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Abstract

The low-energy effective theories describing string compactifications in the

presence of fluxes are so-called gauged supergravities: deformations of the

standard abelian supergravity theories. The deformation parameters can

be identified with the various possible (geometric and non-geometric) flux

components. In these lecture notes we review the construction of gauged

supergravities in a manifestly duality covariant way and illustrate the con-

struction in several examples.
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1 Introduction

Gauged supergravities have first been constructed in the early 1980’s upon reconcil-

ing four-dimensional supergravity with maximal number of supercharges with the non-

abelian gauge structure of Yang-Mills theories [1]. Soon after, the first construction was

generalized to other (non-compact) gauge groups [2] and to higher dimensions [3], [4].

To date, gaugings are the only known supersymmetric deformations of maximal su-

pergravity with the non-abelian gauge coupling constant acting as a deformation pa-

rameter. In recent years, these theories have reappeared in particular in the context

of flux compactifications, see [5, 6] for reviews. Non-vanishing background fluxes for

the higher-dimensional p-form tensor fields and so-called geometric fluxes twisting the

internal geometry of the compactification manifold may likewise act as deformation

parameters in the effective four-dimensional field theory. The resulting actions can be

described in the framework of gauged supergravities with the resulting gauge groups

typically being of the non-semisimple type.

In these lectures we will review the construction of gauged supergravities, i.e. we

will address the problem of describing the general deformation of supergravity theories

by coupling the abelian vector fields to charges assigned to the elementary fields. The

general picture is sketched in figure 1: starting from eleven-dimensional supergravity [7]

(or alternatively the ten-dimensional type IIB theory [8, 9]) the maximal supergravities
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Figure 1: Gauged supergravities and flux compactifications.

in all lower dimensions are obtained by dimensional reduction on torus manifolds T n

(the vertical arrow). Their characteristic properties include exceptionally large global

symmetry groups and abelian gauge groups; e.g. for the maximal four-dimensional

theory these are a global E7 and a local U(1)28 symmetry, respectively [10]. None

of the matter fields are charged under the abelian gauge group, hence the name of

ungauged supergravity. Another distinct feature of these theories is their maximally

supersymmetric Minkowski ground state in which all fields are massless.

Instead, one may consider more complicated compactifications (the diagonal ar-

row in figure 1), in which e.g. the torus is replaced by manifolds with more structure

(such as spheres Sn), in which higher-dimensional p-form fields may acquire non-trivial

background fluxes, in which the torus may be supplied with torsion, etc. All these

compactifications lead to more complicated effective theories in four dimensions which

typically come with non-abelian gauge symmetries under which the matter fields are

charged, and which are referred to as gauged supergravities. In contrast to their un-

gauged counterparts, these theories typically come with a scalar potential which is a

result of the more complicated internal geometry. This is one of the reasons that has

triggered the interest in these compactifications: the scalar potential may support an

effective cosmological constant, provide mass terms for the fields of the theory (moduli

stabilization), describe scenarios of spontaneous supersymmetry breaking, etc., thereby

accommodating many phenomenologically desirable properties. Except for very few

examples, these gauged supergravities do no longer admit maximally supersymmetric

groundstates in accordance with the fact that the presence of non-vanishing background

fluxes typically breaks supersymmetry.

The most systematic approach to the construction and study of these gauged su-

pergravities is by considering them as deformations of the ungauged theories obtained

by simple torus reduction. This is depicted by the horizontal arrow in figure 1, with

the flux and geometric parameters acting as deformation parameters. On the level
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of the four-dimensional theory, this construction selects a subgroup G0 of the global

symmetry group G of the ungauged theory and promotes it to a local gauge symme-

try by coupling it to the (formerly abelian) vector fields of the theory. As a result,

the matter fields of the theory are charged under the new gauge symmetry. The first

example of such a construction was the SO(8) gauged theory of [1] which describes

the S7 compactification of eleven-dimensional supergravity, with SO(8) properly em-

bedded into the global E7 symmetry of the ungauged theory. In the context of flux

compactifications, many other typically non-semisimple gaugings of this theory have

been identified, some of which we will describe in the last section. Fortunately, all

different gaugings can be described in a single covariant construction that is based on

the underlying global symmetry group G of the ungauged theory. This framework, first

developed in the context of three-dimensional supergravity [11, 12] and further shaped

in [13, 14, 15], encodes the possible gaugings in an embedding tensor that describes the

embedding of the gauge group into the global symmetry group, can be characterized

group-theoretically, and turns out to entirely parametrize the action of the gauged

supergravity. From the point of view of flux compactifications, this can be seen as a

very compact way to group all the different possible flux (or deformation) parameters

into a single tensorial object on which furthermore the action of the duality group is

manifest. This will be the central theme of these lectures.

So far we have presented the picture for the supergravities with maximal num-

ber of supercharges and for definiteness we will throughout stick with the maximal

or half-maximal theories whose structures are very rigid due to the large underlying

global symmetries. We should stress however, that a large part of the structures and

techniques to be presented directly apply to the supergravities with lower number of

supercharges. E.g. in many applications the torus manifold in figure 1 would be re-

placed by a Calabi-Yau manifold such that the ungauged four-dimensional supergravity

is no longer maximal but has only N = 2 supersymmetry. In complete analogy to the

construction presented in the following, the effect of non-vanishing background fluxes

can be accommodated by gauging certain global symmetries in these models leading

to the same type of gauged supergravity in four dimensions. This has been confirmed

in many explicit examples, see e.g. [16, 17, 18].

As a last point we mention that gauged supergravities have recently (re)appeared

in other contexts as well which we will not further discuss in these lectures. Two

important ones are the following:

• The supergravity regime of the bulk theory in the AdS/CFT correspondence [19]

is generically described by a gauged supergravity. It is due to its scalar poten-

tial that the theory can support an AdS ground state. The corresponding gauge

group is usually compact and corresponds to the R-symmetry group of the bound-

ary theory. The prime-example is the five dimensional maximal SO(6) gauged

supergravity of [3] which describes IIB supergravity compactified on AdS5 × S5.

Its scalar potential encodes non-trivial information about the four-dimensional
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SYM boundary theory, such as holographic RG flows and the anomalous confor-

mal dimensions of operators [20, 21, 22].

• The structure of the gauged supergravities fits naturally with and gives further

support to the proposals for the higher rank Kac-Moody symmetries E10 [23]

and E11 [24], conjectured to underlie supergravity and string theory, As we shall

discuss in section 3, the field content of gauged supergravities is typically larger as

compared to the ungauged theories, since the former naturally include a number

of dual tensor fields and in particular the non-propagating antisymmetric (D−1)-

and D-form tensor fields. This larger field content is precisely in accordance with

certain decompositions of the representations of the extended infinite-dimensional

Kac-Moody algebras [25, 26].

The structure of these lectures is straightforward: in section 2 we briefly review the

structure of ungauged supergravities, in particular the role and the realization of their

global symmetry groups G. In section 3 we describe the gauging of these theories in

a formalism covariant under the symmetry group G. Finally, in section 4, we discuss

the higher-dimensional origin of the gauged theories, in particular their application

to the description of flux compactifications, and illustrate the connection with several

examples.

2 Ungauged Supergravity — Symmetries and Dualities

In this section, we collect some of the pertinent facts about ungauged supergravity

theories. The discussion will be rather brief and is not meant to be an exhaustive

introduction to these theories — for which we refer to the many excellent reviews in

the literature, see e.g. [27, 28, 29, 30, 31]. Rather, we will here focus onto those elements

that prove to be important for the subsequent construction of gauged supergravities,

notably the underlying structure of symmetries and dualities. We will mainly restrict

to the bosonic sector of these theories, although its structure is of course to a large

extent determined by the underlying supersymmetric extension.

The bosonic field content of standard supergravity theories consists of the met-

ric gµν , a set of scalar fields φi, as well as vector fields AM
µ , and higher-rank antisym-

metric p-forms BI
ν1...νp

of various ranks. Their dynamics is described in terms of a

Lagrangian of the type

e−1Lbos = −1
2
R− 1

2
Gij(φ) ∂µφ

i ∂µφj − 1
4
MMN(φ)FM

µν F
µν N − · · · , (2.1)

with e =
√

|det gµν |, and the abelian field strengths FM
µν ≡ ∂µA

M
ν − ∂νA

M
µ . The dots

here refer to kinetic terms for the higher-rank p-forms and to possible topological terms.

We will in these lectures always work in the Einstein frame, i.e. absorb possible dilaton

prefactors of the Ricci scalar R by conformal rescaling of the metric.
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D Gmax Kmax Ghalf−max Khalf−max

9 GL(2) SO(2) GL(1) × SO(1, 1+n) SO(1+n)

8 SL(2)×SL(3) SO(2)×SO(3) GL(1) × SO(2, 2+n) SO(2)×SO(2+n)

7 SL(5) SO(5) GL(1) × SO(3, 3+n) SO(3)×SO(3+n)

6 SO(5, 5) SO(5)×SO(5) GL(1) × SO(4, 4+n) SO(4)×SO(4+n)

5 E6(6) USp(8) GL(1) × SO(5, 5+n) SO(5)×SO(5+n)

4 E7(7) SU(8) SL(2) × SO(6, 6+n) SO(2)×SO(6)×SO(6+n)

3 E8(8) SO(16) SO(8, 8+n) SO(8)×SO(8+n)

2 E9(9) K(E9) SO(8, 8+n)(1) K(SO(8, 8+n)(1))

Table 1: Global symmetry groups G and their compact subgroups K in maximal and half-

maximal supergravity in various dimensions. The subscripts in parentheses EN(N) specify

the particular real form of the exceptional groups; for maximal supergravity this is always

the split form, i.e. the maximally non-compact form of the group. For D = 2, the groups

E9(9) and SO(8, 8+n)(1) refer to the (centrally extended) affine extensions of the groups E8(8)

and SO(8, 8+n), respectively, K(G) denotes their maximal compact subgroup.

The form of the Lagrangian (2.1) is essentially fixed by diffeomorphism and gauge

covariance (upon restricting the dynamics to two-derivative terms). The “data” that re-

main to be specified are the scalar and the vector kinetic matrices Gij(φ) and MMN(φ),

respectively, as well as their counterparts for the higher-rank p-forms. In general, the

form of these scalar-dependent matrices is highly constrained by supersymmetry. In

the following we will mainly consider maximal and half-maximal supergravities (i.e.

theories with 32 and 16 real supercharges, respectively) for which the possible cou-

plings are extremely restrictive and organized by the structure of an underlying global

symmetry group G. Most of the discussion straightforwardly extends to theories with

a lower number of supercharges, in particular in those cases in which the underlying

global symmetry group is still sufficiently large.

In the rest of this section, we will describe how the global symmetry group restricts

the field content and determines the Lagrangian (2.1) without further explicit reference

to supersymmetry. The p-forms and the scalar fields of the theory transform in linear

and non-linear representations of G, respectively, whereas the metric gµν is left invariant

by the action of G.

2.1 Scalar sector

The scalar fields φi in (half-)maximal supergravity are described by a G/K coset space

sigma-model, where G is the global symmetry group of the theory, collected in table 1

for various dimensions, and K is its maximal compact subgroup. A convenient for-

mulation of this sigma-model has the scalar fields parametrize a G-valued matrix V

(evaluated in some fundamental representation of G) and makes use of the left-invariant

6



current

Jµ = V−1 ∂µV ∈ g ≡ Lie G . (2.2)

In order to accommodate the coset space structure, Jµ is decomposed according to

Jµ = Qµ + Pµ , Qµ ∈ k , Pµ ∈ p , (2.3)

where k ≡ Lie K and p denotes its complement, i.e. g = k ⊥ p, orthogonal w.r.t. the

Cartan-Killing form. The scalar Lagrangian is given by

Lscalar = −1
2
eTr (PµP

µ) . (2.4)

It is invariant under global G and local K transformations acting as

δ V = ΛV − V k(x) , Λ ∈ g , k(x) ∈ k , (2.5)

on the scalar matrix V . Under these symmetries the currents Qµ and Pµ transform

according to

δ Qµ = −∂µk + [ k,Qµ] , δ Pµ = [ k, Pµ] , (2.6)

showing that the composite connection Qµ behaves as a gauge field under K. As such

it plays the role of a connection in the covariant derivatives of the fermion fields which

transform linearly under the local K symmetry, e.g.

Dµψ
i
ν ≡ ∂µψ

i
ν −

1

4
ωµ

ab γab ψ
i
ν − (Qµ)k

i ψk
ν , (2.7)

for the gravitinos ψi
ν , etc. Likewise, one defines DµV ≡ ∂µV − Qµ = Pµ for the scalar

matrix V . The current Pµ on the other hand transforms in a linear representation of K,

builds the K-invariant kinetic term (2.4) and may be used to construct K-invariant

fermionic interaction terms in the Lagrangian.

The two symmetries (2.5) extend to the entire supergravity field content and play

a crucial role in establishing the full supersymmetric action. They will furthermore be

of vital importance in organizing the construction of the gauged theories described in

the next section. The global g transformations may be expanded as Λ = Λαtα into a

basis of generators tα satisfying standard Lie-algebra commutation relations

[tα, tβ] = fαβ
γ tγ , (2.8)

with structure constants fαβ
γ.

The local K symmetry is not a gauge symmetry associated with propagating gauge

fields (the role of the gauge field is played by the composite connection Qµ), but simply

takes care of the redundancy in parametrizing the coset space G/K. It is indispens-

able for the description of the fermionic sector, with the fermionic fields transforming

in linear representations under K. In particular, the scalar matrix V transforming
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as (2.5) can be employed to describe couplings between bosonic and fermionic fields,

transforming under G and K, respectively. To make this more explicit, it is useful to

express (2.5) in indices as

δVM
N = Λα (tα)M

K VK
N − VM

K kK
N , (2.9)

with G-generators (tα)M
K and the underlined indices K,N referring to their transfor-

mation behavior under the subgroup K. The matrix VM
N allows to construct couplings

of e.g. a bosonic field strength FM
µν transforming in the associated fundamental repre-

sentation of G to the fermionic fields according to (schematically)

FM VM
N (ψ̄ ψ)N , etc. , (2.10)

where (ψ̄ ψ)N denotes the projection of the fermionic bilinear onto some K-subrepresen-

tation in the corresponding tensor product of K-representations.

It is often convenient to fix the local K symmetry by adopting a particular form

of the matrix V , i.e. choosing a particular set of coset representatives. In this case,

any global G-transformation in (2.5) needs to be accompanied by a compensating K-

transformation

δ V = ΛV − V kΛ , (2.11)

where kΛ depends on Λ (and on V) in order to restore the particular gauge choice, i.e. to

preserve the chosen set of coset representatives. This defines a non-linear representation

of G on the (dim G − dim K) coordinates of the coset space, i.e. on the physical scalar

fields. Likewise, it provides a non-linear realization of the group G on the fermion

fields via the compensating transformation kΛ. Two prominent gauge fixings are the

following:

• unitary gauge: in which the matrix V is taken of the form

V = exp {φa Ya} , (2.12)

where the non-compact generators Ya span the space p. In this gauge, the φa

transform in a linear representation of K ⊂ G, thus global K-invariance of the

Lagrangian remains manifest. The current Pµ = P a
µ Y

a takes the form P a
µ =

∂µφ
a + . . ., where dots refer to higher order contributions. This shows that the

kinetic term (2.4) is manifestly ghost-free with Gab(φ) ∝ δab + . . .. It is here that

the importance of K being the maximal compact subgroup of G shows up.

• triangular gauge: in which the matrix V is taken of the form

V = exp {φmNm} exp
{
φλ hλ

}
, (2.13)

where λ = 1, . . . , rank G, labels a set of Cartan generators hλ of g and the Nm

form a set of nilpotent generators such that the algebra spanned by {hλ, Nm}
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constitutes a Borel subalgebra of g. With suitable choice of the Borel subalge-

bra, it is in this gauge that a possible higher-dimensional origin of the theories

becomes the most transparent. The grading associated with the chosen Borel

subalgebra is related to the charges of the fields under rescaling of the volume

of the internal compactification manifold. We shall illustrate this in section 4 in

several examples, see [32] for a systematic discussion for the maximal theories

and their eleven-dimensional origin.

E.g. the scalar sector of the maximal (N = 8) supergravity in D = 4 space-time

dimensions is described by the coset space E7(7)/SU(8). The eleven-dimensional origin

of the fields can be identified in the triangular gauge associated with the GL(7) grading

of E7(7). A type IIB origin of the fields on the other hand is identified in the triangular

gauge associated with a particular GL(6)× SL(2) grading. We shall come back to this

in section 4. For the half-maximal (N = 4) supergravity in D = 4 dimensions, the

scalar sector is described by the coset space

G/K = SL(2)/SO(2) × SO(6, 6+n)
/

(SO(6)×SO(6+n)) , (2.14)

where n refers to the number of vector multiplets in the ten-dimensional type-I theory,

from which this theory is obtained by torus reduction. The ten-dimensional origin of

the fields is identified in the triangular gauge associated with the GL(6) grading of

SO(6, 6).

In order to construct the full supersymmetric action of the theory, it is most con-

venient to keep the local K gauge freedom. When discussing only the bosonic sector

of the theory, it is often functional to formulate the theory in terms of manifestly K-

invariant objects. E.g. the scalar fields can equivalently be described in terms of the

positive definite symmetric scalar matrix M defined by

M ≡ V ∆VT , (2.15)

where ∆ is a constant K-invariant positive definite matrix (e.g. for the coset space

SL(N)/SO(N), with V in the fundamental representation, ∆ is simply the identity

matrix). The matrix M is manifestly K-invariant and transforms under G as

δM = ΛM + MΛT , (2.16)

while the Lagrangian (2.4) takes the form

Lscalar = 1
8
Tr (∂µM ∂µM−1) . (2.17)

To finish this section, let us evaluate the general formulas for the simplest non-trivial

coset-space SL(2)/SO(2) which appears in the matter sector of several supergravity

theories. With the sl(2) generators given by

h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, (2.18)
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the matrix V in triangular gauge (2.13) is given as

V = eC e eφh =

(
1 C

0 1

) (
eφ 0

0 e−φ

)
. (2.19)

Evaluating the non-linear realization (2.11) of SL(2) on these coset coordinates C, φ

leads to

δh φ = 1 , δhC = 2C , δeC = 1 , δf φ = −C , δf C = e4φ − C2 . (2.20)

This shows that h acts as a scaling symmetry on the fields, whereas e acts as a shift

symmetry on C, and f is realized non-linearly. This toy example exhibits already all

the generic features of the global G-symmetries that we will meet in more generality

in section 4.1 below.

The matrix M for this model can be computed from (2.15) with ∆ = I2, and is

most compactly expressed in terms of a complex scalar field τ = C + ie2φ, giving rise

to

M =
1

ℑτ

(
|τ |2 ℜτ

ℜτ 1

)
, (2.21)

while the kinetic term (2.4) takes the form

e−1 Lscalar = −∂µφ ∂
µφ− 1

4
e−4φ ∂µC ∂

µC = −
1

4(ℑτ)2
∂µτ ∂

µτ ∗ . (2.22)

It is manifestly invariant under the scaling and shift symmetries of (2.20), whereas

invariance under the non-linear action of f is not obvious and sometimes referred to as

a hidden symmetry. In terms of τ , the action of a finite SL(2) group transformation

can be given in the compact form

τ →
aτ + b

cτ + d
, for exp(Λ) =

(
a b

c d

)
∈ SL(2) . (2.23)

2.2 Vectors and antisymmetric p-forms

The p-forms in ungauged supergravity transform in (typically irreducible) linear rep-

resentations of the global symmetry group G. E.g. while the scalar fields transform

under G as (2.5), the transformation of the vector fields AM
µ (M = 1, . . . , nv) is given

by

δAM
µ = −Λα (tα)N

M AN
µ , (2.24)

where (tα)N
M denote the generators of g in a fundamental representation Rv with

dimRv = nv. Similarly, the higher-rank p-forms transform in particular representations

of G. The p-form field content of the ungauged maximal supergravities in various

dimensions is determined by supersymmetry and collected in table 2.
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D G 0 1 2 3

9 GL(2) 10 + 30 − 1 1−4 + 2+3 2−1 1+2

8 SL(2)×SL(3) (3−1,1)+(1,8−3) (2,3′) (1,3) ( 2 ,1)

7 SL(5) 25 − 15 10′ 5

6 SO(5, 5) 45 − 30 16c 10

5 E6(6) 78 − 36 27′

4 E7(7) 133 − 63 56

3 E8(8) 248 − 120

Table 2: The p-form field content in ungauged maximal supergravity organizes into G-

representations. The physical scalars (p = 0) descend from the adjoint representation of

G upon eliminating (dimK) of them by fixing the local K freedom, cf. (2.11). The framed

representations appearing in the even dimensions refer to the peculiarity concerning the

(D/2− 1) forms, of which only half appear in the Lagrangian and carry propagating degrees

of freedom, as discussed in subsection 2.3 below.

An invariant action for the vector fields is given by

Lkin = −1
4
eMMN F

M
µν F

µν N , (2.25)

with the abelian field strength FM
µν ≡ ∂µA

M
ν −∂νA

M
µ and the scalar dependent positive

definite matrix MMN defined in (2.15). This action is manifestly invariant under G

with M transforming as (2.16). To be precise, the action (2.25) is only relevant for

the vector fields in D > 4 dimensions, while in D = 4 space-time dimensions the

story is somewhat more complicated as a consequence of electric/magnetic duality as

we shall briefly review in the next subsection. Similarly, the kinetic terms for higher-

rank p-forms BI
ν1...νp

(with p < [(D−1)/2]) are governed by the positive definite scalar

matrices (2.15) evaluated in the corresponding representations

Lkin = − 1
2(p+1)!

MIJ F
I
ν1...νp+1

F ν1...νp+1 J , etc. , (2.26)

with the abelian field strength1 F I
ν1...νp+1

= (p+1) ∂[ν1
BI

ν2...νpνp+1] .

An important ingredient in the construction of supergravity theories by dimensional

reduction which will also be of relevance in the construction of the gaugings below is

the on-shell duality between massless p-forms and (D − p− 2)-forms in D space-time

dimensions. This simply reflects the fact that these forms carry the same representation

under the little group SO(D−2). Specifically, it follows from (2.26) that the field

equation of a p-form BI to lowest order in the fields take the form

∂µ (MIJ F
J
µν1...νp

) = 0 . (2.27)

The full field equations receive higher-order terms in the fermions as well as contribu-

tions from possible topological terms. At the same time, the abelian field strength F I

1Throughout, when antisymmetrizing indices [µ1 . . . µp], we use the normalization with total weight

one, i.e. X[µν] = 1
2 (Xµν − Xνµ), etc.
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is subject to the Bianchi identity

∂[ν1
F I

ν2...νp+2] = 0 . (2.28)

In terms of the dual field strength

Gµ1...µD−p−1 I ≡
e

(p+1)!
εµ1...µD−p−1ν1...νp+1

MIJ F
ν1...νp+1 J , (2.29)

the equations (2.27) and (2.28) take the form

∂[µ1
Gµ2...µD−p] I = 0 , and ∂µ (MIJ Gµν1...νD−p−2 J) = 0 , (2.30)

respectively, i.e. equations of motion and Bianchi identities exchange their roles and

locally we can define the dual (D − p− 2)-forms CI by

Gµ1...µD−p−1 I ≡ (D−p−1) ∂[µ1
Cµ2...µD−p−1] I . (2.31)

Dynamics of the massless p-forms BI can thus equivalently be described in terms of

their dual (D−p−2)-forms CI , transforming in the dual representation under the global

symmetry G. This equivalence extends to the full non-linear theory, i.e. in presence of

Chern-Simons terms and couplings to the fermion fields.

As a result, there are in general several different off-shell formulations of a given

ungauged supergravity which are on-shell equivalent only after dualizing part of their

field content according to (2.29). It may not always be possible to get rid of all p-forms

by this dualization, as the presence of topological terms with explicit appearance of

the gauge fields can prevent the elimination of these fields by virtue of (2.29). There

is however always a version of the theory in which all forms are dualized to lowest

possible degree. This is the version in which the largest global symmetry group G is

manifest, and the p-forms couple with kinetic terms (2.25) and (2.26), respectively. We

will see in section 3 that all gaugings of supergravity can be obtained as deformations

of this particular version of the ungauged theory.

Let us finally mention that the duality (2.29) naturally extends to the scalar fields

(p = 0), which are hence on-shell dual to (D − 2)-forms. Due to the non-linear cou-

pling of scalar fields discussed in section 2.1, the representation assignment is slightly

different: (D − 2)-forms generically transform in the full adjoint representation of the

global symmetry group G with (2.29) replaced by

Gµ1...µD−1 α ≡ e εµ1...µD−1ν j
ν
α , (2.32)

where jν
α is the conserved Noether-current associated with the symmetry generated

by tα. Again, this duality cannot be used to eliminate all scalar fields (as e.g. the

scalar dependence of (2.4) cannot be expressed exclusively in terms of the jν
α), but

only those fields on which the action of G is realized as a shift isometry φi → φi + ci .

The apparent mismatch between the (dim G − dim K) physical scalar fields and the

number of (D−2)-forms defined in (2.32) is explained by the fact that not all the

Noether currents jα are independent: it follows from the structure of the coset space

sigma-model that V−1(jαt
α)V ∈ p for the Noether current associated with (2.4). This

implies (dim K) linear constraints on the fields strengths Gα.
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2.3 Self-duality in even dimensions

Employing the on-shell duality (2.29) one can always achieve a formulation of the

theory in which all forms are dualized to a degree p ≤ [(D−1)/2] and appear with

the kinetic terms (2.25), (2.26). A subtlety arises in even dimensions D = 2K for the

coupling of the (K−1)-forms. Due to the duality (2.29) between (K−1)-forms and

(K−1)-forms, these forms appear in pairs (BΛ, BΛ) of which only the first half enters the

Lagrangian and carries propagating degrees of freedom while the other half is defined

as their on-shell duals. For the maximal theories, one observes that only together

the forms BΛ and their on-shell duals BΛ transform in a 2m-dimensional irreducible

linear representation BP = (BΛ, BΛ) of the symmetry group G, shown in table 2. As a

consequence, in even dimensions G is only realized as an on-shell symmetry. E.g. the

N = 8 supergravity multiplet in D = 4 dimensions carries 28 vector fields which show

up in the Lagrangian, but it is only together with their 28 magnetic duals that they

form the fundamental 56 representation of G = E7(7) [10].

The analogue of the duality equation (2.29) in this case is the on-shell G-covariant

twisted self-duality equation [32]

F P
ν1...νK

= −
e

K!
εν1...νKµ1...µK

ΩPQMQR F
µ1...µK R , (2.33)

for the G-covariant abelian field strength F P , the symmetric matrix MPQ from (2.15)

evaluated in the corresponding 2m-dimensional representation of G, and the matrix

ΩPQ given by

ΩPQ ≡

(
0 Im

ǫIm 0

)
, with ǫ = (−1)K+1 . (2.34)

Consistency of (2.33) requires that the matrix ΩPQMQR squares to ǫ, such that the

total operator acting on F P on the r.h.s. of this equation squares to the identity. This

translates into the condition

MIK ΩKLMLJ = ΩIJ , (2.35)

i.e. requires the matrix MPQ to be symplectic/orthogonal forK even/odd, respectively.

Indeed, table 1 shows that the global symmetry groups G in even dimensions can be

embedded into Sp(m,m) and SO(m,m), for K even/odd, respectively. For the non-

simple groups appearing in the list it is sufficient that the factor under which the

(K − 1)-forms transform non-trivially can be embedded into Sp(m,m) or SO(m,m),

respectively. E.g. for the maximal theory in D = 8, it is the SL(2) ∼ Sp(1, 1) factor

which mixes three-forms with their on-shell duals [33]. In D = 6 dimensions we identify

SO(5, 5), and GL(1) ∼ SO(1, 1), respectively, while in D = 4 dimensions, (2.35) is

ensured by the symplectic embeddings E7(7) ⊂ Sp(28, 28), and SL(2) × SO(6, 6+n) ⊂

Sp(12+n, 12+n), respectively. As Ω is a group-invariant tensor, equation (2.33) is

manifestly G-covariant. Let us mention that for odd K there are theories in which
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the eigenvalues of ΩPQMQR do not come in real pairs ±1, such that Ω does not take

the form (2.34). These theories (which include the ten-dimensional IIB theory and the

six-dimensional chiral theories with tensor multiplets) do not admit an action and we

shall not consider them in the rest of this section.

In order to lift equation (2.33) to an action, one employs the split BP = (BΛ, BΛ)

and constructs the action in terms of half of the fields BΛ considered as independent

propagating (electric) fields, while the BΛ are defined via (2.33) as their on-shell (mag-

netic) duals [34]. To lowest order in the fields, the proper Lagrangian is given by

Lkin = 1
2K!

e IΛΣ(φ)FΛ
ν1...νK

F ν1...νK Σ + 1
2(K!)2

εµ1...µKν1...νK RΛΣ(φ)FΛ
µ1...µK

FΣ
ν1...νK

,

(2.36)

in terms of the m abelian field strengths FΛ, with the kinetic matrices IΛΣ(φ) and

RΛΣ(φ) related to the matrix MPQ as

MPQ ≡ −

(
I − ǫRI−1R ǫRI−1

−I−1R I−1

)
. (2.37)

Indeed, it is easy to verify that an arbitrary symmetric matrix M satisfying (2.35) can

be parametrized as (2.37) in terms of two matrices IΛΣ = IΣΛ and RΛΣ = −ǫRΣΛ, obey-

ing the correct symmetry properties according to their appearance in (2.36). Moreover,

IΛΣ is negative definite, such that the kinetic term in (2.36) comes with the correct

sign.

The field equations implied by the Lagrangian (2.36) are conveniently expressed in

terms of the dual field strength defined as

Gµ1...µK Λ ≡ (−1)K+1 εµ1...µKν1...νK

δL

δFΛ
ν1...νK

. (2.38)

as

∂[µ1
Gµ2...µK+1] Λ = 0 , (2.39)

allowing for the introduction of the m dual (K−1)-forms BΛ according to (2.31), in

terms of which Bianchi identities and field equations exchange their roles as in the

previous section. Upon manipulation of (2.38) one recovers the manifestly G-covariant

form of the field equations (2.33) with F P = (FΛ, GΛ). The action (2.36) can be

extended to the full non-linear theory, including higher order topological terms and

fermionic fields.

Equation (2.37) shows that the linear action of G on M (2.16) generically translates

into a non-linear action on the kinetic matrices I, R. Moreover, the action of G mixes

the components of the vector (BΛ, BΛ) and thus the forms appearing in (2.36) with

their on-shell duals. As a consequence, G is not a symmetry of the Lagrangian and

only realized on-shell, as is manifest in (2.33). Only its subgroup corresponding to

triangular generators

(tα)P
Q =

(
∗ ∗

0 ∗

)
, (2.40)
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is realized as an off-shell symmetry of the Lagrangian.

Different electric/magnetic splits BK → (BΛ, BΛ) correspond to different electric

frames and are related by symplectic/orthogonal rotation. These give rise to different

off-shell formulations which are on-shell equivalent. In particular, the off-shell symme-

try group depends on the particular choice of the electric frame.

An example of these structures is the half-maximal theory inD = 4 dimensions with

coset space (2.14) whose vector fields Amα
µ transform in the bifundamental representa-

tion of SO(6, 6+n)×SL(2). A convenient electric/magnetic split is Amα → (Am+, Am−)

breaking up the SL(2) doublet index α. With the matrix Mmα,nβ of (2.15) factorizing

according to

Mmα,nβ = Mmn Mαβ , (2.41)

into an SO(6, 6+n) matrix Mmn and the SL(2) matrix Mαβ of (2.21), the Lagrangian

(2.36) is found via (2.37) to be

Lkin = −1
4

(
eℑτMmn F

m+
µν F µν n+ + 1

2
εµνστ ℜτ ηmn F

m+
µν F n+

στ

)
, (2.42)

with the SO(6, 6 + n) invariant metric ηmn. This is an SO(6, 6 + n) covariant electric

frame in which the SL(2) global symmetry is realized only on-shell. In other frames,

the full SL(2) may be elevated to an off-shell symmetry, but only a GL(6) subgroup of

SO(6, 6 + n) remains realized off-shell.

Let us finally mention that the case of D = 2 supergravity is particularly subtle,

as the self-duality of forms discussed in this section applies to the scalar fields of the

theory. The formalism thus needs to be merged with the non-linear realization of the

scalar isometries discussed in section 2.1. As a result, the duality between scalar fields

is not of the simple type as for the p-forms, but rather leads to an infinite chain of

mutually dual scalar fields, on which the infinite-dimensional global symmetry group G

can be linearly realized. See [35, 36, 37, 38, 39] for details.

3 Gauging Supergravity — Covariant Formulation

In the last section, we have reviewed how the field content and the action of ungauged

supergravity are organized by the global symmetry group G. Scalar fields and p-form

fields transform in a non-linear and in linear representations of G, respectively. We

will now discuss the gaugings of the theory. I.e. according to the general discussion of

section 1 we will select a subgroup G0 ⊂ G and promote it to a local symmetry. This

can be considered as a deformation of the ungauged theory and we shall discuss which

additional couplings have to be imposed along the way. We will employ the covariant

formalism of [11, 12, 13, 14, 15] in which the gaugings are encoded in the embedding

tensor which may be characterized group-theoretically.
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3.1 The embedding tensor

As we have reviewed in the last section, under the non-abelian global symmetry

group G, the bosonic fields of ungauged supergravity transform as

δ V = Λα tα V ,

δAM
µ = −Λα (tα)N

M AN
µ ,

etc. , (3.1)

with constant parameters Λα, α = 1, . . . , dim G. In addition, the nv vector fields in the

theory possess the standard abelian gauge symmetry U(1)nv :

δ AM
µ = ∂µ ΛM , (3.2)

with coordinate-dependent parameters ΛM = ΛM(x). Similarly, higher-rank p-forms

appear with the corresponding abelian tensor gauge symmetry.

Gauging corresponds to promoting a subgroup G0 ⊂ G to a local symmetry. This

subgroup can be defined by selecting a subset of generators within the global symmetry

algebra g = Lie G. Denoting these generators by XM , the associated symmetries can

be made local by introducing standard covariant derivatives according to

∂µ −→ Dµ ≡ ∂µ − gAM
µ XM , (3.3)

where we also introduce the gauge coupling constant g. A general set of nv generators

in g can be described as

XM ≡ ΘM
α tα ∈ g , (3.4)

by means of a constant tensor ΘM
α, the embedding tensor, which describes the explicit

embedding of the gauge group G0 into the global symmetry group G. For the moment,

we can simply consider this object as a constant (nv × dim G) matrix with its two

indices M and α in a fundamental and the adjoint representation of G, respectively.

It combines the full set of deformation parameters. The dimension of the gauge group

is given by the rank of the matrix ΘM
α.

The advantage of explicitly parametrizing the gauge group generators as in (3.4) is,

that this allows to keep the entire construction formally G-covariant. As it will turn out,

the gauging can be entirely parametrized in terms of the embedding tensor ΘM
α. The

deformed equations of motion remain manifestly G-covariant if the embedding tensor

is treated as a spurionic object that simultaneously transforms under G according to

the structure of its indices. It is only upon specifying a particular choice for ΘM
α that

we select a particular gauge group G0, and the global symmetry G is broken. The

embedding tensor will always appear together with the coupling constant g we have

introduced in (3.3). The latter could thus be absorbed by rescaling ΘM
α, but we will

keep it in the following for book-keeping purpose.

16



Having introduced the covariant derivatives, the theory should be invariant under

the standard combined transformations

δ V = gΛMXM V ,

δAM
µ = ∂µΛM + gAN

µ XNP
MΛP = DµΛM , (3.5)

with local parameter ΛM = ΛM(x) and XNK
M ≡ ΘN

α (tα)K
M . This is of course

not true for an arbitrary choice of Θ. In particular, consistency requires that the

generators (3.4) close into a subalgebra of g. This in turn translates into a set of

non-trivial constraints on the embedding tensor. In the following, we shall work out

the complete set of constraints which Θ must satisfy in order to achieve a theory

with local gauge invariance (3.5). As it turns out, there are in general two sets of

constraints, a quadratic and a linear one. They can be formulated as G-covariant

homogeneous equations in Θ which allows to construct solutions by purely group-

theoretical methods. Eventually, every solution to this set of constraints will give rise

to a consistent Lagrangian with local gauge symmetry (3.5).

The first set of constraints is bilinear in Θ and very generic. It states that the ten-

sor Θ is invariant under the action of the generators (3.4) of the local gauge symmetry.

Note that Θ is almost never a G-invariant tensor, as follows already from the different

nature of its two indices (except in D = 3 dimensions, where vector fields transform in

the adjoint representation of G). Consistency of the gauged theory however requires

that Θ must be invariant under the action of the subgroup G0. As this subgroup is

precisely defined by projection with Θ, together this leads to a quadratic constraint

in Θ:

0
!
= QPM

α ≡ δP ΘM
α ≡ ΘP

β δβ ΘM
α

= ΘP
β(tβ)M

NΘN
α + ΘP

βfβγ
αΘM

γ , (3.6)

where we have used the fact that the generators in the adjoint representation are given

in terms of the structure constants as (tα)β
γ = −fαβ

γ . Contracting this result with a

generator tα, we obtain the equivalent form

[XM , XN ] = −XMN
P XP , with XMN

P = ΘM
α(tα)N

P . (3.7)

Hence, the gauge invariance of the embedding tensor in particular implies the closure

of the generators (3.4) into an algebra. Let us stress however, that the constraint (3.6)

is in general stronger than simple closure: equation (3.7) in particular implies a non-

trivial relation upon symmetrization in (MN) (upon which the l.h.s. trivially vanishes,

but the r.h.s. does not) which clearly goes beyond closure. Nevertheless this condition

turns out to be indispensable and we will come back to it in the next subsection.

Apart from the quadratic constraint (3.6), Θ must in general satisfy another linear

constraint which is implied by supersymmetry. Recall that eventually we wish to

construct a theory that does not only possess the local gauge invariance (3.5) but also
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should still be invariant under (a possible deformation of) supersymmetry. This puts

further constraints on Θ, whose specific form however will in particular depend on the

number of space-time dimensions and supercharges considered. Interestingly enough,

in many cases the linear constraint can already be deduced at a much earlier stage

by purely bosonic considerations related to consistency of the deformed tensor gauge

algebra that we discuss in the next section.

Let us consider as an example the maximal N = 8, D = 4 theory. Its global

symmetry group G = E7(7) has 133 generators while the vector fields transform in

the fundamental 56 representation. According to its index structure, the embedding

tensor ΘM
α thus a priori lives in the tensor product of the fundamental and the adjoint

representation, which decomposes according to2

ΘM
α : 56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480 . (3.8)

Compatibility of the deformation with supersymmetry can be expressed in an E7(7)-

covariant way and restricts the embedding tensor to the 912 representation in this

decomposition [13, 42]. I.e. as a matrix ΘM
α has only 912 linearly independent entries.

We will sketch the argument in section 3.3 below.

It is interesting to note that in fact also the 56 part of the embedding tensor in the

decomposition (3.8) defines a consistent deformation which however requires simulta-

neous gauging of the R
+ on-shell conformal rescaling symmetry of D = 4 supergravity,

see [43] for details. As a result, the corresponding theory no longer admits an action

but can be constructed as a supersymmetric deformation of the equations of motion.

Deformations of this type have first been constructed in ten space-time dimensions

in [44, 45].

As another example, we may consider the half-maximal theory inD = 4 dimensions,

whose scalar fields parametrize the coset space (2.14) with the vector fields transforming

in the bifundamental (2, ) representation3 of SL(2)⊗SO(6, 6+n). In analogy to (3.8),

the embedding tensor a priori transforms in the tensor product of fundamental and

adjoint representation, which decomposes according to

(2, ) ⊗
(
(3, 1) + (1, )

)
= 2 · (2, ) ⊕ (2, ) ⊕ (2, ) ⊕ (4, ) . (3.9)

Supersymmetry restricts the embedding tensor to (2, ) + (2, ), i.e. forbids the last

two contributions in (3.9) and poses a linear constraint among the two terms in the

(2, ) representation [47].

In general, the embedding tensor lives within the tensor product

ΘM
α : Rv∗ ⊗Radj = Rv∗ ⊕ . . . , (3.10)

2All the tensor products and branchings of representations used in these lectures can be found in

the appendix of [40] or calculated with the help of the computer algebra package LiE [41].
3The box ‘ ’ here refers to the vector representation of SO(6, 6+n) and we use the standard

Young tableaux notation for the higher irreducible representations.
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D G Radj Rv ΘM
α

9 GL(2) 10 + 30 1−4 + 2+3 2−3 + 3+4

8 SL(2)×SL(3) (3,1)+(1,8) (2,3′) (2,3)+(2,6′)

7 SL(5) 24 10′ 15 + 40′

6 SO(5, 5) 45 16c 144c

5 E6(+6) 78 27′ 351′

4 E7(+7) 133 56 912

3 E8(+8) 248 248 1+3875

2 E9(+9) Radj Λ1 Λ1∗

Table 3: Embedding tensor ΘM
α in maximal supergravity. In D = 2 dimensions, Radj and

Λ1 refer to the infinite-dimensional adjoint and basic representation of the affine algebra

E9(9) = Ê8(8), respectively.

where by Rv∗ we denote the representation dual to the representation Rv in which

the vector fields transform, and the precise form of the r.h.s. depends on the partic-

ular group and representations considered. The linear representation constraint then

schematically takes the form

P Θ = 0 , (3.11)

and restricts Θ to some of the representations appearing on the r.h.s. of (3.10). The

resulting representations for the embedding tensor in the maximal supergravities are

collected in table 3. For the half-maximal theories, the structure is very similar, however

the embedding tensor generically contains several different irreducible parts, see e.g. [46,

47, 48, 49].

As we have already mentioned above, the linear representation constraint follows

from consistency of the deformation with supersymmetry in first order of Θ, see sec-

tion 3.3 below. In many cases however, this constraint can already be deduced from

purely bosonic considerations and we will see examples of this in the following. E.g.

in D = 4 dimensions, it can be shown [50] that the embedding tensor must in general

satisfy the linear constraint

X(MN
P ΩK)P = 0 , (3.12)

with XMN
P from (3.7) and the symplectic matrix ΩKP from (2.34), in order to achieve

a bosonic Lagrangian with the local symmetry (3.5). This condition does not make any

reference to supersymmetry but in particular reproduces the constraints given above

for the N = 8 and the N = 4 theory, respectively.4

4It has recently been shown that in N = 1 theories this condition may be replaced by an inhomo-

geneous equation in Θ in order to cancel the quantum anomaly cubic in Θ [51]. Here, we restrict the

discussion to the classical theories.
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To summarize the discussion of this section, any gauging of the theory is entirely

encoded in the choice of the embedding tensor ΘM
α which according to (3.4) defines

the embedding of the gauge group G0 into the global symmetry group G and via (3.3)

defines the new minimal couplings of vector fields to the remaining matter fields. Con-

sistency of the deformation is expressed by a set of algebraic constraints quadratic (3.6)

and linear (3.11) in the embedding tensor, respectively. While it is rather straightfor-

ward to verify that the constraints are necessary, it has to be checked case by case

(i.e. for the various dimensions D and number of supercharges N) that indeed they

are sufficient to define a consistent gauging. In particular, the action of the gauged

theory Lgauged must be constructed separately in the various space-time dimensions.

However once this action has been worked out for generic Θ, all particular gaugings

are straightforwardly obtained as specific choices of Θ.5

The classification of the possible gaugings in a given space-time dimension thus

reduces to the analysis of simultaneous solutions of the constraints (3.6) and (3.11).

While the latter can be directly solved by working out the explicit projection, the

quadratic constraint is in general difficult to solve and does not possess a solution in

closed form. The counting of inequivalent gaugings in general remains an unsolved

problem. The strategy we will pursue in the following in order to identify the gaugings

relevant for the description of particular flux compactifications is the following:

• work out in D dimensions the universal gauged Lagrangian, i.e. the deformation

for a generic Θ solving the constraints (3.6) and (3.11).

• identify (exploiting the symmetries related to the higher-dimensional origin)

among the components of Θ those corresponding to particular flux parameters.

• evaluate the quadratic constraint and the general formulas for this particular

choice of Θ.

• evaluate the universal formulas for the Lagrangian and in particular the scalar

potential for this particular choice of Θ.

• moreover, working out the action of G on Θ allows to directly determine the

transformation of the flux parameters under the duality group.

We shall illustrate this procedure in section 4 with several explicit examples.

3.2 Deformed tensor gauge algebra

We have in the last section defined a gauging in terms of the embedding tensor ΘM
α and

started to render the theory invariant under the local symmetry (3.5) by introducing

5We should mention that for theories with low number of supersymmetries additional quadratic

constraints beyond (3.6) may arise, such as the locality of electric and magnetic charges in four dimen-

sions [50]. For the maximal and half-maximal theories discussed here, the quadratic constraint (3.6)

is a sufficient condition.
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covariant derivatives (3.3). Apart from the minimal couplings induced by (3.3), the

field strengths of the vector fields need to be modified in order to capture the non-

abelian nature of the new gauge group. This will lead us to a deformation of the

higher-rank tensor gauge algebra, intertwining p-forms and (p+1)-forms. The natural

ansatz for the non-abelian field strength of the vector fields is

FM
µν = ∂µA

M
ν − ∂νA

M
µ + gX[NP ]

M AN
µ A

P
ν , (3.13)

but we shall see in the following that this is actually not sufficient.

Let us start from the gauge algebra (3.7)

[XM , XN ] = −XMN
P XP . (3.14)

with the “structure constants”

XMN
P ≡ ΘM

α (tα)N
P ≡ X[MN ]

P + ZP
MN , (3.15)

where we have introduced the notation ZP
MN ≡ X(MN)

P for the symmetric part in

XMN
P which is generically non-vanishing. E.g. for the maximal theories with irre-

ducible embedding tensor ΘM
α (i.e. for D = 4, 5, 6, cf. table 3), one may show that

there is no gauging for which ZP
MN vanishes.

As the l.h.s. of (3.14) is manifestly antisymmetric in [MN ], so must be the r.h.s.,

hence we can deduce that ZP
MN vanishes upon contraction with another generator

ZP
MN XP = 0 , (3.16)

as a direct consequence of the quadratic constraint (3.14). The presence of a symmet-

ric part in the “structure constants” XMN
P might seem like a bagatelle and simply

motivate the definition of the explicitly antisymmetrized X[MN ]
P as the true structure

constants. However, these latter objects fail to satisfy the Jacobi identities:

X[MN ]
P X[QP ]

R +X[QM ]
P X[NP ]

R +X[NQ]
P X[MP ]

R = −ZR
P [QXMN ]

P , (3.17)

the violation being again proportional to the tensor ZP
MN . Again the standard Jacobi

identity is satisfied upon further contraction with a generator XR as a consequence

of (3.16). This is certainly enough for consistency of the algebra (3.14). However, it

shows up as a problem in the definition of a suitable covariant field strength tensor

which is needed in order to construct a proper covariantization of the abelian kinetic

term (2.25), a covariant coupling to the fermionic fields, etc.

Namely, as a consequence of (3.17) the standard non-abelian field strength (3.13)

turns out to be not fully covariant. Under the new gauge transformations (3.5) it

transforms as

δFM
µν = −gΛPXPN

M FN
µν + 2g ZM

PQ

(
ΛPFQ

µν − AP
[µ δA

Q
ν]

)
, (3.18)
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of which only the first term would correspond to a standard homogeneous covariant

transformation. Note however that all the unwanted terms appear contracted with the

tensor ZM
PQ and thus vanish in absence of ZM

PQ. In particular, together with (3.16)

this implies that the combination FM
µν XM , which e.g. shows up in the commutator of

covariant derivatives as

[Dµ, Dν ] = −gFM
µν XM , (3.19)

is a good covariant object. On the other hand, conceivable covariant kinetic terms

constructed from this object such as Tr [FM
µνXM Fµν NXN ] are not smooth deformations

of (2.25). A priori it thus remains unclear how to properly covariantize this kinetic

term. A similar problem arises in the covariantization of the kinetic terms for the

higher-rank p-forms (2.26).

The problem we are facing in this construction is the price to pay for staying G-

covariant. We have chosen a somewhat redundant description of the new gauge group

in terms of nv generators (3.4), whereas in fact in most cases the dimension of the gauge

group G0 will be strictly smaller than nv. In other words, the matrix ΘM
α in general

does not have maximal rank, thus not all XM are linearly independent. Accordingly,

the vector fields AM
µ split into

AM
µ −→

{
Am

µ → transforming in the adjoint of G0 ,

Ai
µ → remaining vectors, transforming in some rep. of G0 .

(3.20)

This clearly poses a problem if the Ai
µ transform in a non-trivial representation of G0

in which case we cannot write down a consistent gauge theory. As a consequence,

w.r.t. this splitting, Zm
PQ vanishes whereas Zi

PQ 6= 0 creates the problems manifest

in equation (3.18). This is a generic problem in gauged supergravities which has been

encountered ever since such theories have been constructed. Let us briefly discuss how

it has been circumvented in some of the early constructions.

• The four-dimensional maximal SO(8) gauged theory constructed in [1] involves

only 28 out of the 56 vector fields that form an irreducible representation of

the global symmetry group E7(7). As discussed in section 2.3 above, only 28 of

these vector fields are present in the ungauged action and it is precisely this set

which is coupled to the SO(8) generators. The same situation occurs for the non-

compact SO(p, q) gaugings constructed subsequently in [2]. In other words, the

vector fields Ai
µ of (3.20) which do not participate in the gauging all live in the

magnetic sector and do not appear in the action. It is therefore not a problem

that their field strengths are not covariant objects. This distinctive feature of four

space-time dimensions has allowed the construction of maximal gaugings without

having to address the problem of non-covariance encountered above. However,

it strikes back in the presence of magnetic charges and tensor fields [52], and we

present its covariant solution below.
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• In five space-time dimensions, the maximal SO(6) gauging constructed in [3]

involves only 15 out of the 27 vector fields, with the 12 remaining ones trans-

forming in a non-trivial representation of SO(6), implying a non-vanishing Zi
PQ.

The solution found in [3] corresponds to dualizing these unwanted vectors into

two-forms (as a particular application of the dualization of p-forms (2.29)) which

upon gauging turn into massive self-dual two-forms, i.e. acquire mass terms of

the type [53]

∂ρFρµν = eεµνρστ mF ρστ , (3.21)

with masses m proportional to the inverse coupling constant g−1. As a conse-

quence, these forms continue to carry no more than the three degrees of freedom

of a massless vector field in five dimensions, consistently keeping the balance of

degrees of freedom upon gauging. The Lagrangian of the gauged theory thus car-

ries only 15 vector fields Am
µ with truly covariant field strengths and 12 massive

self-dual two-forms. The same mechanism has been successfully applied to other

five-dimensional theories, see e.g. [54].

• In seven space-time dimensions the first gaugings of the maximal theory were

constructed in [4] and exhibit a somewhat particular situation: the entire set of

10 vector fields present in seven dimensions is needed to gauge an SO(5) group

(or non-compact versions thereof). This is related to the fact, that in seven

dimensions the embedding tensor is reducible (cf. table 3); for gaugings defined

by an embedding tensor in the 15 of SL(5) the tensor ZM
PQ vanishes identically.

For these gaugings however a similar problem shows up upon trying to define a

proper covariant field strength for the two-forms. In complete analogy to (3.18),

the naive covariantization of their abelian field strengths in general does not

transform covariantly. In [4] this problem was circumvented by dualizing all two-

forms into three-forms which upon gauging become self-dual massive, analogous

to (3.21) thereby conserving the number of degrees of freedom. The Lagrangian

of the gauged theory of [4] thus carries only vector fields and massive self-dual

three-forms.

In all these cases it has thus eventually been possible to eliminate the extra vector

fields Ai
µ of (3.20) from the Lagrangian thereby circumventing the problem of the non-

covariant field strengths (3.18). This procedure however requires an explicit breaking

of the G-covariance: the explicit split (3.20) and thus the field content of the gauged

theory depends on the particular gauge group chosen. Furthermore, it remains unclear

how to proceed in other space-time dimensions. E.g. a gauging of smaller groups

in D = 7 dimensions cannot be achieved with this construction. Likewise, in even

dimensions there is no analogue of the massive self-duality (3.21) which was crucial for

the correct balance of degrees of freedom. All this motivates the covariant construction

that we shall present in the following, which appears particularly natural in the context

of flux compactifications.
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The covariant ansatz makes use of the fact that the non-covariant terms in (3.18)

appear projected with the tensor ZM
PQ and defines the full covariant field strengths

as [14, 15]

HM
µν = FM

µν + gZM
PQB

PQ
µν , (3.22)

upon the introduction of two-form tensor fields of the type BMN
µν = B

(MN)
[µν] . The

non-covariant terms in (3.18) can then be absorbed by postulating the corresponding

transformation laws for the two-form fields. Explicitly, the new field strength HM
µν

transforms covariantly under the combined set of gauge transformations

δAM
µ = DµΛM − g ZM

PQ ΞPQ
µ ,

δBMN
µν = 2D[µΞMN

ν] − 2Λ(MHN)
µν + 2A

(M
[µ δA

N)
ν] , (3.23)

where ΞMN
µ labels the tensor gauge transformations associated with the two-forms. A

non-vanishing tensor ZM
PQ thus induces a Stückelberg-type coupling between vector

fields and antisymmetric two-forms, as is familiar from massive deformations of super-

gravities, e.g. [55]. It is the strength of the covariant formalism to treat all possible

deformations (gauged and massive supergravities) on the same footing.

Of course, the two-forms BMN
µν introduced in (3.22) cannot simply be added to the

fields of the theory, as the number of degrees of freedom is in general carefully balanced

by supersymmetry. Rather, these must be (a subset of) the two-forms that are already

present in the ungauged supergravity. Their index structure in (3.22) shows that they

generically appear in a representation of G that is contained in the symmetric tensor

product (Rv ⊗ Rv)sym. Their precise representation can be inferred from inspection

of the tensor ZM
PQ under which they appear. In turn, this severely constrains the

tensor ZM
PQ which in its indices (PQ) should project only onto those representations

filled by the two-forms in the ungauged theory. As Z is a function of the embedding

tensor Θ, this eventually leads to a linear representation constraint of the type (3.11)

on Θ.

As an example, let us consider the case of D = 4 dimensions where6

ZK
MN = X(MN)

K

= 1
2
ΘM

α (tα)N
K + 1

2
ΘN

α (tα)M
K

= −1
2
ΘKα (tα)MN + 3

2
X(MNL) ΩKL , (3.24)

where we have made use of the fact that following the discussion of section 2.3, in

D = 4 dimensions the symmetry generators are embedded into the symplectic group,

i.e. (tα)[MN ] = 0. Plugging this expression into the covariant field strength (3.22) shows

6In these formulas we have been raising and lowering indices M, N with the symplectic matrix

ΩMN and north-west south-east conventions, i.e. ΘMα = ΩMNΘN
α, etc.
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that if the embedding tensor satisfies the linear constraint X(MNL) = 0 of (3.12), the

two-forms in (3.22) appear always under the particular projection

ZK
MN B

MN
µν ≡ −1

2
ΘKαBµν α , with Bµν α = (tα)MN B

MN
µν . (3.25)

They thus can be labeled by indices in the adjoint representation of the global symmetry

group G. In other words, out of the two-forms BMN
µν in the symmetric tensor product7

(Rv ⊗Rv)sym = Radj ⊕ . . . , (3.26)

only those transforming in the adjoint representation Radj are involved in the gauging.

This is precisely in accordance with the fact that two-forms in four dimensions are

dual to the scalar field isometries as a consequence of the on-shell duality (2.32) and

thus transform in the adjoint representation of G. The argument shows the need for

the linear representation constraint (3.12) in D = 4 dimensions from purely bosonic

considerations, ensuring that the gauge algebra can be rendered consistent by adding

precisely the two-forms Bα that we have at our disposal. On the other hand, an

embedding tensor satisfying X(MNL) 6= 0 would require the coupling of more two-forms

(in the full symmetric tensor product (3.26)) for consistency of the tensor gauge algebra,

in contradiction with the given field content.

To summarize, we have seen in this section that a general gauging not only re-

quires covariant derivatives (3.3) but also Stückelberg-type couplings between vector

fields and two-form tensors in order to define the covariant field strengths (3.22). Con-

sistency of the tensor gauge algebra poses linear representation constraints (3.11) on

the embedding tensor, i.e. restricts the possible gaugings. In fact, the presence of

two-form tensor fields in the effective actions precisely fits with what is observed in

explicit flux compactifications, e.g. the massive two-form field appearing in particular

flux compactifications on Calabi-Yau manifolds [16].

Let us close this section with a few remarks on the vector/tensor gauge transfor-

mations (3.23)

• Strictly speaking, the variation of BMN
µν as it stands in (3.23) is only exact under

projection with the tensor ZP
MN — this is for instance of importance when

verifying closure of the gauge algebra (3.27) below.

• The gauge transformations (3.23) close into the algebra

[δ(Λ1), δ(Λ2)] = δ(Λ) + δ(Ξ) , (3.27)

with ΛM = g X[NP ]
M ΛN

1 ΛP
2 ,

ΞMN
µ = Λ

(M
1 DµΛ

N)
2 − Λ

(M
2 DµΛ

N)
1 ,

7The fact that the adjoint representation of G appears in the symmetric tensor product of the

vector field representation is just another way of expressing the fact that in D = 4 dimensions the

group G is embedded into Sp(m, m) as discussed in section 2.3.
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showing once more the need of introducing the extra Stückelberg shift ΞMN
µ on

the vector fields in (3.23) in order to close the gauge algebra. In the presence of

higher-rank tensor fields, the r.h.s. of (3.27) in general contains also the corre-

sponding higher-rank tensor gauge transformations, whose action on the vector

fields is trivial.

• Naively, one might have expected the standard homogeneous transformation be-

havior δBMN = −2gΛKXKL
(MBN)L of the two-forms under gauge transforma-

tions, rather than the covariant Λ(MHN) term in (3.23). However, the latter

contains a contribution −2gΛ(MZN)
PQB

PQ which comes close to the above ho-

mogenous term. The discrepancy precisely vanishes under projection with ZR
MN

as a consequence of the identity

ZR
MPXSQ

M + ZR
MQXSP

M − 2ZR
MSZ

M
PQ = 0 , (3.28)

which in turn follows as a consequence of the quadratic constraint (3.14). Under

projection thus one recovers from (3.23) the standard homogenous transformation

behavior. Most importantly, the full field strengths HM transform covariantly

under the gauge transformations (3.23).

• The full covariant field strength (3.22) no longer satisfies the standard Bianchi

identies, but rather its deformed version

D[µH
M
νρ] = 1

3
gZM

PQ HPQ
µνρ , (3.29)

where HPQ
µνρ denotes the covariant field strength of the two-forms.

• The combined transformation

ΞMN
µ = Dµ ξ

MN , ΛM = gZM
PQ ξ

PQ , (3.30)

has no effect on the gauge fields AM
µ , BMN

µν (the latter again under projection

with ZP
MN). This is the proper non-abelian generalization of the standard tensor

gauge redundancy.

• The structure we have presented here for vector fields and two-forms extends

to the full hierarchy of higher-rank p-forms. In particular, the full set of vec-

tor/tensor gauge transformations takes the form (schematically)

δV = gΘ ΛV ,

δAµ = DµΛ − gΘ Ξµ ,

δBµν = 2D[µΞν] + . . . − gΘ Φµν ,

δCµνρ = 3D[µΦνρ] + . . . − gΘ Σµνρ ,

etc. , (3.31)
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where we have ommitted all G-indices. This shows the non-trivial entanglement

between p-forms and (p − 1)-forms via Stückelberg terms induced by a generic

gauging (i.e. a generic tensor Θ). We have schematically denoted all the inter-

twining tensors by Θ as they are uniquely defined in terms of the embedding

tensor, while their precise index structure takes care of the different represen-

tations in which the p-forms transform (with ZK
MN from (3.15) as the lowest

explicit intertwining tensor). The representation content of the embedding ten-

sor is determined from the linear constraint (3.11) which we have seen to follow

from consistency of the tensor gauge algebra on the lowest-rank tensor fields. Re-

markably, a closer analysis of the higher-rank tensor gauge transformations (3.31)

then allows to determine the representation content of all higher-rank p-forms of

the theory, see [15, 56]. For the maximal supergravities, with the embedding

tensor given in table 3, this reproduces the entire field content of these theo-

ries, including the non-propagating (D − 1) and D-forms. In particular, it gives

agreement with the predictions obtained from analyzing the branchings of the

infinite-dimensional representations of the underlying very extended Kac-Moody

algebras, [25, 26, 49, 57].

The task in the following will be to put all these structures on the level of the

Lagrangian.

3.3 The Lagrangian

In this section we will describe how to obtain the Lagrangian that is compatible with

the new local symmetry (3.23) as a deformation of the Lagrangian of the ungauged

theory. Given the algebraic framework we have set up in the last two sections, the first

step obviously consists of covariantizing all derivatives according to (3.3) and to replace

the abelian field strengths by the full covariant ones (3.22) and their analogues for the

higher-rank p-forms. It is slightly more tedious but straightforward to also covariantize

the topological terms present in the ungauged theory.

We have seen in the last section, that the deformation leads to an entanglement

of the p-forms and the (p + 1)-forms via the corresponding field strengths. As a con-

sequence, the covariantized Lagrangian will carry forms of higher degree than the un-

gauged one. E.g. in D = 4, 5 dimensions, the gauged theory generically carries 2-forms,

in D = 6, 7 dimensions the gaugings carry 3-forms, etc., see table 4 (cf. in contrast

table 2 for the ungauged theories). Moreover, since the construction of the deformation

is manifestly G-covariant, the gauged theories in even dimensions generically carry the

full G-representation of forms rather that only the electric half.

A priori, the presence of these extra fields in the gauged theory might pose a

formidable obstacle to the construction: as these fields were not present in the ungauged

theory, they do not possess kinetic terms but instead only appear as corrections to

lower-rank field strengths and topological terms upon covariantization. This might lead

to weird if not inconsistent additional field equations. Instead, somewhat miraculously,
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D G 1 2 3 4

9 GL(2) 1−4 + 2+3 2−1 1+2 1−2

8 SL(2)×SL(3) (2,3′) (1,3) (2,1) (1,3′)

7 SL(5) 10′ 5 5′

6 SO(5, 5) 16c 10 16s

5 E6(6) 27′ 27

4 E7(7) 56 133

3 E8(8) 248

Table 4: The p-forms (p ≥ 1) entering the Lagrangian of gauged maximal supergravity.

it turns out that the various contributions from kinetic and topological terms precisely

combine into first-order field equations for the additional fields. This reflects the fact

that these fields do not constitute additional degrees of freedom but are the on-shell

duals of the fields of the ungauged theory. From this perspective, remarkably, this

reasoning gives a purely bosonic argument for the appearance of the topological terms

in the ungauged theory: it is their covariantization that renders the field equations in

the gauged theory consistent.8 In other words, in absence of the standard topological

term (whose presence is usually deduced from supersymmetry) the bosonic theories

would not allow for generic deformations.

Let us discuss as an example the theories in D = 4 space-time dimensions. The

general gauging is defined by an embedding tensor ΘM
α giving rise to covariant deriva-

tives (3.3) which in general involve all vector fields

Dµ ≡ ∂µ − gAM
µ ΘM

α tα = ∂µ − gAΛ
µ ΘΛ

α tα − gAµΛ ΘΛα tα , (3.32)

where according to the discussion of section 2.3 we have split the 2m vector fields into

the m electric ones AΛ
µ and their magnetic duals. Only the former ones appear in the

ungauged theory. While at first sight it may seem unnatural to include the magnetic

vector fields in the general connection, this is in fact indispensable in order to achieve

a duality covariant description of flux compactifications. Recall that upon different

compactification from higher dimensions one usually ends up in different symplectic

frames in four dimensions. I.e. depending on the higher-dimensional context, the effec-

tive four-dimensional theory might carry different selections of m electric vector fields

among the 2m gauge fields. Only after exchanging some electric versus magnetic vector

fields, one may be able to pin down the equivalence/duality between different compact-

ifications. This shows that a restriction to electric vector fields in (3.32) might miss

certain effective theories which correspond to standard electric gaugings in another

symplectic frame. On the other hand, with all components of ΘM
α present in (3.32)

it is straightforward to identify the action of the duality group onto the various flux

8A notable exception is the three-dimensional theory, whose ungauged version does not carry any

topological term, such that a gauge invariant Chern-Simons term for the vector fields must be added

to the gauged theory, in order to produce sensible field equations.
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parameters in different compactifications. We shall see this in more detail in the last

section.

The appearance of the Aµ Λ in the covariant derivatives (3.32) could lead to the

problems discussed above: as new fields they seem to appear in the role of Lagrange

multipliers that would imply some devastating field equations. However, the above

discussed mechanism comes to the rescue: gauge invariance of the Lagrangian (2.36),

also requires the introduction of additional topological terms of the form [50]

Ltop ∝ εµνστ
(
gΘΛ α ∂µAν ΛBστ α + 1

8
g2 ΘΛ αΘΛ

β Bµν αBστ β + . . .
)
. (3.33)

Together, it follows from variation of Bµ α that

gΘΛ α
(
Hµν Λ + eεµνστ

δLkin

δHστ
Λ

)
= 0 , (3.34)

which precisely reproduces the covariant version of the duality equation (2.38). Like-

wise, variation w.r.t. the magnetic vector fields induces the duality equation (2.32)

between scalars and two-forms. Note that for the gauged theory, the duality equations

arise as true field equations, however projected with the matrix ΘΛ α. In particular,

in the limit g → 0, all dual fields disappear from the Lagrangian and equation (3.34)

consistently decouples. This is different from the democratic formulation of supergrav-

ities, in which the dual fields are introduced already in the ungauged action and the

duality relations (2.38), etc. must be supplied by hand.

Summarizing, we have succeeded in finding a deformation of the original ungauged

Lagrangian of supergravity that is compatible with the algebraic structures induced

by the new local gauge group and encoded in the embedding tensor ΘM
α as presented

in the last sections. Details of the construction may differ in the various space-time

dimensions and can be found in the literature for several examples, see e.g. [12, 14, 50,

58, 47, 59, 60, 61, 62, 42, 63].9 The fact that the deformation has been described in

a manifestly G-covariant way has another appealing consequence: in even dimensions

— where G is realized only on-shell — this construction can accommodate gaugings

of subgroups G0 of G that are not among the off-shell symmetries of the ungauged

Lagrangian!

Now, that we have constructed a gauge invariant Lagrangian, we may take the next

step and check if the deformation is further compatible with local supersymmetry. As

it stands, the deformed Lagrangian is no longer invariant under supersymmetry due to

the extra contributions that arise from variation of the vector fields in the covariant

derivatives, and from the deformation of Bianchi identities (3.29), etc. in the gauged

theories. Supersymmetry can be restored applying the standard Noether procedure [1].

9In dimensions D = 8 and D = 9, gauged supergravities have been classified and constructed

independently, based on the different compactification manifolds [64, 65]. While the nine-dimensional

case is in exact agreement with the form of the embedding tensor of table 3, the compactifications

to eight dimensions seem to reproduce only part of the possible components of the corresponding

embedding tensor.
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In linear order of the deformation parameters Θ, the unwanted contributions can be

cancelled by introducing particular fermionic mass terms of the type (schematically)

Lferm−mass = g
(
ψiAij ψ

j + χABAi ψ
i + χACAB χ

B
)

+ h.c. , (3.35)

where by ψi and χA we denote gravitinos and spin-1/2 fermions, respectively, with the

indices i and A labeling the respective K-representations, and where we have suppressed

all space-time indices and γ-matrices.10 The tensors Aij, BAi, and CAB may depend on

the scalar fields, and inherit their symmetry properties from their precise appearance

in (3.35). Under the action (2.5) of K they should transform in the proper represen-

tations such that (3.35) is K-invariant. Together with the fact that these tensors must

be defined in terms of the embedding tensor ΘM
α that encodes the deformation, their

transformation properties entirely fix the form of these tensors. Specifically, they are

constructed from the so-called T -tensor defined by

TN
β ≡ ΘM

α VM
N Vα

β , (3.36)

as the embedding tensor dressed with the scalar group matrix V evaluated in the

fundamental and the adjoint representation of G, respectively. This object has first

appeared in the SO(8) gauging in D = 4 dimensions [1]. In contrast to the constant

ΘM
α, the T -tensor depends non-trivially on the scalar fields. As it is obtained from the

embedding tensor by a finite G transformation, it lives in the same G-representation

as Θ, i.e. it inherits from Θ the linear constraint (3.11)

P T = 0 , (3.37)

which now holds for any value of the scalar fields on which T depends. Under K this ten-

sor contains various irreducible parts, obtained by decomposing the G-representation

of Θ (cf. table 3) under the compact subgroup K. These K-irreducible parts can

precisely be identified with the fermionic mass tensors in (3.35).

For example in D = 4, N = 8, under K = SU(8) the embedding tensor breaks into

ΘM
α −→ TM

α → (Aij, Aij, BAi, BAi ) , (3.38)

according to the decomposition 912 → 36+36+420+420 , from which the fermionic

mass tensors are built. For the explicit formulas of the tensors (Aij, Aij, B
Ai, BAi) in

terms of a general Θ, we refer to [42].

Turning the argument around, this shows the origin of the linear representation

constraint from supersymmetry. The supersymmetry-violating terms in the Lagrangian

which are proportional to the embedding tensor, e.g. as (schematically)

FM
µν ΘM

α Vα
β (ǭ ψ)β = (FM

µν VM
N)TN

β (ǭ ψ)β . (3.39)

10Our treatment of fermions will remain somewhat schematic in this section as we are trying to give

a discussion for arbitrary theories, whereas e.g. their symmetry and hermiticity properties certainly

depend on the number D of space-time dimensions and N of supersymmetries, see e.g. [66, 28, 30] for

a discussion of spinor fields in various dimensions.
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can be cancelled by the variation of the additional fermionic mass terms (3.35) if

and only if the tensor TN
β can be built from the representations of proper fermionic

mass tensors. In D = 4, N = 8, the possible fermionic mass tensors fall into SU(8)

representations

(ψ̄ψ) : (8 ⊗ 8)sym = 36 ,

(ψ̄χ) : (8 ⊗ 56) = 28 + 420 ,

(χ̄χ) : (56 ⊗ 56)sym = 420 + 1176 , (3.40)

and their hermitean conjugates. Comparing this to the possible representation content

of a generic embedding tensor ΘM
α from (3.8)

56 → 28 + h.c. ,

912 → 36 + 420 + h.c. ,

6480 → 28 + 420 + 1280 + 1512 + h.c. , (3.41)

shows that an embedding tensor Θ in the 6480 gives rise to terms of the type (3.39)

with a part of TN
β in the 1280 + 1512 which cannot be cancelled by fermionic mass

terms (3.40). This is the underlying reason why supersymmetry requires the linear

constraint (3.11) and forbids a Θ in the 6480. Similarly, a Θ in the 56 is ruled out by

supersymmetry: although a 28 appears in (ψ̄χ), a closer check shows that its absence

in (ψ̄ψ) forbids this representation in the embedding tensor. Moreover, (3.40) shows

that in this theory the mass tensor CAB of the spin-1/2 fermions is in fact obtained

from the mixed mass tensor BAi — as there is only a single 420 contribution within

the 912. Indeed, this was first discovered in the SO(8) gauging of [1].

Let us recall that in the previous sections we have found linear representation

constraints on the embedding tensor from purely bosonic considerations — consistency

of the deformed p-form tensor hierarchy. It is remarkable and somewhat surprising

that supersymmetry appears to impose precisely the same linear constraint on the

possible deformations such that no further restriction descends from compatibility with

supersymmetry.11

If the embedding tensor satisfies the linear representation constraint, the addi-

tional fermionic mass terms (3.35) are precisely sufficient to cancel all supersymmetry-

violating terms in linear order of Θ if simultaneously the fermionic supersymmetry

transformations are modified according to (schematically)

δψi = δ0ψ
i − gAij ǫj , δχA = δ0χ

A − gBAi ǫi , (3.42)

where δ0 denotes the (properly covariantized) supersymmetry transformations of the

ungauged theory. The reason for the additional fermion-shifts in (3.42) is to cancel the

Dµǫ contributions descending from (3.35).

11Again, a notable exception is the three-dimensional theory, where supersymmetry imposes linear

constraints on the embedding tensor that do not already follow from consistency of the bosonic

Lagrangian [67].
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Finally, supersymmetry in second order g2 of the deformation requires the addition

of a scalar potential, which is schematically of the form

Lpot = −eV = − eg2
(
BAiBAi − AijAij

)
, (3.43)

in terms of the fermionic mass tensors, in order to cancel the g2 contributions descend-

ing from the action of (3.42) on (3.35). It is characteristic for supergravity theories

that — in contrast to globally supersymmetric theories — the scalar potential is in

general not positive definite, but may in particular support dS and AdS vacua. For

particular gaugings, i.e. particular choices of Θ, despite its appearance of (3.43), the

potential may still be positive definite.

Consistent cancellation of all supersymmetry variations in order g2 typically requires

a number of nontrivial algebraic identities to be satisfied by the fermionic mass tensors

Aij, BAi, and CAB. In particular, one needs the traceless condition

g2
(
BAiBAj − AikAjk

)
≡ 1

N
δi
j V , (3.44)

with N the number of supercharges and the scalar potential V from (3.43) — often

referred to as a supersymmetric Ward identity. As this is a condition which is bilinear

in the embedding tensor, the only way it can be satisfied without imposing further

constraints on the gauging is as a consequence of the quadratic constraint (3.6). Indeed,

in all dimensions, (3.44) and analogous relations can be derived from (3.6) upon dressing

the latter with the scalar matrix V and breaking it into its K-irreducible parts.

It is sometimes convenient to express the scalar potential directly in terms of the

embedding tensor rather than going through the process of computing the fermionic

mass tensors. E.g. for the maximal N = 8 theory in D = 4 dimensions, the potential

takes the equivalent form [42]

V = g2
(
XMN

RXPQ
S MMPMNQMRS + 7XMN

QXPQ
N MMP

)
, (3.45)

with XMN
K defined in (3.7) as a function of the embedding tensor, and the positive

definite scalar matrices MMN defined in (2.15). This provides a universal and very

compact form for the scalar potential obtained in generic flux compactifications. De-

pending on the particular fluxes present in the compactification, different blocks of the

embedding tensor will be non-vanishing and shape the dependence of V on the scalar

fields contained in MMN . We will come back to this in section 4.

In general, the scalar potential can always be cast into the form

V = g2 VMN
αβ ΘM

α ΘN
β , (3.46)

in terms of the embedding tensor and a scalar dependent matrix VMN
αβ which e.g. for

the maximal N = 8 theory can be extracted from (3.45). Interestingly, this matrix

shows up in the analogue of the duality relations (2.29) for the (D − 1) forms of the

theory. These non-propagating forms, whose field content can e.g. be deduced from
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the supersymmetry algebra of the ungauged theory [68, 57, 56] in general transform in

the representation dual to the embedding tensor, i.e. carry indices of the type CM
α.

Whereas these forms are usually set to zero in the ungauged theory, their G-covariant

equations of motion can be integrated to [56]

∂[µ1
(CM

α)µ2...µD] + · · · = e εµ1...µD
VMN

αβ ϑN
β , (3.47)

with integration constants ϑN
β and the dots representing possible Chern-Simons con-

tributions to the field strength. Non-vanishing integration constants in this equation

precisely induce the gauged theory with the identification ϑN
β ≡ ΘN

β.

4 Flux Compactifications — Examples

In this final section we will work out a few explicit examples of four-dimensional gauged

supergravities associated to particular flux compactifications along the lines discussed

at the end of section 3.1. The maximal and half-maximal supergravities are in par-

ticular relevant for flux compactifications on tori (and their orientifolds) and we will

mainly consider the torus compactifications from M-theory and the IIA/IIB theories.

The simplest flux compactifications refer to compactifications with non-trivial val-

ues
∫

Σ

F (p) = CΣ . (4.1)

of p-form field strengths F along non-trivial cycles Σ of the internal manifold. The

constants CΣ can be considered as deformation parameters and as such be identified

within the components of the embedding tensor ΘM
α introduced above. In the follow-

ing, we will mainly consider compactifications on tori T n, where the non-trivial cycles

are products of circles and thus labeled by indices along the directions of the torus.

4.1 Higher-dimensional origin of symmetries

A crucial role in the covariant construction of gaugings was played by the underlying

global symmetry groups G of the ungauged theories, given in table 1. In order to

work out the gaugings which correspond to the effective theories of particular flux

compactifications, it will thus be important to first understand the higher-dimensional

origin of these symmetry groups. Recall, that the ungauged maximal and the half-

maximal theories arise from reduction of eleven- and ten-dimensional supergravity,

respectively, on an N -torus, with the global symmetry groups given by exceptional and

the orthogonal series EN(N) and SO(N,N), respectively. In both cases, the maximal

GL(N) subgroups have a relatively simple higher-dimensional interpretation related

to the geometry of the N -torus, while the remaining part of the groups is related to

higher-dimensional tensor fields.
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Let us first consider the reduction of pure gravity from (D+N) dimensions down to

D dimensions. With coordinates splitting according to xM → (xµ, ym), µ = 0, . . . , D−

1;m = 1, . . . N , and similarly for the flat indices A → (α, a), the reduction ansatz for

the vielbein on an N -torus is given by

EM
A =

(
eκφ eµ

α eφ/N Vm
aBm

µ

0 eφ/N Vm
a

)
, (4.2)

with all components depending only on the coordinates xµ. The matrix Vm
a is nor-

malized by detV = 1, and κ = 1
2−D

is chosen such that the lower dimensional action

appears again in the Einstein frame. TheD-dimensionsal theory thus carries a vielbein,

N vector fields and N2 scalar fields. The ansatz (4.2) preserves an SO(1, D−1)×SO(N)

subgroup of the original Lorentz group. The second factor can be used to remove
1
2
N(N − 1) of the components in Vm

a by virtue of

δVm
a = Vm

b ha
b , h ∈ so(N) , (4.3)

leaving 1
2
N(N + 1) physical scalars in the reduced theory.

The diffeomorphism symmetries ξM of the (D + N)-dimensional theory induce

different symmetries in the reduced theory. While diffeomorphisms ξµ(x) induce D-

dimensional diffeomorphisms, it is easy to check that the diffeomorphisms ξm(x) along

the compactified directions induce abelian gauge transformations for the Kaluza-Klein

vector fields

δBm
µ = ∂µξ

m . (4.4)

Moreover, diffeomorphisms linear in the n compactified coordinates, ξm = −Λm
n y

n,

with a traceless matrix Λ, induce a global SL(N) symmetry acting as

δΛVm
a = Λn

m Vn
a , δΛB

m
µ = − Λm

nB
n
µ , (4.5)

on the components of (4.2). Diffeomorphisms corresponding to constant rescaling of

the N -torus, ξm = λ ym, are slightly more delicate. A priori they induce an action

(4.5) with diagonal matrix Λ. But as they also induce an action on the D-dimensional

vielbein eµ
α, they do not constitute an off-shell symmetry in D dimensions. However,

combined with a proper rescaling of the (D+N)-dimensional vielbein (4.2) they result

in an off-shell GL(1) symmetry

δλφ = λN (D − 2) , δλB
m
µ = − λ (D − 2 +N)Bm

µ , (4.6)

of the D-dimensional theory, that leaves eµ
α invariant. Comparing (4.3), (4.5), and

(4.6) to the transformations (2.5), (2.24) above, we identify the scalar fields as described

by an GL(N)/SO(N) coset space σ-model with the N vector fields transforming in the

fundamental representation of the global symmetry GL(N). The resulting Lagrangian

takes the form (2.4), (2.25), discussed in sections 2.1 and 2.2 above, with the matrix

Mmn ≡ e2(D−2+N)/(D−2) φ Vm
aVn

b δab.
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This completes the structure of pure gravity reduced on an N -torus. The reductions

of extended supergravities typically exhibit larger global symmetry groups into which

the GL(N) is embedded as a subgroup. The enhancement of the symmetry group is

related to the presence of additional p-form fields in the higher-dimensional theory.

The reduction ansatz for these forms is straightforward

AM1...Mp
−→ (Aµ1...µp

, Am1µ2...µp
, Am1m2µ3...µp

, . . . , Am1...mp
) , (4.7)

in terms ofD-dimensional p-forms, (p−1)-forms, (p−2)-forms, etc. The transformation

behavior of these fields under the SL(N) from (4.5) follows from their index structure

in the internal indices m1, m2, . . . , while for their scaling under the GL(1) of (4.6) one

obtains (see e.g. [13])

δλAm1···mk µk+1···µp
= λ

(
(D − 2) k + (k − p)N

)
Am1···mk µk+1···µp

. (4.8)

In particular, for N ≥ p the reduction (4.7) adds
(

N
p

)
scalar fields Am1...mp

to the D-

dimensional theory. The higher-dimensional tensor gauge transformations δAM1...Mp
=

p ∂[M1
ΞM2...Mp] which are linear in the compactified coordinates, Ξm2...mp

= ξm1...mp
ym1 ,

induce additional global shift symmetries

δξ Am1...mp
= ξm1...mp

, (4.9)

on these scalar fields.

A final source for scalar fields in the reduced theories are the (D−2) forms that arise

in the reduction (4.7) (and for D = 3 also as the Kaluza-Klein vector fields in (4.2)). As

discussed in general in section 2.2 above, in D-dimensions these forms can be dualized

into scalar fields. It is important to note that due to their definition also these scalar

fields ϕa obtained by dualization possess an additional global shift symmetry

δζ ϕa = ζa . (4.10)

Together, the symmetries directly inherited from (D + N) dimensions thus form a

non-semisimple group of the type GL(N) ⋉ N , with nilpotent N combining the shifts

(4.9), (4.10). Typically, these symmetries just form an upper (Borel) half of the full

semi-simple global symmetry group G which may be sketched as

shift 
symmetries

hidden
symmetries

GL(N)

G
L

(1
) 

g
ra

d
in

g

(4.11)

In particular, the D-dimensional theory typically possesses a number of (dimN , to be

precise) additional symmetries — often referred to as hidden symmetries — that have
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no obvious higher-dimensional origin, and together with GL(N) ⋉ N form the semi-

simple group G. The decomposition (4.11) is along the grading induced by the GL(1)

scaling (4.6). The fact that the number of additional hidden symmetries is precisely

enough in order to form a semi-simple global symmetry group inD dimensions of course

heavily hinges on the field content of the higher-dimensional supergravity theory. This

is where the underlying supersymmetric structure that is preserved throughout the

reduction comes to play its role. In the following we shall just make use of this matter

of fact for the maximal and the half-maximal supergravities. We finally note that

the decomposition (4.11) naturally selects a Borel subalgebra and thus a particular

triangular gauge (2.13) for the coset space, in which the higher-dimensional origin of

the D-dimensional scalar fields becomes most transparent. Again, we refer to [32] for

a systematic discussion of the maximal supergravities in various dimensions and their

eleven-dimensional origin.

One of the simplest examples of such a reduction is the Kaluza-Klein compacti-

fication of simple D = 5 supergravity on a circle S1. The bosonic field content of

minimal D = 5 supergravity comprises the metric and a single vector field which

upon reduction (4.2), (4.7) give rise to gravity coupled to two vectors and two scalar

fields. According to the discussion above, there are two global symmetries in the four-

dimensional theory that are inherited from five dimensions: the GL(1) scaling (4.6) and

the shift symmetry (4.9) acting on the A5 component of the five-dimensional vector

field. The full global symmetry group in four dimensions is an SL(2), which decomposes

as (4.11) with each block generated by a single generator. This precisely corresponds

to the example discussed at the end of section 2.1 with the two scalars parametrizing

the coset space SL(2)/SO(2) and the generators h, e, and f , of SL(2) corresponding to

the scaling, the shift and the hidden symmetry, respectively.

A very different example leading to the same global symmetry group SL(2) is pro-

vided by the S1 reduction of Einstein gravity in four dimensions. While the scaling

symmetry is still (4.6), the shift symmetry is of the type (4.10) and acts on the scalar

that is obtained by dualizing the three-dimensional Kaluza-Klein vector. It is in this

model, that the non-linear action of a hidden symmetry in gravity (the generator f in

this example) has first been discovered [69].

To finish this section, let us note that the action of the GL(1) scaling symme-

try (4.6), (4.8) is straightforwardly extended onto those components of the higher-

dimensional field strength that may serve as flux parameters according to (4.1). In

particular, one finds that

δλFm1···mp
= λ

(
(D − 2) p+N

)
Fm1···mp

, (4.12)

for those p-form field strengths with all indices along the compactified directions. This

will be relevant in the next sections in order to identify the proper flux parameters

among the components of the embedding tensor. Similarly, we will in the following

consider the theories obtained by compactification in the presence of torsion on the

internal torus, i.e. by a deformation of the reduction ansatz (4.2) to Ea = Ẽm
a(x) ηm(y)
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in the internal part with the one-forms ηm(y) satisfying [70, 71]

dηk = T k
mn η

m ∧ ηn . (4.13)

with non-vanishing T k
mn antisymmetric in the lower indices — often referred to as

geometric flux. Analogously to (4.12), one finds for the GL(1) scaling behavior of these

components

δλT
k

mn = λ (D − 2 +N) T k
mn . (4.14)

4.2 M-theory fluxes

As a first example, we will study the reduction of eleven-dimensional supergravity [7]

on a seven-torus T 7 in the presence of fluxes. This example has been analyzed in detail

e.g. in [72], [73, 74, 75], and [76] The bosonic field content of the eleven-dimensional

theory is the metric and an antisymmetric three-form tensor. In absence of fluxes, the

reduction leads to the maximal four-dimensional ungauged supergravity [10] which has

appeared on various occasions in these lectures and carries 28 electric vector fields and

70 scalars described by the coset space E7(7)/SU(8).

According to the discussion in the previous section, the first step in understanding

the eleven-dimensional origin of the four-dimensional fields consists of decomposing

the four-dimensional global symmetry group E7(7) under the torus GL(7). In terms of

GL(7) representations, the decomposition (4.11) takes the form

E7(7) −→

7′
+4

35+2

10 + 480

35′
−2

7−4

, (4.15)

with subscripts indicating the charge under GL(1) ⊂ GL(7) and the 10 + 480 repre-

senting the adjoint of GL(7). The 35+2 nilpotent symmetries in (4.15) correspond to

shifts (4.9) on the 35 scalar fields descending from the eleven-dimensional three-form.

The 7′
+4 shift symmetries act according to (4.10) on the scalars that are obtained by

dualizing the 7 two-form fields that descend from the eleven-dimensional three-form.

Their charges can be matched with (4.8) (upon choosing λ = 1
3
).

The 56 vector fields of the four-dimensional theory decompose according to

56 → 7′

−3 + 21−1 + 21′

+1 + 7+3 , (4.16)

and with the charges from (4.6), (4.8) one identifies the 7′
−3 and the 21−1 as the vector

fields descending from the eleven-dimensional metric and the three-form, respectively.

The other fields in (4.16) represent their magnetic duals in accordance with the dis-

cussion of section 2.3.
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Let us now consider the possible fluxes that can be switched on in this reduction and

their effect in the four-dimensional theory. The eleven-dimensional three-form tensor

field can acquire a four-form flux (4.1)

F (4)
n1n2n3n4

= cn1n2n3n4
, (4.17)

with indices n1, . . . , n4, running over the seven coordinates of the torus. As a conse-

quence of the duality (2.29), one may alternatively consider a non-vanishing flux for

its dual seven-form field strength

F (7)
n1...n7

= a ǫn1...n7
. (4.18)

The effective four-dimensional actions could in principle be determined by explicitly

evaluating the reduction with the ansatz (4.17), (4.18). Rather than going through this

quite lengthy computation, we will directly employ the underlying symmetry structure

in order to identify the corresponding theories among the general gaugings presented

above. From their index structure and scaling behavior (4.12), one reads off that

the flux parameters of (4.17) and (4.18) transform in the 35′
+5 and 1+7, respectively,

of GL(7). In section 3, we have established that the general deformation of the maximal

four-dimensional theory is encoded in an embedding tensor ΘM
α transforming in the

912 representation of E7(7). In order to identify the particular gaugings corresponding

to the fluxes (4.17) and (4.18) we simply have to identify within the 912 these particular

GL(7) representations.

Breaking the 912 according to (4.15) gives the following set of representations

1+7

35′
+5

7+3 + 140+3

21′
+1 + 28′

+1 + 224′
+1

21−1 + 28−1 +224−1

7′
−3 + 140′

−3

35−5

1−7

(4.19)

in which we clearly identify the seven-form flux and the four-form flux as the upper

two lines. Also the third line allows for a straightforward interpretation: the 7 + 140

of GL(7) corresponds to a tensor with index structure T k
mn and thus precisely to the

torsion or geometric flux introduced in (4.13). The resulting four-dimensional theories

can thus be obtained by evaluating the general Lagrangian sketched in section 3.3

(and given in detailed form in [42]) for the particular embedding tensor ΘM
α, that

correspond to the upper lines of (4.19).

Gaugings that are triggered by an embedding tensor corresponding to the lower

entries in (4.19) in contrast do not have a clear origin in the eleven-dimensional the-

ory. Some of these may however find a higher-dimensional interpretation in different
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compactifications (such as the type IIB theory considered in the next section) or hint

to the existence of certain non-geometric compactifications (see e.g. [77, 78, 79]).

It is important to remember that the restriction of the embedding tensor to the 912

representation in fact only represented part of the consistency constraints imposed in

the four-dimensional theory. As we have discussed in section 3.1, it has to be supple-

mented with the quadratic constraint (3.6) in order to define a consistent gauging. In

the present context this constraint translates into certain bilinear conditions on the

flux parameters a, cklmn, T k
mn, that have to be imposed for consistency. Indeed, such

conditions typically arise in the explicit study of flux compactifications. A straightfor-

ward way to obtain these bilinear conditions in our framework would be the explicit

decomposition of (3.6) under GL(7). The computation may be drastically simplified

by making use of a very compact way to reformulate the quadratic constraint in the

four-dimensional theory. Namely, one may show that for ΘM
α restricted to the 912

representation of E7(7), the quadratic constraint (3.6) can be written in the equivalent

form

ΘM
α ΘN

β ΩMN = 0 , (4.20)

with the symplectic matrix ΩMN of (2.34).12 This form of the constraint immediately

shows that the embedding tensor considered as a matrix ΘM
α has at most half-maximal

rank, i.e. that the gauging involves at most 28 out of the 56 possible vector fields. More

specifically, it guarantees the mutual locality of electric and magnetic charges involved

in the gauging.

In order to derive possible bilinear relations between the flux parameters, it is thus

useful to explicitly consider the embedding tensor ΘM
α as a matrix according to the

decomposition (4.15), (4.16) which yields

ΘM
α 7−4 35′

−2
480 10 35+2 7′

+4

7′

−3
1−7 35−5 (140′+7′)−3 7′

−3
(21 + 224)−1 (28′+21′)+1

21−1 35−5 140′

−3
(21 + 28 + 224)−1 21−1 (21′+224′)+1 (140 + 7)+3

21′

+1
(140′+7′)−3 (21 + 224)−1 (21′+28′+224′)+1 21′

+1
140+3 35′

+5

7+3 (28 + 21)−1 (21′+224′)+1 (140 + 7)+3 7+3 35′

+5
1+7

,

(4.21)

with all entries built from the blocks of (4.19). In particular, coinciding representations

in the bulk of the table correspond to the same flux parameters of (4.19) where they

all appear with multiplicity one. It remains to evaluate the quadratic constraint (4.20)

for this matrix.

To begin with, let us consider the seven-form flux represented by the 1+7 which

makes a single appearance in (4.21). The triangular form of this matrix shows that

(4.20) is automatically satisfied, i.e. the seven-form flux defines a consistent one-

parameter deformation. It is amusing to note that this particular theory has been

12This equivalence can be proven by showing that both expressions live in the same 133 + 8645

representation of E7(7), see [42] for details.
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constructed even before the first maximal gauged supergravity of [1] was found, how-

ever in a form where the gauging is hidden in topologically massive two-forms [80].

Next, we may study gaugings induced by the four-form flux cklmn which induces two

entries in (4.20). Again, the triangular form of the resulting matrix (4.21) guarantees

(4.20) without further constraints on cklmn. The first non-trivial constraint is met for

gaugings induced by geometric fluxes T m
kl . Inspection of the associated matrix (4.21)

shows that the condition (4.20) has a non-trivial component if the free indices α and β

take values in the 7′
+4 and the 35+2 — while the internal index M,N is contracted

over the 21−1. The resulting constraint thus lives in the 7′ ⊗ 35 by which it is entirely

determined to be

T p
kl T

q
mp + T p

lm T q
kp + T p

mk T
q

lp = 0 . (4.22)

One recognizes the standard Jacobi identity, and indeed the T m
kl precisely appear as

structure constants (3.14) of the local gauge algebra [71, 72, 74, 76]. By similar argu-

ments, one derives the mixed constraint

T p
kl cmnrs ǫ

qklmnrs − T q
kl cmnrs ǫ

pklmnrs = 0 , (4.23)

for gaugings that arise from simultaneous presence of four-form and geometric fluxes.

Both equations (4.22) and (4.23) have non-trivial solutions. We have thus identified the

relevant flux parameters within the 912 components of the general embedding tensor

and derived the full set of quadratic consistency relations among them. To complete

the analysis it remains to evaluate the full Lagrangian of [42] and in particular the

scalar potential (3.45) for these particular embedding tensors, which we will not do

here, see [81, 82] for some results.

In principle, the very same analysis can be continued for those gaugings induced

by the lower lying entries of (4.19). However, the structure of the matrix (4.21) shows

that the resulting quadratic constraints will be more and more involved — and thus

presumably admit less and less solutions.

4.3 IIA/IIB fluxes

Finally, we will consider flux compactifications of the ten-dimensional type IIA/IIB

theories on a six-torus T 6. These compactifications have been exhaustively studied in

the literature in particular in the context of N = 2 and N = 4 supergravity, see e.g. [83,

84, 85, 86, 5] and references therein. Type IIB flux compactifications in the context of

maximal supergravity that we sketch here, have been studied in [87]. We should stress

that although the presence of fluxes necessarily breaks maximal supersymmetry, we

may still obtain a maximally supersymmetric four-dimensional Lagrangian, in which

supersymmetry is broken spontaneously in the ground state.

In order to identify the ten-dimensional origin of the four-dimensional fields, the

relevant subgroups of E7(7) are the products of the torus GL(6) with the global sym-

metry groups GL(1) and SL(2), respectively, of the ten-dimensional theories. The
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corresponding decompositions (4.11) take the form

E7(7)
IIA
−→

1+3

6
′

+5/2

20+3/2

15+1

6+1/2

350 + 10 + 10

6
′

−1/2

15
′

−1

20−3/2

6−5/2

1−3

, E7(7)
IIB
−→

(1+3,2)

(15′
+2,1)

(15+1,2)

(350,1) + (10,3)

(15′
−1,2)

(15−2,1)

(1−3,2)

, (4.24)

for the type IIA and IIB theory, respectively. The second number in the IIB components

refers to the corresponding SL(2) representations. Using (4.8), it is straightforward to

identify the nilpotent symmetries with positive GL(1) charge with the shift symmetries

(4.9), (4.10) inherited from the higher-dimensional field content. E.g. the highest 1+3

in both decompositions corresponds to the shift (4.10) acting on the scalar obtained

by dualizing the two-form that descends from the ten-dimensional two-form (which is

an SL(2) doublet in the IIB theory). Again these decompositions define a triangular

gauge (2.13) with respect to the corresponding Borel subalgebras, in which the ten-

dimensional origin of the fields is manifest.

In order to identify the ten-dimensional flux parameters within the 912 components

of the embedding tensor we will have to decompose the latter representation under the

different GL(6) subgroups of (4.24). The result is collected in figures 2A, 2B, where the

vertical axis corresponds to the GL(1) ⊂ GL(6) grading related to rescaling of the six-

torus. Moreover, in these figures we have made the action of the S- and T-duality groups

explicit. While the dashed diagonal lines denote orbits under the SO(6, 6) T-duality

subgroup of E7(7), orbits under the SL(2) S-duality group correspond to horizontal lines

in the IIB picture. This allows to directly read off the action of the duality groups on

the various flux parameters.

As in the previous example, the components of the embedding tensor with highest

values of the GL(1) grading correspond to p-form fluxes in ten dimensions. In the

IIA picture one recognizes the six-form, the four-form, the three-form, and the two-

form flux, transforming as 1, 15′, 20 and 15, respectively, with their GL(1) charges

given by (4.12). In the IIB decomposition, the two top rows correspond to the five-

form flux 6′ and the three-form flux doublet (20,2), respectively. In both diagrams,

the 84 + 6 appearing in the following row, denote the parameters corresponding to

geometric flux T k
mn. As in the last section, evaluating the quadratic constraint (4.20)

leads to bilinear conditions on the flux parameters, such as

ǫklmnpq Hα
klmH

β
npq = 0 , (4.25)

for the three-form flux components in the IIB theory. This condition is well known [84]
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and usually modified by the presence of local sources which explicitly break maximal

supersymmetry.

Again, the lower entries in figures 2A, 2B correspond to components of the em-

bedding tensor whose higher-dimensional origin is less obvious. As can be seen in the

figures, they may be reached by subsequent T- and S-duality transformations starting

from known p-form and geometric flux configurations. An interesting example is the

T-duality chain

Hkmn −→ T k
mn −→ Pk

mn −→ Rkmn , (4.26)

corresponding to the diagonal chain 20 → (6+84) → (6′ +84′) → 20, which has been

studied in [88]. Subsequent application of T-dualities leads from p-form flux Hkmn to

geometric flux T k
mn and beyond, to configurations parametrized by tensors Pk

mn and

Rkmn which have been identified as so-called non-geometric fluxes. Furthermore, figure

2B shows that the parameter Pk
mn is in fact part of an S-duality doublet (Qk

mn, Pk
mn)

corresponding to the horizontal pair (6′+84′ , 6′+84′). Indeed, this has been identified

and studied in detail in [89]. While the usual approach to these non-geometric configu-

rations is an explicit evaluation of the relevant T- and S-duality transformations, we see

that the covariant scheme discussed in these lectures provides a framework to construct

all four-dimensional theories corresponding to the various entries in the flux diamonds

of figures 2 in a closed and manifestly E7(7) covariant form. In particular, all bilinear

conditions among the various flux parameters combine into the single equation (4.20)

and the full scalar potential for generic (geometric and non-geometric) fluxes is given

by the universal expression (3.45). Upon further orientifold projections, it is then pos-

sible to obtain a variety of non-maximal theories. It remains to study the properties of

these theories and in particular the scalar potential for the various flux compactifica-

tions. What we have tried to illustrate here is that the covariant formulation of gauged

42



supergravities provides a universal framework in which the effective theories associated

with particular flux compactifications can be conveniently constructed and analyzed.
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