measured by Lu and Ravi-Chandar in
bulk polycarbonate [18]. For a strain rate of 1.93 10−4s−1,
we measure the experimental values of the maximum rea-
chable stress σp = 5.2 107N.m−2, the plastic plateau stress

σplat = 4.45 107N.m−2, and the Young modulus for small

strains Y = 1.94 109N.m−2.
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Fig. 1. Stress as a function of strain for a 125µm thick poly-
carbonate film loaded with a 1.93 10−4s−1 strain rate.
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Fig. 2. Natural logarithm of the strain rate of polycarbonate
strips as a function of the applied stress during creep experi-
ments and the corresponding linear fit of the data.

As polycarbonate is a visco-plastic material, there is a
strong dependence of the previous stress-strain curve on
the strain rate that corresponds to the viscous properties
of the material. To quantify these properties, we perfor-
med creep experiments on polycarbonate film rectangular
strips (height 2cm, length 24cm) and measure the strain
rate of the material as a function of the applied stress du-
ring the stationary creep regime. We can see in Fig. 2 that
there is an exponential dependence of the strain rate ǫ̇ on
the applied stress σ according to :

ǫ̇ = ǫ̇1 eaσ (1)

with ǫ̇1 = 1.17 10−22s−1 and a = 7.67 10−7m2.N−1. Ac-
tually, polycarbonate creep is known to obey an Eyring’s
law [19] relating its strain rate ǫ̇ to the applied stress σ
and the temperature T [20] :

ǫ̇ = ǫ̇1 e
V σ

kBT (2)

Then, we are able to estimate the corresponding charac-
teristic activation volume V = 3.10 10−27m3 = (1.46nm)3

of our polycarbonate. Strictly speaking, the Eyring’s law
involves a sinh function rather than an exponential one,
but given the value of the activation volume and the ap-
plied stress range, the exponential function is a very good
approximation.

4 The flame-shaped plastic zone ahead of the

crack tip

In each crack growth experiment, during the loading
phase of the film, a macroscopic flame-shaped plastic zone
appears at each tip of the crack and grows with the ap-
plied stress (cf. Fig. 3 where are defined ℓ, the crack length
and, ℓpz the plastic zone length from tip to tip). This zone
was previously observed by Donald and Kramer [21]. In
the late loading stage, the crack may also start to grow
at a time that appears to be statistical. It is probably a
consequence of the dispersion in the local toughness of the

plastic zone 

ℓ

ℓpz

 0.5 cm

Fig. 3. On top : image of a crack in a polycarbonate film
with its macroscopic plastic zone at each tip. ℓ is the crack
length and ℓpz is the plastic zone length from tip to tip. At
the bottom : plastic zone at the tip of a growing crack in a
polycarbonate film.

380µm 

Fig. 4. Microscopic image in the plastic zone showing stria-
tions quasi-parallel to the crack direction.

material or in the initial crack tip shape. Consequently,
the real experimental initial condition, obtained when the
constant stress σ is reached, is not exactly ℓ = ℓi. Depen-
ding on the moment when the crack starts to grow during
the loading phase, the true initial condition of the creep
experiment will be a couple of values for the crack and
plastic zone length : (ℓ∗, ℓ∗pz). We will see that the sta-
tistical nature of this couple is probably the explanation
for all the statistics in the crack growth dynamics obser-
ved during the fracture experiments. Finally, during the
imposed stress stage, the plastic zones and the crack are
both growing until the final breakdown of the sample in a
way that the crack never catches up the plastic zone tip.

Inside the plastic zone, the film is subjected to a thin-
ning which brings its thickness from 125µm to about 75±
5µm (measured on post-mortem samples). This thinning
corresponds to a phenomenon called necking that usually
comes with the plasticization of amorphous materials. On
microscopic images (cf. Fig. 4), one can see in the plas-
tic zone the presence of striations quasi-parallel to the
fracture direction with a spatial periodicity of 26 ± 3µm.
In order to understand the dynamics of crack growth in
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polycarbonate films, it is necessary to obtain more infor-
mations about the mechanical and dynamical behavior of
the plastic zones that appear at the crack tips.

5 Macroscopic plastic zones formed by

necking instability

5.1 Plastic zone growth dynamics

The kind of plastic zone that we observe at the tips
of a crack in polycarbonate films is not specific to the
fracture phenomenon. Indeed, the same kind of zone can
also be observed in polycarbonate film samples without
crack during creep or traction experiments. These zones
actually initiate on defects of the sample. In order to bet-
ter understand the dynamics of these plastic zones, we
performed creep experiments on polycarbonate rectangu-
lar strips (height 1.5cm, length 24cm) that were previously
damaged in their central part (cf. Fig. 5(a)). Actually, a
damage line is created by sliding a hard but smooth ob-
ject in slight compression against the strip along its width
direction. During the loading stage of the creep tests, the
damage line triggers a necking instability (i.e. a plastic
deformation accompanied by a thinning of the material
cross-section, see Fig. 5(c)) and extends into a well-defined
band-shaped plastic zone. Once the constant stress is rea-
ched, i.e. during the creep stage, the plastic zone is growing
as we can see in Fig. 5(b).

(a) (b) (c)

75µm

125µm

Plastic
zone
size

Fig. 5. Image of a plastic zone in a polycarbonate strip during
a creep test, at an early stage (a) and later on when the zone
has developed (b). (c) Schematic view of the strip thickness
profile.

As it is easily understood, the increase in plastic zone
size can be the result of two simultaneous processes : the
creep of the material in the plastic zone and the transi-
tion of new material into the plastic phase through the
elasto-plastic frontier i.e. the shoulder of the neck. To dis-
criminate between these two processes, we performed Par-
ticle Imaging Velocimetry (PIV) measurements during the
same creep experiments as those described in the previous
paragraph. Actually, before each experiment, the samples
were coated with a cloud of glass beads (diameter=100µm)
on their surface. Then, the PIV technique allowed us to
measure the field of the local velocity in the area of the
plastic zone. As we can see in Fig. 6, the material in the
neck between the two shoulders is submitted to a strain

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-5

Elastic zone 1 Elastic zone 2

 Plastic
zone

position (mm)

v
el

o
ci

ty
(m

.s
−

1
)

ǫ̇ ≃ 7 10−4s−1

ǫ̇ ≃ 2.4 10−2s−1

ǫ̇ ≃ 2 10−3s−1

ǫ̇ ≃ 1.5 10−2s−1

ǫ̇ ≃ 5 10−4s−1

Fig. 6. Velocity of the surface of the sample as a function of
the position in the area of a plastic zone in the direction normal
to the elasto-plastic frontier. These PIV data correspond to the
creep experiments illustrated in Fig. 5. The two peaks observed
at the frontiers of the plastic zone are actually artefacts of the
PIV technique due to the misleading motion of the black lines
that materialize optically the elasto-plastic frontiers, i.e. the
shoulders of the neck, and do not move with the bulk material.

rate 3 times larger than the elastic material outside. Mo-
reover, when the material crosses the elasto-plastic fron-
tier, it is submitted to a strain rate 10 times larger than
the material in the neck. Finally, when we look at the cu-
mulative effects of these different strain rates, we conclude
that the material undergoes a large strain of about 50%
when it is drawn into the neck, which is much larger than
the strain cumulated during the whole experiment, bet-
ween 1% and 5%, away from the shoulders of the neck. So,
the displacement of the elasto-plastic frontier, and there-
fore the growth of the plastic zone, is mainly due to the
migration of material from the elastic to the plastic zone
and not to the simple creep of the material in the neck.

The time-evolution of the necking instability for a cons-
tant applied stress can be characterized by measuring the
plastic zone size L(σ, t) between the two shoulders (see
Fig. 5). As one can see in Fig. 7(a), the plastic zone
growth accelerates with time. It has proved difficult to
describe analytically the time dependence of the plastic
zone size L(σ, t). However, we succeeded to rescale the
growth curves for different applied stresses using the fol-
lowing law (cf. Fig. 7(b)) :

L(σ, t) = f (η(σ)t) (3)

where L is the plastic zone size, t the current time and η
a constant defined with an arbitrary prefactor in order to
make the growth curves collapse. It means that the band
growth velocity can be written as :

v(σ, t) = η(σ) f ′ (η(σ)t) . (4)

Hence, the initial growth rate vi = η(σ)f ′(0) of the plastic
zone characterizes fully the influence of the applied stress
σ on the growth dynamics.

In Fig. 8 is plotted the natural logarithm of vi as a
function of σ. We can see that the initial growth rate vi
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Fig. 7. Plastic zone size as a function of (a) time and (b) resca-
led time for three experiments performed with different applied
stresses. Constant η is defined with an arbitrary prefactor in
order to make the growth curves collapse.

of the plastic zone diverges dramatically with the applied
stress σ. These data appear to fit quite well with a linear
law. It means that a good description of the plastic zone
growth rate dependence with σ is the exponential law :

vi = v0 eaplastσ

(

= v0 e
Vplastσ

kB T

)

(5)

with aplast = 7.41 10−7m2.N−1 (i.e. Vplast = 3.00 10−27m3 =
(1.44nm)3) and v0 = 4.8 10−24m.s−1. Such kind of law
corresponds well to the Eyring’s law that describes the
creep rate dependence with stress and temperature for
polymers. It is important to highlight that the prefactor
aplast of the stress in this law is very close to the one in
Eq. (1). It suggests that these two prefactors can actually
constitute the same material constant of polycarbonate
V/kBT and that the dynamics of the necking instability
is controlled by the intrinsic creep properties of polycar-
bonate away from the neck region.

5.2 Fine structural properties of the plastic zones

The plastic deformation zones that are observed in po-
lycarbonate films correspond to a necking phenomenon
with a thinning of the material by a factor of 0.60± 0.05.
When one observes these zones with a microscope, one
can also see striations (very similar to the ones in Fig.
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Fig. 8. Natural logarithm of the plastic zone initial velocity
as a function of the applied stress. The dotted line is a linear
fit.

0 20 40 60 80 100
80

60

40

20

0

20

40

60

(a)

h
ei

g
h
t

(n
m

)

position (µm)

(b)

Fig. 9. (a) AFM profile of the plastic zone surface perpen-
dicularly to the striations, (b) AFM three dimensional plot of
a plastic zone surface, for a crack tip plastic zone in a 125µm
thick film.

4) that are perpendicular to the elastic-plastic frontier
growth direction at the time they are created. Using ato-
mic force microscopy, we prove these striations to be the
result of surface oscillations of the film of about 100nm
(for 125µm thick films) peak to peak amplitude as we
can see in Fig. 9. Periodic patterns formed during the ne-
cking instability of polymers have already been reported
in the literature. For instance, stress-oscillations attribu-
ted to thermo-mechanical effects can leave periodic traces
in drawn polymers [22,23] but the observed wavelengths
are a priori too large to explain the surface oscillations in
our experiments.
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Fig. 10. Spatiotemporal microscopic image of the elastic-
plastic frontier area during a creep experiment in a 125µm
thick polycarbonate strip. This figure shows the in situ for-
mation of the surface oscillations inside the frontier, i.e. the
shoulder of the necking instability, as it moves.

The surface oscillations of the film are created inside
the frontier between the elastic and plastic zone when this
one moves (cf. Fig. 10). It is important to notice that their
amplitude of about 100nm is very small. It is actually
thousand times smaller than the initial thickness of the
films that is 125µm. In contrast, the wavelength of these
oscillations, λ = 26± 3µm, is of the same order of magni-
tude as the thickness. The wavelength and the amplitude
of the oscillations are probably slightly dependent on the
local stress or strain rate when they are created but this
dependence is very fine and we did not study it. However,
the dependence with the initial thickness of the film was
studied. We made additional experiments with films that
have a thickness of 250 µm or 375 µm. The wavelength and
the amplitude of the oscillations appear to be proportio-
nal to the initial film thickness e with : λ = (0.20±0.02) e
and amplitude = (8 ± 1) 10−4 e.

It would be interesting to understand the physical me-
chanisms responsible for the formation of these oscillatory
patterns. However, the consequences on the growth dyna-
mics of the plastic zone are probably minor and we will
not go in such a detailed description of the visco-plastic
dynamics in the rest of the paper.

6 Crack growth curves

Typical growth curves of the fracture and plastic zone
are shown in Fig. 11(a). Both curves show a quite similar
smooth shape [24]. We observe, once the loading phase
is finished, at the beginning of the constant stress phase,
large velocities of the fracture and the plastic zone tips
which decrease till reaching quasi-constant values before
increasing back dramatically until the final rupture at time
Tr.

The regular shape of the growth curves let us think
that the crack growth in polycarbonate films is a determi-
nistic phenomenon. However, as one can see in Fig. 11(b),
for identical experimental conditions i.e. same initial crack
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Fig. 11. (a) Time as a function of both the crack and plastic
zone lengths for an imposed stress experiment (ℓi = 1.5cm,
F = 900N). We indicate the position of the inflexion point
tx, ℓx of the crack growth curve. (b) time as a function of ℓ
for three experiments performed with the same experimental
conditions (ℓi = 1.5cm, F = 900N).

length and same applied stress, we notice a large disper-
sion of the rupture times and more generally of the crack
growth dynamics. There is actually up to a factor five
between the rupture time of the fastest and slowest expe-
riments.

We suggest that the explanation for this statistics in
the crack growth dynamics does not come from the growth
mechanism itself, but is a consequence of the dispersion
in the effective initial conditions at the beginning of the
constant stress phase of the experiment (ℓ∗, ℓ∗pz). These
initial conditions are clearly statistical and hardly control-
lable in our experiment. They are dependent on the mo-
ment when the crack starts growing during the loading
stage of the sample and they determine all the rest of
the experiment. The initial growth velocity of the crack is
probably correlated with the stress at the border of the
sample at the time it starts growing.

A detailed study of the probability density function of
the rupture time and the effective initial conditions has
not been performed since it would need a huge amount
of experiments for each experimental conditions. Then, in
the next sections, we will first look at the average beha-
vior (temporal average over an experiment and statistical
average over series of experiments) of the dynamics as a
function of the applied stress. We will try to understand



P.-P. Cortet et al.: Surface oscillations and slow crack growth controlled by creep dynamics of necking instability 7

better the mechanisms in action in the phenomenon of
crack growth in polycarbonate films and finally infer a
meaningful instantaneous crack growth law.

7 Rupture time

In this section, we study the dependence of the rupture
time Tr of the polycarbonate samples as a function of the
applied stress σ for a given initial crack length ℓi. In Fig.
12(a), we show the evolution of the average rupture time as
a function of the applied stress for a series of experiments
performed for ℓi = 1.5cm. More precisely, for each stress
value, we show the rupture time 〈Tr〉 averaged over ten
experiments at least.
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Fig. 12. Average rupture time (a) and its natural logarithm
(b) as a function of the applied stress for a series of experiments
performed for ℓi = 1.5cm.

We see a dramatic dependence of 〈Tr〉 with the applied
stress. Indeed, the rupture time ranges from a large value
of 4 104 seconds for a 3.35 107N.m−2 stress to a small value
of 103 seconds for a 3.58 107N.m−2 stress. It corresponds
to a 97.5% variation of the rupture time for a 7% variation
of the stress. This dependence suggests an exponential des-
cription of the rupture time as proposed by Zhurkov [5].
To test this description, we show on Fig. 12(b) the natural
logarithm of the rupture time as a function of the applied
stress. The linear fit of the data is of quite good quality

and suggests that :

〈Tr〉 = T0 e−γσ. (6)

In Zhurkov’s approach, the stress dependence of rupture
time is interpreted as an Eyring’s law [19] with γ = Vγ/kBT
where Vγ is assumed to be a characteristic volume of the
material. However, in our experiments, the parameter Vγ

can not be a constant since a different initial crack length
ℓi gives a completely different rupture time for the same
applied stress. Thus, the external applied stress σ can not
be the single control parameter of the rupture dynamics.
Then, it is clear that Zhurkov’s description needs to be im-
proved to take into account the specific geometry of the
problem. In particular, the stress level in the plastic zone
close to the crack tips most probably participates in the
dynamical processes leading to the crack growth.

8 Dynamical stress in the plastic zone

We will show in this section that the stress level in
the plastic zone is dependent on the growth dynamics and
must be understood as a dynamical stress. In order to
estimate the stress level in the plastic zone, we need to
characterize more precisely its dimensions.

The experimental ratio between the plastic zone length
(defined in Fig. 3) ℓpz, and the crack length ℓ, during the
crack growth process, is plotted as a function of ℓ in Fig.
13(a) for three experiments performed with the same ex-
perimental conditions (ℓi = 1.5cm and F = 900N) and in
Fig. 13(b) for four experiments with different experimen-
tal conditions. It seems that this relation is not unique be-
cause curves for identical experimental conditions do not
overlap each other. Through all the experiments that have
been performed (between 10 and 20 for each experimental
conditions), there is a dispersion of about 10% for the ratio
ℓpz/ℓ for identical experimental conditions. Having a look
at the corresponding rupture time for each experiment, a
qualitative correlation between rupture time and the ra-
tio ℓpz/ℓ appears clearly. The larger the rupture time Tr,
the larger the ℓpz/ℓ ratio. This correlation is very unders-
tandable. Indeed, a larger rupture time corresponds to a
slower crack dynamics that lets slightly more time for the
plastic zone to grow at each position of the crack tip.

The relation between ℓpz and ℓ at equilibrium has first
been theoretically predicted by the Dugdale-Barenblatt
cohesive zone model [25,26]. Dugdale considers the co-
hesive zone as an isotropic plastic material in which the
stress is uniformly equal to the plastic yield stress σy of
the material. Assuming the non-divergence of the stress at
the tip of the cohesive zone, he concludes to a zero stress
intensity factor1 (SIF) at the tip of the plastic zone :

Ktot = Kel(σ, ℓpz) + K̃(σy, ℓ, ℓpz) = 0 (7)

1 At a close distance r from a crack tip in an elastic mate-
rial, the local stress behaves as K/

√
r, where K is the stress

intensity factor.
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Fig. 13. ℓpz/ℓ ratio as a function of the crack length (a)
for three experiments performed with the same experimental
conditions (ℓi = 1.5cm and F = 900N), (b) for four experi-
ments performed with different experimental conditions.

where Kel is the traditional SIF at the tip of a crack of
length ℓpz in an elastic film submitted to σ at its border

and K̃ the SIF for a film fractured on a length ℓpz and sub-
mitted only to σy on the fracture lips between ℓ and ℓpz.
Using analytical expressions for these SIFs in the case of
an infinite elastic sample, Dugdale finds a proportionality
dependence of ℓpz on ℓ :

ℓpz

ℓ
=

1

cos
(

π
2

σ
σy

) . (8)

This model was successfully faced with experimental data
in metals [25].

In Fig. 13, one can see that the ℓpz/ℓ ratio is not
constant during a constant stress experiment so that the
ℓpz against ℓ relation is not a proportionality relation.
Regarding this non-proportionality, finite size corrections
(corrections when ℓ is not negligible compared to the sample
height) to the Dugdale-Barenblatt model lead to an oppo-
site curvature [27] to the one observed experimentally. The
most simple explanation for this non-proportionnality lies
in the fact the crack growth is not stationary so that the
yield stress can not be considered constant. Reversing the
problem and using the experimental values of the ratio
ℓpz/ℓ in the Dugdale-Barenblatt law allows to give an es-
timate of the Dugdale stress constant σy that holds in the
crack tip plastic zone at each position of the crack during

an experiment :

σy =
π

2

σ

arcos
(

ℓ
ℓpz

) . (9)

This stress value neglects possible spatial inhomogeneities
of the real plastic zone stress. It is also an effective value
since we do not account for the thinning of the film.

In our experiments, the estimated σy fluctuates bet-

ween 5 107 and 5.6 107N.m−2. In order of magnitude, the
values found here for σy are in good agreement with the
plastic peak stress σp defined by the stress-strain curve of

Fig. 1 that fluctuates between 5.2 107 and 5.6 107N.m−2

for the considered strain rates. It is also in good agreement
with the stress range needed to grow plastic bands under
creep condition in reasonable times (cf. subsection 5.1).
So, the Dugdale-Barenblatt model predicts the correct or-
der of magnitude for the ℓpz/ℓ ratio, using the maximum
reachable stress σp obtained from mechanical tests (cf.
Fig. 1).

The fact the ℓpz/ℓ ratio is not constant throughout
each single experiment clearly suggests that the yield stress
σy is not constant. Actually, we expect the yield stress to
depend on the local strain rate of the material through
an Eyring’s law. Then, it is clear that a change in crack
growth velocity will be reflected in a change of local strain
rate, and thus in a change in the yield stress value.

9 Average growth dynamics

In this section, we show that the average crack growth
dynamics is strongly correlated to the creep behavior of
the plastic zone. To account for the global dynamics of
a rupture experiment, a meaningful variable is the time-
averaged growth velocity on the whole experiment v. The
creep of the plastic zone can be characterized by the time-
averaged plastic stress σy which appears intuitively as a
possible control parameter for the crack dynamics just like
the stress intensity factor is for brittle materials.

The plastic stress σy is computed at each moment
using Eq. (9) with the instantaneous values of σ, ℓ and ℓpz.
Then, it is averaged over time during each experiment. In
Fig. 14, we plot the natural logarithm of v as a function
of the time-averaged plastic stress σy. Each point of this
figure represents the mean behaviour over an experiment.
We clearly see that the data are compatible with a linear
law that predicts an exponential dependence of the time-
averaged growth velocity with the time-averaged stress in
the plastic zone :

v = v0 eα̃ σy (10)

with α̃ = 6.3 10−7m2.N−1 and v0 = 7.8 10−21m.s−1. Note
that inside a series of experiments performed for the same
experimental conditions (given symbol in Fig. 14), rather
large variations of σy, about 0.25 107m2.N−1, are obser-
ved. The variations of the instantaneous value of σy during
one single experiment are even larger, up to 107m2.N−1

(see section 10).
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Fig. 14. Natural logarithm of the average crack growth ve-
locity v as a function of the average plastic stress during the
growth. Each point represents the average dynamical beha-
vior during an experiment. Experimental conditions are va-
rious (ℓi = 1.5, 2, 3cm and 2.9 < σ < 3.8 107N.m−2). Each
experimental condition corresponds to different symbols.

It is striking that the prefactor α̃ = 6.3 10−7m2.N−1 of
the stress in the exponential law of Eq. (10) is rather close
quantitatively to the one obtained for the creep growth of
the plastic zone in polycarbonate bands (see section 5.1),
and even to the one that describes polycarbonate creep
(see Eq. (2)), particularly if we consider the dispersion of
the data. It is tempting to say that both prefactors α̃ and
a are coming from the same material mechanical constant
of polycarbonate, V/kBT , appearing in polycarbonate Ey-
ring’s law. Actually, we have to remind the reader that
σy is far from being constant during an experiment. It is
then clear that taking the average value of σy over an ex-
periment constitutes a rude averaging. This could be the
explanation for the 15% difference between the values of
the stress prefactors in the exponential laws. With these
source of imprecision in mind, we are tempted to say that
the Eyring’s law ruling the polymer creep might play an
important role in the mechanisms of crack growth in po-
lycarbonate films.

10 A tentative growth law for the

instantaneous dynamics

In this section, we go beyond a simple analysis of the
average growth dynamics by looking at the dependence of
the crack velocity with the stress in the plastic zone at
each time during the crack growth. We plot in Fig. 15(a)
the instantaneous crack velocity v = dℓ/dt as a function of
the instantaneous value of the Dugdale-Barenblatt stress
σy during a typical experiment performed for ℓi = 1.5cm
and F = 900N. We see that the description of the data
by the exponential law (dotted line) from the data fit of
Fig. 14 is only very approximative even if there seems to
be a tendency to follow such a law, especially during the
early stage of the experiment. Introducing a correction in
the Dugdale-Barenblatt stress that is linear with the crack
length ℓ allows us to collapse the experimental data on a
straight line (cf. Fig. 15(b)). Actually, the correction can
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Fig. 15. Natural logarithm of the instantaneous crack growth
velocity as a function of (a) the Dugdale-Barenblatt stress and
(b) the corrected Dugdale-Barenblatt stress σcorr

y for an expe-
riment performed with F = 900N and ℓi = 1.5cm. In Fig. (a),
the dotted line is the result of the Fig. 14 data fit. In Fig. (b),
the dotted line is the result of a linear data fit.

be written as :

σcorr
y =

π

2

σ

arcos
(

ℓ
ℓpz

) + κ (ℓ − ℓx) (11)

with κ = 3.8 108N.m−3 in this case. In this equation, we
introduce the crack length ℓx corresponding to the in-
flexion point in the growth curve as defined in Fig. 11.
This length also corresponds to the minimum crack velo-
city. It is quite natural to do so since the dynamics around
ℓ = ℓx is characteristic of the time-averaged dynamics that
has been revealed to approximately follow an Eyring’s law
in section 9.

In Fig. 16(a), we plot the instantaneous crack growth
velocity as a function of the stress σy for eight experi-
ments performed with various experimental conditions.
For each experiment, we determine the value κ = (3.4 ±
0.6) 108N.m−3 that allows us to collapse each curve on a
straight line. The dispersion of κ values seems to be sta-
tistical as no systematic dependence with σ or ℓi could be
found. Finally, in Fig. 16(b), we obtain a collapse of all the
data when plotting as a function of σcorr

y . This rescaling
means that the crack growth velocity seems to follow :

v = v0 eασcorr
y (12)

where α = 6.8 10−7m2.N−1. Note that the collapse of the
data for various experimental conditions (applied stress
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Fig. 16. Natural logarithm of the instantaneous crack growth
velocity as a function of (a) the Dugdale-Barenblatt stress, (b)
the corrected Dugdale-Barenblatt stress σcorr

y according to Eq.
(11) for eight experiments performed with various experimental
conditions (ℓi = 1.5, 2, 3cm and 2.9 < σ < 3.8 107N.m−2). In
Fig. (b), the black line is the result of a linear data fit.

and initial crack length) means that v0 can be considered
as a constant.

In Eq. (11), the crack length at the inflexion point in
the growth curve plays a particular role. It turns out that
its value depends on the experimental conditions. This
can be seen in Fig. 17(a) where the product κℓx, with
κ = 3.4 108N.m−3, is plotted as a function of the applied
stress σ. Remarkably, the dependence of κℓx with σ is
well approximated by a linear fit : κℓx = σx − σ, where
σx = 4.2 107N.m−2 is only an estimate of σ for κlx = 0.

A way to clarify the meaning of this relation is to look
at the dependence of the critical stress σc needed to break
instantaneously a sample with a crack of initial length ℓi.
In brittle materials, we would expect this critical stress
to decrease in 1/

√
ℓi since the rupture criterion is reached

when the initial stress intensity factor equals the tough-
ness of the material Kc [7] : σc

√

πℓi/2 = Kc. For an amor-
phous visco-plastic material such as polycarbonate, we do
not get the same functional dependence. Indeed, as we can
see in Fig. 17(b), the relation between σc and ℓi can be
approximated by a linear equation : βℓi = σs − σc, where
σs = 4.07 107N.m−2 and β = 3.57 108N.m−3. We note
that κ ≃ β and σx ≃ σs and will consider these quanti-
ties to be the same material constants. So, we find that the
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Fig. 17. (a) κℓx for various experimental conditions (ℓi =
1.5, 2, 3cm and 2.9 < σ < 3.8 107N.m−2) as a function of the
applied stress σ. (b) Critical rupture stress σc as a function of
the initial crack length ℓi. The dotted lines are a linear fit of
the data.

quantity Σ(σc, ℓi) = σc+κℓi may play a role similar to the
initial stress intensity factor in brittle materials. Further-
more, it allows us to interpret the value of the crack length
at the inflexion point as defined by a characteristic value
of the quantity Σ(σ, ℓx) = σx ≃ σs that corresponds to an
intrinsic property of polycarbonate. Indeed, σs is simply
the value of the critical rupture stress σc when there is no
initial crack.

Finally, the effective stress σcorr
y may be rewritten as :

σcorr
y =

π

2

σ

arcos
(

ℓ
ℓpz

) + κ ℓ + σ − σs (13)

where we clearly see that it is composed of, the Dugdale-
Barenblatt estimation of the crack tip plastic zone stress
σy, a linear dependence with the crack length κ ℓ and the
applied stress at the borders of the sample σ. This is one
of the main results of this paper. Furthermore, one can
interpret the exponential dependence of the velocity as a
function of σcorr

y (cf. Eq. 12) in a rather simple and physi-
cal way. Indeed, as we have noticed, polycarbonate creep
is known to obey an Eyring’s law relating its strain rate ǫ̇
to the applied stress σ : ǫ̇ = ǫ̇1 exp(σV/kBT ) [20]. Creep
experiments performed at room temperature on our own
polycarbonate samples give V/kBT = 7.67 10−7m2.N−1

(see Eq. 1). The fact this prefactor V/kBT is of the same
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magnitude than α in the exponential law for the crack ve-
locity (cf. Eq. (12)) suggests that the Eyring’s law plays an
important role in the mechanisms of crack growth. Addi-
tionally, it possibly means that the constant α of Eq. (12)
identifies with the Eyring’s prefactor V/kBT . However,
such a temperature dependence of α is still to be checked.

11 Conclusion

In this article, we have first presented an experimen-
tal study of the plastic deformation properties of polycar-
bonate films under a constant load. We have shown that
the necking instability responsible for the formation of the
plastic zones, such as the ones appearing at the tips of a
crack, has a dynamics that follows an Eyring’s like growth
law. The Eyring factor appearing in the growth law for the
plastic zone is almost identical to the one describing the
simple creep flow of polycarbonate when there is no ne-
cking instability. It is not clear however what determines
the amplitude of the velocity prefactor in the growth law.
We have also discovered and characterized an a priori unk-
nown surface instability that develops in the shoulder as
the neck grows. The wavelength and amplitude of these
surface oscillations are at least two order of magnitudes
apart, but they are both proportional to the film thickness.
Finally, we have studied experimentally the slow growth
of a single crack in such polycarbonate films submitted
to uniaxial and constant imposed stress. The main result
of this analysis is that the instantaneous crack velocity
appears to be ruled, during an experiment, by an expo-
nential law (cf. Eq (12)) with an effective stress σcorr

y given
by Eq. 13. Another result is the presumption that this ex-
ponential law is actually an Eyring’s law. In this equation,
the viscous relaxation is taken into account by the expe-
rimentally measured evolution of the ratio ℓ/ℓpz as the
crack grows. Indeed, if this ratio was constant, the stress
in the plastic zone would also be constant and the velo-
city would increase monotonously due to the linear term
in crack length. In that case, the behavior would actually
be qualitatively the same as the one for crack growth in
brittle facture [7]. To predict fully the viscous dynamics
of the crack, a second equation that will prescribe ℓpz is
missing :

dℓpz

dt
= f(ℓpz, ℓ, ℓ̇, σ, ...) (14)

An original theoretical approach recently developed by
Bouchbinder [28] based on the Shear-Transformation-Zone
Theory proposed by Falk and Langer [29] is certainly use-
ful for deriving an equation of the plastic zone velocity (cf.
Eq. (14)). Additionally, numerical simulations that can re-
produce the complex visco-plastic behavior of polycarbo-
nate may help in going further in the interpretation of our
experimental results [30,31,32,33].
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01. We thank K. Ravi-Chandar for insightful discussions,
M. Gibert for help in PIV measurements, and C. Ybert
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