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1 Introduction

The operatio” — V“ is a fundamental operation over finitary languages leading t
w-languages. It produces-powers, i.e. w-languages in the fornv«, whereV is a
finitary language. This operation appears in the charaetion of the clasR EG,, of
w-regular languages (respectively, of the cl&ds, of context freew-languages) as the
w-Kleene closure of the familR EG of regular finitary languages (respectively, of the
family CF of context free finitary language$) [Stap7al.

Since the sef’* of infinite words over a finite alphabéf can be equipped with the
usual Cantor topology, the question of the topological clexity of w-powers of fini-
tary languages naturally arises and has been posed by N&ivﬁ, Simonnet
[Bim92], and Staiger[Stad7a]. A first task is to study theitms of w-powers with
regard to the Borel hierarchy (and beyond to the projectieesinchy) [Sta97f,PP04].

Itis easy to see that the-power of a finitary language is always an analytic set bezaus
it is either the continuous image of a compact&&tl,...,n}* for n > 0 or of the
Baire spaces”.

It has been recently proved, that for each integer 1, there exist some-powers

of context free languages which &FE -complete Borel sets[ [FinPp1], and that there
exists a context free languagesuch thatZ. is analytic but not Borel [[Fin3]. Notice
that amazingly the languadeis very simple to describe and it is accepted by a simple
1-counter automaton.

** UMR 5668 - CNRS - ENS Lyon - UCB Lyon - INRIA



The first author proved i [Finp4] that there exists a finitaryguagel” such thaf/’«
is a Borel set of infinite rank. It was also proved |n [DFO7]tttieere is a context free
languagéV such thatV* is Borel aboveA?.

We proved in ] the following very surprising result whishows that-powers
exhibit a great topological complexity: for each non-nolliatable ordinaf, there exist
someEg—compIeteu—powers, and somHg-completeu—powers.

We consider also the Wadge hierarchy which is a great refineofehe Borel hier-
archy. We get many more Wadge degreesgfowers, showing that for each ordinal
& > 3, there are uncountably many Wadge degrees-pbwers of Borel rank + 1.

We show also, using some tools of effective descriptivetssry, that the main result
of [FLO7] has some effective counterparts.

All the proofs of the results presented here may be founddctimference pap07]
or in the preprint[[FLOB] which contains also some additloeaults.

2 Topology

We first give some notations for finite or infinite words, assugihe reader to be famil-
iar with the theory of formal languages andwlanguages, se¢ [Thd90,Std97a,BP0A4].
Let X be a finite or countable alphabet whose elements are cattedsleA non-empty
finite word overX is a finite sequence of letters:= ag.a;.as . . . a,, wherevi € [0; n]

a; € X.We shall denote(i) = a, the(i+1)!" letter ofz. The length of: is || = n+1.
The empty word has 0 letters. Its length is 0. The set of finiteds overX’ is denoted
Y<«._ A (finitary) languageL over X' is a subset of2<¥. The usual concatenation
product ofu andv will be denoted by v or justuv.

The first infinite ordinal isv. An w-word overY' is anw -sequenceas ... a, .. .,
where for all integers > 0 a; € Y. Wheno is anw-word over Y, we write

o =0(0)a(1)...0(n).... The set ofv-words over the alphabet is denoted by-*.
An w-language over an alphah®tis a subset o£*. The concatenation product is also
extended to the product of a finite warénd anv-wordv: the infinite wordu.v oru™v

is then thev-word such that{uv) (k) = u(k) if & < |u|, and(u.v)(k) = v(k — |u|) if
k> |ul.

The prefix relation is denoted: the finite wordu is a prefix of the finite word (re-
spectively, the infinite worad), denoted: < v, if and only if there exists a finite word
w (respectively, an infinite word), such thav = v~ w.

For a finitary languag® C X<, thew-power ofV is thew-language
sz{ul...un...62“|w21 uiEV}

We recall now some notions of topology, assuming the readee familiar with basic

notions which may be found in [Kurf6,Mog480,Ke95, L1945 PPJ4].
There is a natural metric on the sBt’ of infinite words over a countable alphabgt




which is called the prefix metric and defined as follows. kor € X* andu # v let
d(u,v) = 27 tres@w wherel,,,.. r(.,v) is the firstinteger. such that thén + 1) letter
of u is different from the(n + 1) letter ofv. The topology induced o’ by this
metric is just the product topology of the discrete topologyY'. Fors € X<%, the
setN,:={a € X% | s<a} is a basic clopen (i.e., closed and open) seL'tf More
generally open sets &f“ are in the formiV ~ X, whereW C X' <v.

WhenX is afinite alphabet, the prefix metric induces®dti the usual Cantor topology
andX“ is compact.

The Baire space* is equipped with the product topology of the discrete togglon
w. Itis homeomorphic tPs :={a €2¥ | Vicw Jj >i aj)=1} C 2%, viathe map
defined onw® by H(3):=0°10°M1 ...

We define now th&orel Hierarchy on a topological spac¥ :

Definition 1. The classeXZ{(X) andII¢(X) of the Borel Hierarchy on the topological
spaceX are defined as follows:

39(X) is the class of open subsetsXf

I1Y(X) is the class of closed subsetsXf

And for any countable ordingl > 2:

32(X) is the class of countable unions of subset&dh U, < IT9.

IT(X) is the class of countable intersections of subsefs af U, <3 .

As usual the ambiguous clags] is the classS{ N ITY.

Suppose now thak CY; thenX(X) ={AN X | Ac Z(Y)}, and similarly forTT,
see [Kec9p, Section 22.A]. Notice that we have defined theBdasses?(X) and
I1Y(X ) mentioning the spac . However when the context is clear we will sometimes
omit X and denot&=?(X) by 32 and similarly for the dual class.

The class oBorel setsis A} := U, =¢=U,,, I, wherew; is the first un-
countable ordinal.

For a countable ordinal, a subset of“ is a Borel set ofank « iff it is in X% U IT?,
butnotinlJ, (2 UTL).

We now define completeness with regard to reduction by coatia functions. For a
countable ordinak > 1, a setF’ C X is said to be &9 (respectivelyI1%)-complete
setiff for any setE C Y (with Y a finite alphabet)E € X0 (respectivelyF € I10)

iff there exists a continuous functiofi : Y — X< such thate = f~}(F). ¥
(respectivelyII%)-complete sets, with an integer> 1, are thoroughly characterized
in [Eta8f].

Recall that a seK C X« is aX! (respectivelfIY)-complete subset of“ iff it is in
30 but not inTI? (respectively ifl1%, but not inx?), [Kecoj].

For example, the singletons 2f areTI{-complete subsets @F. The setP,, is a well
known example of dI3-complete subset .



If T is a class of sets, thdn:={—-A | AcT} is the class of complements of setdin
In particular, for every non-null countable ordingl 9 = I1° andIIf = 39.

We now introduce the Wadge hierarchy, which is a great refargraf the Borel hier-

archy defined via reductions by continuous functiops, [VigD8p01].

Definition 2 (Wadge [Wad83]).Let X, Y be two finite alphabets. Fok C X“ and
L' CY¥, Lis said to be Wadge reducible I8 (L <y, L') iff there exists a continuous
functionf : X« — Y“, suchthatl, = f~*(L/).

L and L’ are Wadge equivalent ifft <y, L’ and L’ <y L. This will be denoted by
L =w L'. And we shall say thalt <y L’ iff L <y L' butnotl’ <y L.

A setl C X% is said to be self dual ifft. =y L—, and otherwise it is said to be non
self dual.

The relation<yy is reflexive and transitive, andy; is an equivalence relation.
Theequivalence classex =y are calledVadge degrees

The Wadge hierarchiy/ H is the class of Borel subsets of a $&t, whereX is a finite
set, equipped witky, and with=y.

ForL C X*andL' C Y¥,if L <y L'andL = f~!(L’) wheref is a continuous
function fromX* intoY“, thenf is called a continuous reduction bfto L’. Intuitively
it means thaf. is less complicated thah' because to check whetherc L it suffices
to check whethef (z) € L’ wheref is a continuous function. Hence the Wadge degree
of an w-language is a measure of its topological complexity.

Notice that in the above definition, we consider that a subsetX« is given together
with the alphabekX .

We can now define thd/adge classf a setL:

Definition 3. Let L be a subset aK“. The Wadge class df is :
[L]={L'| L' CY* for afinite alphabet” and L’ <y L}.

Recall that eaclBorel classX? andII? is aWadge classA setL C X“ is aXx?
(respectivelfII®)-complete seiff for any setl’ C Y, L' is in X9 (respectiveM19)
iff L' <w L.

Theorem 4 (Wadge)Up to the complement aryy, the class of Borel subsets &f,

for a finite alphabetX, is a well ordered hierarchy. There is an ordin&’ H|, called
the length of the hierarchy, and a maf), from W H onto|W H| — {0}, such that for
all L, L' C X¥:

&L <d L'« L<w L'and

&L =d% L — [L=w L'or L=y L'

The Wadge hierarchy of Borel sets fifite rank has length's, where'le, is the
limit of the ordinalsc, defined bya; = wy anday,+1 = w{™ for n a non negative
integer,w; being the first non countable ordinal. Thes is the first fixed point of the
ordinal exponentiation of base . The length of the Wadge hierarchy of Borel sets in
A =39 NT1IO is thew!” fixed point of the ordinal exponentiation of basg which



is a much larger ordinal. The length of the whole Wadge héraof Borel sets is a
huge ordinal, with regard to the!” fixed point of the ordinal exponentiation of base

wi. Itis described in[[Wad§p,DupP1] by the use of the Veblercfioms.

There are some subsets of the topological spacevhich are not Borel sets. In par-
ticular, there exists another hierarchy beyond the Bomsfanchy, called the projective
hierarchy. The first class of the projective hierarchy isdlassX] of analytic sets. A
setA C X is analytic iff there exists a Borel s@& C (X x Y)¥, with Y a finite
alphabet, suchthate A — Jy € Y such tha(z, y) € B, where(z,y) € (¥ xY)¥

is defined by{z, y)(i) = (z(7),y(¢)) for all integers; > 0.

A subset ofX“ is analytic if it is empty, or the image of the Baire space byoa-c
tinuous map. The class of analytic sets contains the claBoil sets in any of the
spacest“. Notice thatAl = X1 N IIi, whereIli is the class of co-analytic sets, i.e.
of complements of analytic sets.

Thew-power of a finitary languag¥ is always an analytic set becaus#ifs finite and
hasn elements theV“ is the continuous image of a compact ¢et1,...,n — 1}¢
and if V' is infinite then there is a bijection betweghandw andV'* is the continuous
image of the Baire space”, [Sim93].

3 Topological complexity ofw-powers

We now state our first main result, showing thapowers exhibit a very surprising
topological complexity.

Theorem 5 ([FLOT]). Let¢ be a non-null countable ordinal.
(a) There isA C 2<% such that4¥ is Eg—complete.
(b) There isA C 2<% such that4¥ is Hg-complete.

To prove Theorerﬂ 5, we use iO7] a level by level versioma dfieorem of Lusin
and Souslin stating that every Borel 98tC 2¢ is the image of a closed subset of the
Baire spaces* by a continuous bijection, sefe [Ke¢95, p.83]. It is the faflag theorem,
proved by Kuratowski in[[Kurg6, Corollary 33.11.1]:

Theorem 6. Let¢ be a non-null countable ordinal, anlt € TIZ, | (2¢). Then there is
C € IIY(w*) and a continuous bijectiorf : C — B such thatf ! is Zg-measurable
(i.e., f[U]is Eg(B) for each open subséf of C).

The existence of the continuous bijecti6nC' — B given by this theorem (without the
fact thatf~ is X22-measurable) has been used by Arnoldin [Ain83] to provedtiat
ery Borel subset of“, for a finite alphabet’, is accepted by a non-ambiguous finitely
branching transition system with Biichi acceptance caoditNotice that the sets of
states of these transition systems are countable.

Our first idea was to code the behaviour of such a transitistesy. In fact this can be



done on a part ab-words of a special compact skt (. However we have also to con-
sider more general sefsy ; and then we need the hypothesis of miémeasurability

of the functionf. The complete proof can be found [n [FI.p7,F].08].

Notice that for the clask9, we need another proof, which uses a new operation which
is very close to the erasing operation defined by Duparc irshidy of the Wadge
hierarchy, [Dupd1]. We get the following result.

Theorem 7. There is a context-free languageC 2<“ such thatd* € X9\ IT9.

Notice that it is easy to see that the 8€t\ P, which is the classical example B3-
complete set, is not an-power. The question is still open to know whether theretexis
aregularlanguagel such that.* is $9-complete.

Recall that, for each non-null countable ordigathe class oEg—compIete (respec-

tively, TIZ-complete) subsets @& forms a singlenon self-duaWadge degree. Thus
Theorerri:b provides also some Wadge degreespbwers. More generally, it is nat-
ural to ask for the Wadge hierarchy @fpowers. In the long versior] [FLP8] of the
conference pape?] we get many more Wadge degreesofvers.

In order to state these new results, we now recall the notfatifierence hierarchy.
(Recall that a countable ordinalis said to be even iff it can be written in the form
v = a + n, wherea is a limit ordinal and» is an even positive integer; otherwise the
ordinal-y is said to be odd; notice that all limit ordinals are even oa.)

If n <w; and(Ag)g<, is an increasing sequence of subsets of some sfatleen we
set

D,[(Ag)o<y):={zeX | F0<n $€A9\U Ay and the parity o¥ is opposite to that ofy}.
6'<8

If moreover 1<¢<w;, thenwe set:

Dy (32):={Dy[(Ap)o<y] | foreachd <n Ay isin the classs?}.

Recall that for each non null countable ordigathe sequenc@Dn(Zg))n@1 is strictly
increasing for the inclusion relation and that for egck w it holds thatD, (22) C
AQH. Moreover for eachy < w; the cIassDn(Eg) is a Wadge class and the class of
Dn(Eg)-compIete subsets @ forms a singlenon self-duaWadge degree.

Theorem 8.

1. Letl <¢<ws. Then there isA C 2<% such that4d¥ is Dg(Eg)—compIete.

2. Let3<{<w; andl < # < wy. Then there isA C 2<“ such that4d® is Dwe(zg)-
complete.



Notice that for each ordindl such that3 < £ < w; we get uncountably many Wadge
degrees ofo-powers of the same Borel ragk+ 1. This confirms the great complexity
of thesew-languages.

However the problem is still open to determine completely Wadge hierarchy of
w-powers.

We now come to the effectiveness questions. It is naturaldodsr whether the-
powers obtained above are effective. For instance couldliheobtained as-powers
of recursive languages ?

In the paper] we prove effective versions of the respliesented above. Using
tools of effective descriptive set theory, such Kleene reiom Theorem and the notion
of Borel codes, we first prove an effective version of Kuratkis Theoren{]p. Then we
use it to prove the following effective version of TheorEnWBLereZg and]Yg0 denote
classes of the hyperarithmetical hierarchy affdf is the first non-recursive ordinal,
usually called the Church-kleene ordinal.

Theorem 9. Let¢be a non-null ordinal smaller tham¢'X .
(a) There is a recursive languageC 2< such thatd“ € 59\ TT¢.
(b) There is a recursive languageC 2<* such thatd” € IT)\ 2.

Remark 10. If A C 2<% is a recursive language, then thepower A“ is an effective
analytic set, i.e. a (lightfaceY -set. And the supremum of the set of Borel ranks of Borel
effective analytic sets is the ording). This ordinal is defined by Kechris, Marker, and
Sami in [KMS8P] and it is proved to be strictly greater thare thrdinal 53 which is

the first nonA? ordinal. Thus the ordinal is also strictly greater than the first non-
recursive ordinaluCK. Thus Theorerh] 9 does not give the complete answer about the
Borel hierarchy ofwv-powers of recursive languages. Indeed there could exisess
powers of recursive languages of Borel ranks greater th@rf, but of course smaller
than the ordinahs3.

4 Concluding remarks

The question naturally arises to know what are all the ptesgitfinite Borel ranks of
w-powers of finitary languages belonging to some naturakdie the class of con-
text free languages (respectively, languages acceptethbly automata, recursive lan-
guages, recursively enumerable languages, .. .).

We know from ] that there are-languages accepted by Buchicounter au-
tomata of every Borel rank (and even of every Wadge degreaei @fffective analytic
set. Everyw-language accepted by a Biuchicounter automaton can be written as a
finite unionL = |J,,-,, UV}, where for each integer U; andV; are finitary lan-
guages accepted dycounter automata. And the supremum of the set of Borel rahks
effective analytic sets is the ording}. From these results it seems plausible that there
exist somev-powers of languages accepted bgounter automata which have Borel



ranks up to the ordinaj, although these languages are located at the very low level i
the complexity hierarchy of finitary languages.

Another interesting question would be to determine coneplehe Wadge hierarchy of
w-powers. A simpler open question is to determine the Wadgratihy ofw-powers
of regular languages. The second author has given:m}/ Wadge degrees of
w-powers of regular languages. Notice however that evenukstipn to determine the
Wadge degrees af-powers of regular languages in the clas$ is still open.
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