
HAL Id: ensl-00325444
https://ens-lyon.hal.science/ensl-00325444v1

Submitted on 29 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supergravities without an Action: Gauging the
Trombone

Arnaud Le Diffon, Henning Samtleben

To cite this version:
Arnaud Le Diffon, Henning Samtleben. Supergravities without an Action: Gauging the Trombone.
Nuclear Physics B, 2008, 811 (811), pp.1-35. �10.1016/j.nuclphysb.2008.11.010�. �ensl-00325444�

https://ens-lyon.hal.science/ensl-00325444v1
https://hal.archives-ouvertes.fr


Supergravities without an Action:

Gauging the Trombone

Arnaud Le Diffon and Henning Samtleben
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Abstract

We present a systematic account of supergravity theories in which the global

scaling symmetry is gauged. This generalizes the standard gaugings of non-

abelian off-shell symmetries. A particular feature of these theories is an

additional positive contribution to the effective cosmological constant.

As the scaling symmetry is an on-shell symmetry, the resulting gaugings

do no longer possess an action. We develop the algebraic framework for the

maximal theories in various dimensions and construct explicit solutions to

the algebraic consistency constraints — related to “pure-spinor-like” struc-

tures for the exceptional groups. As an example, we explicitly work out

the modified supersymmetry transformation rules and equations of motion

in three dimensions. Finally, we speculate about the role of these theories

from the perspective of very extended Kac-Moody algebras.
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1 Introduction

Einstein’s equations of general relativity possess a well-known global symmetry under

conformal rescaling of the metric

gµν → Λ2 gµν , (1.1)

with constant Λ. As the Einstein-Hilbert Lagrangian scales according to LEH →

ΛD−2 LEH, this symmetry is off-shell realized only in D = 2 space-time dimensions.
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The global scaling symmetry extends to supergravity theories in all dimensions, with

gravitinos and matter fields scaling with different weights under (1.1), in particular,

p-forms scale with weight p and scalars fields are invariant. In this context it is of-

ten referred to as a trombone symmetry and plays an important role e.g. among the

spectrum-generating symmetries for the fundamental BPS solutions [1].

In addition, the maximal supergravity theories admit rather large global symmetry

groups, given by the exceptional groups G = En(n), which (at least in odd dimensions)

are genuine off-shell symmetries of the action.1 These have first been revealed in four-

dimensional maximal supergravity [2] and we will refer to them as duality (or Cremmer-

Julia) symmetries, see [3] for a review. In fact, the trombone symmetry (1.1) plays

an important role in the realization of the Cremmer-Julia groups En(n) in the various

dimensions. Recall that maximal supergravities are obtained by dimensional reduction

of the eleven-dimensional theory [4] on an n-torus. From the eleven-dimensional point

of view there are two scaling symmetries inherited to the D = (11−n)-dimensional

theory. Apart from the trombone symmetry (1.1) of eleven-dimensional supergravity,

a rescaling of the n-torus

yi → α yi , i = 1, . . . , n , for the coordinates yi of the torus , (1.2)

is part of the eleven-dimensional diffeomorphisms and translates into a particular rescal-

ing of the D-dimensional fields. From the D-dimensional point of view, it is however

more natural to consider particular combinations of the two scaling symmetries (1.1),

(1.2): Choosing α = Λ defines a scaling which leaves the scalars of the D-dimensional

theory invariant — this is the D-dimensional trombone symmetry (1.1). On the other

hand, choosing α = Λ9/n defines a scaling which leaves the D-dimensional metric (in

the Einstein frame) invariant;2 this symmetry is part of the Cremmer-Julia group em-

bedded as GL(1) ⊂ GL(n) ⊂ En(n) . This shows how higher-dimensional trombone

symmetries naturally merge with the lower-dimensional duality groups.

It is well-known that certain subgroups of the global Cremmer-Julia symmetry

groups En(n) may be promoted to local symmetries while preserving all supersymme-

tries [5, 6, 7]. The resulting gauged supergravities exhibit non-abelian gauge groups,

additional couplings and in particular a scalar potential. The construction of these

theories can be systematically performed using the group-theoretical framework of [8,

9, 10, 11] which allows to characterize the various gaugings in terms of a single tenso-

rial object, the embedding tensor Θ, subject to a number of algebraic constraints that

encode the consistency of the theory. In view of the close relation of the Cremmer-Julia

groups En(n) and the trombone symmetry (1.1) in dimensional reduction, it seems nat-

ural to also consider the possible gaugings of the trombone symmetry. This is what we

are going to address in this paper.

1The notation En(n) refers to the split form of the exceptional group En.
2In the reduction to D = 2 dimensions (n = 9), this scaling degenerates as a sign of the fact that

in two dimensions the theory cannot be cast into the Einstein frame.
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D G Radj Rv Θ θ

7 SL(5) 24 10′ 15 + 40′ 10

6 SO(5, 5) 45 16c 144c 16s

5 E6(6) 78 27′ 351′ 27

4 E7(7) 133 56 912 56

3 E8(8) 248 248 1+3875 248

2 E9(9) Λadj Λ1 Λ1∗

Table 1: The embedding tensor in maximal supergravity in various dimensions. Radj and Rv

denote the adjoint representation of the global symmetry group G and the representation in

which the vector fields transform, respectively. The tensors Θ and θ denote the components

of the embedding tensor, the latter also induce a gauging of the trombone symmetry (1.1).

Certain theories with local trombone symmetry have already appeared in the lit-

erature. A straightforward way to obtain such theories is by performing a standard

Scherk-Schwarz reduction [12] twisting the fields with the higher-dimensional on-shell

symmetry (1.1). Applying this to the circle reduction of eleven-dimensional super-

gravity gives rise to a one-parameter deformation of the ten-dimensional IIA theory

with maximal supersymmetry [13, 14] which is different from Romans’ massive su-

pergravity [15]. In particular, this theory does not have an action and admits a de

Sitter vacuum. According to the discussion above, from the ten-dimensional point of

view this theory corresponds to the gauging of a linear combination of the D = 10

trombone symmetry and the off-shell GL(1) symmetry. It has been further studied

in [16, 17, 18, 19]. Other examples of such theories have been obtained in lower dimen-

sions by studying analogous generalized Scherk-Schwarz reductions to nine and to six

dimensions [20, 21, 22].

In this paper we will set up a systematic framework for the classification and con-

struction of these theories. We follow the group-theoretical approach of [8, 9, 10, 11],

in which theories with a local trombone symmetry (1.1) simply correspond to the

introduction of additional components θM in the embedding tensor. This allows to

straightforwardly derive consistency conditions on such gaugings and to construct ex-

plicit examples exploiting the structure of the underlying symmetry groups. As it

turns out, the additional components in the embedding tensor generically induce a

simultaneous gauging of the trombone symmetry (1.1) and a subgroup of the duality

group G.

In table 1 we have collected the representations in which the embedding tensor

transforms for the maximal supergravities in various dimensions. The standard gaug-

ings are described by a tensor Θ inducing gauge groups that are subgroups of the

duality group G and do not include the trombone symmetry (1.1). This tensor trans-

forms in a particular subrepresentation of the tensor product Radj ⊗Rv∗ of the adjoint

representation of G and the representation dual to the vector fields of the theory. The

3



corresponding theories have been constructed in [8, 10, 23, 24, 25, 26]. The theories we

will construct in this paper allow for additional components in the embedding tensor,

combining into a vector θ which transforms in the representation Rv∗. Note that in

two dimensions the two objects Θ and θ coincide (in fact, this observation triggered

the present investigation). As a consequence, in two dimensions gaugings generically

include a local trombone symmetry (1.1), in accordance with the fact that in D = 2

dimensions this symmetry becomes off-shell — more precisely it builds the central ex-

tension of the affine global symmetry group E9(9) [27]. Moreover, this indicates that

the new theories we present in this paper are particularly interesting from the unifying

point of view of the extended Kac-Moody algebras E10 [28] and E11 [29], conjectured

to underlie eleven-dimensional supergravity and its compactifications. We will come

back to this in the conclusions.

The rest of this paper is organized as follows. In section 2 we set up the general

formalism in order to describe a theory with local scaling symmetry (1.1). In the gravity

sector this introduces new minimal couplings between the metric and a vector field

which modify the Einstein equations. In the full theory we describe the simultaneous

gauging of a subgroup of the duality group G and the scaling symmetry (1.1) by

an embedding tensor Θ̂ which completely encodes the theory. With respect to the

standard constructions, the possibility of a local scaling symmetry translates into a

set of additional components θM of the embedding tensor. We derive the quadratic

constraints on the embedding tensor which encode consistency of the gaugings.

In section 3 we work out the details of the construction for all maximal supergrav-

ities in dimensions 6 ≥ D ≥ 3. The analysis relies on the particular properties of the

global symmetry groups SO(5, 5), E6(6), E7(7), and E8(8) of these theories. In particular,

we investigate the class of gaugings which is exclusively triggered by the new compo-

nents θM of the embedding tensor. In this case, the quadratic consistency constraints

reduce to a simple set of equations that for SO(5, 5) reduce to the well-known “pure-

spinor” condition and to its higher-rank analogues in the other dimensions. We present

the explicit solution of these quadratic constraints.

Subsequently, in section 4 we analyze the compatibility of the gaugings with su-

persymmetry. For the case of the three-dimensional theory we derive the full set of

deformed equations of motion and show closure of the supersymmetry algebra. We

find that a particular effect of the theories with local scaling symmetry is a positive

contribution to the effective cosmological constant. We close the paper with some

speculations on the possible role of these new theories in the unifying framework of the

extended Kac-Moody algebras E10 and E11.
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2 Gauging the scaling symmetry

In supergravity theories, the trombone symmetry (1.1) extends to the full bosonic field

content: the metric and the antisymmetric p-forms infinitesimally scale as

δgµν = 2λ gµν , δAµ1...µp
= pλAµ1...µp

, (2.1)

respectively, with a constant parameter λ, while scalar fields remain invariant. The

fermionic fields on the other hand transform as

δψµ = 1
2
λψµ , δχ = − 1

2
λχ , (2.2)

for gravitinos ψµ and spin-1/2 fermions χ, respectively. It is easy to check that under

this symmetry all kinetic terms of the Lagrangian scale homogeneously as

δLkin = (D−2)λLkin . (2.3)

It is a non-trivial property of supergravity theories that also all interaction terms

scale with the same weight. In particular, this restricts the topological terms to two-

derivative terms.

In the following we will consider gaugings of supergravity in which the trombone

symmetry (2.1), (2.2) becomes a local symmetry. Following the standard procedure,

this is achieved by introducing covariant derivatives

Dµ ≡ ∂µ −Aµ t0 , (2.4)

where t0 denotes the generator of the trombone symmetry. However, this cannot be

the full answer. Consistency implies that the vector field Aµ itself must not be charged

under the symmetry it is gauging. This shows already that the local gauge symmetry

cannot simply be the scaling symmetry (2.1), (2.2) under which all vector fields are

charged. Rather, gauging of the scaling symmetry must be accompanied by a gauging

of other generators of the global symmetry group G of the theory — which however is

invisible in the gravity sector. Indeed, this is what we will find in the following.

2.1 Gravity sector

To begin with, we will study the gravity sector with local scaling symmetry (2.1), i.e.

introduce covariant derivatives (2.4) in Einstein’s equations. Since eventually we are

interested in supergravity, we use the formulation in terms of the vielbein eµ
a with

curved indices µ, ν, . . . and flat indices a, b, . . .. As a first step, the standard spin

connection ωµ
ab defined by

0
!
≡ ∇(ω)[µeν]

a ≡ ∂[µeν]
a + ω[µ

ab eν] b , (2.5)

is replaced by a covariantized object ω̂µ
ab defined by

0
!
≡ D[µeν]

a + ω̂[µ
ab eν] b , (2.6)
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with the covariant derivative Dµ from (2.4). Explicitly, this yields

ω̂µ
ab = ωµ

ab − 2 eµ
[a eb] νAν , (2.7)

for the modified spin connection which is uncharged under the scaling symmetry. It is

important to note that this covariantization of the spin connection may equivalently

be interpreted as the adding of a torsion trace term T a
µν = 2A[µ eν]

a.3 Likewise, we

define the covariantized Riemann tensor as

R̂µν
ab ≡ 2 ∂[µ ω̂ν]

ab + 2 ω̂[µ
ac ω̂ν]c

b

= Rµν
ab + 4 e[µ

[a∇(ω)ν]A
b] + 4 e[µ

[aAν]A
b] − 2 e[µ

aeν]
bAλA

λ . (2.8)

By construction it is invariant under gauge transformations

δ eµ
a = λ(x) eµ

a , δAµ = ∂µλ(x) . (2.9)

The covariantized Riemann tensor (2.8) no longer possesses the symmetries of the

standard Riemann tensor: the first Bianchi identity is modified to

R̂[µνρ]
a = −F[µν eρ]

a , (2.10)

with the abelian field strength Fµν = 2 ∂[µAν]. For later supergravity calculations we

also note the relation

R̂µν
ab γρµν γab = 4

(
R̂(ρµ) − 1

2
gρµ R̂

)
γµ − 2 (D − 3)γρµν Fµν − 2 (D − 2)Fρµγµ ,

(2.11)

with γ-matrices in D space-time dimensions, and the Ricci tensor R̂µν = R̂µρν
b eb

ρ and

Ricci scalar R̂ = gµνR̂µν . Explicitly, the latter are given by4

R̂(µν) = Rµν + (D − 2)
(
∇(µAν) + AµAν

)
+ gµν

(
∇λAλ − (D − 2)AλAλ

)
,

R̂ = R + 2 (D − 1) gλρ∇λAρ − (D − 1)(D − 2)AλA
λ . (2.12)

The covariantized Einstein equations (in absence of matter) thus are

R̂(µν) −
1
2
R̂ gµν = 0 , (2.13)

and manifestly invariant under (2.9). In the theories we will consider, additional matter

will always be present, in particular a gauge field sector which includes the vector

field Aµ, such that the right hand side of the Einstein equations will be non-vanishing,

see e.g. equation (4.41) below. One may verify that equations (2.13) do no longer

descend from a standard action which is expected since we have gauged a symmetry

that was not off-shell realized.

In the following we will extend the gauging to the remaining matter fields of su-

pergravity. In particular, we need to identify among the supergravity gauge fields the

vector field Aµ used in all covariant derivatives.

3The equivalence breaks down once we consider additional matter in the theory.
4Our notation here is such that ∇µ in these equations refers to the covariant derivative ∇(Γ)µ in

presence of the standard (non-covariantized) Christoffel symbols Γλ
µν .

6



2.2 Embedding tensor

Extending the gauging to the full theory is conveniently described by resorting to the

group-theoretical formalism developed in [8, 9, 10, 11]. As we have discussed in the

introduction, the full global symmetry group of the ungauged theory is given by the

direct product R
+ × G where the first factor describes the scaling (2.1), (2.2) and the

second factor is the standard duality group. We will denote the total set of generators

by {tα̂} = {t0, tα}, α̂ = 0, . . . , dim G, where t0 denotes the generator of R
+ and the tα

denote the generators of G. The latter satisfy commutation relations

[tα, tβ] = fαβ
γ tγ . (2.14)

The vector fields AM
µ in the ungauged theory transform in some representation Rv of

G labeled by M = 1, . . . , dim Rv, and carry charge +1 under R
+ according to (2.1).

A general gauging is defined by introducing covariant derivatives

Dµ ≡ ∂µ − gAM
µ Θ̂M

α̂ tα̂ = ∂µ − gAM
µ Θ̂M

0 t0 − gAM
µ Θ̂M

α tα , (2.15)

in terms of an embedding tensor Θ̂M
α̂ which describes the embedding of the gauge

group generators XM ≡ Θ̂M
α̂tα̂ into the symmetry group of the ungauged theory. In

addition, we have introduced the gauge coupling constant g. It can in principle be

absorbed into the embedding tensor.

According to its coupling the embedding tensor carries charge −1 under R
+. Its

component θM ≡ Θ̂M
0 transforms under G in the representation Rv∗ dual to Rv. It

selects the vector field that gauges the R
+-symmetry. Comparing (2.15) to (2.4) we

identify

Aµ = g θM AM
µ . (2.16)

The remaining part of the connection (2.15) involves the generators of the duality

group G and is thus invisible in the gravity sector discussed above. It is defined by

the component Θ̂M
α of the embedding tensor which a priori transforms in the tensor

product

Rv∗ ⊗Radj = Rv∗ ⊕ . . . , (2.17)

with Radj denoting the adjoint representation of G. For gaugings that do not involve the

scaling symmetry R
+, it is known that supersymmetry restricts the allowed choices for

Θ̂M
α to only very few of the irreducible representations on the r.h.s. of (2.17), see e.g. [9].

In particular, in the maximal theories (for 3 ≤ D ≤ 7), the “trace part” Rv∗ in this

tensor product is always forbidden.5 InD = 2 space-time dimensions on the other hand,

the picture is quite the opposite: the gaugings are precisely parametrized by the “trace

5In the half-maximal theories, the representation Rv∗ appears with multiplicity 2 on the r.h.s. of

(2.17) and supersymmetry implies a linear relation between these two representations [30]. The same

happens for the maximal theories in D = 8, 9, where the group G is no longer simple [20].
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part” Rv∗ on the r.h.s. of (2.17), i.e. gaugings are described by a vector θM transforming

in the basic representation of the infinite-dimensional affine algebra E9(9) [25]. From

a unifying point of view of the gauged supergravities this is somewhat unsatisfactory;

upon dimensional reduction the algebraic structures in higher dimensions are typically

embedded into the lower-dimensional structures described by higher-rank Kac-Moody

algebras. We will see that precisely the theories that involve a gauging of the trombone

symmetry close this gap and allow for a non-vanishing Rv∗ in (2.17) also in dimensions

D > 2. Recall that only in D = 2 dimensions, the trombone symmetry is part of the

off-shell symmetries of the action and shows up as the central extension of the affine

algebra E9(9).

Our general ansatz for the embedding tensor and thus for the connection in (2.15)

is the following:

Θ̂M
0 = θM , Θ̂M

α = ΘM
α + ζ θN (tα)M

N , (2.18)

where we have split Θ̂M
α into a “traceless” part satisfying ΘM

α (tα)N
M = 0 and its

“trace part”, corresponding to the representation Rv∗ on the r.h.s. of (2.17).6 As this

second term is forbidden in the standard gaugings, it is natural to assume that it

comes proportional to the same vector θM that triggers the gauging of the trombone

symmetry via Θ̂M
0. We will explicitly verify this assumption. All that remains in this

ansatz is to determine the proportionality constant ζ, which must be done case by case,

i.e. in dependence of the space-time dimension and the number of supercharges.

To this end, we recall that a generic gauging introduces non-trivial couplings be-

tween vector fields and the antisymmetric two-form tensors. E.g. the non-abelian field

strength of the vector fields receives corrections of the Stückelberg type [10, 11]

FM
µν −→ HM

µν ≡ FM
µν + g ZM

PQB
PQ
µν , (2.19)

with two-forms BPQ
µν and the intertwining tensor given by

ZM
PQ ≡ (tα̂)(P

M Θ̂Q)
α̂ . (2.20)

In particular, this tensor encodes the field content of two-forms in the theory: as in

general in its indices PQ it does not project onto the full symmetric tensor product

Rv ⊗Rv, but rather satisfies some non-trivial projection

ZM
PQ = ZM

RS P
RS

PQ , (2.21)

also the two-forms will only appear under projection with P, see [11, 31] for details. We

will take this projection as a guide to determine the constant ζ in (2.18): the projector

P in (2.21) and thus the two-form field content should be the same in presence and

6Here and in the following, we raise and lower adjoint indices with the invariant metric καβ ≡

Tr[tαtβ ] which is related to the Cartan-Killing form ηαβ as καβ = Cv(dimRv)/(dimRadj) ηαβ with the

Casimir operator Cv in the vector field representation.
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in absence of an R
+-gauging. In particular, this is necessary because the two-form

field content of the theory is fixed by supersymmetry. We will further illustrate this

argument and the calculation in section 3 in several examples. Later in section 4 we

also explicitly confirm consistency of the ansatz (2.18) with supersymmetry.

2.3 Quadratic constraints

Before applying the above construction to various theories, let us collect a few general

formulae and relations. With the ansatz (2.18) for the embedding tensor, the generators

of the gauge group evaluated in the vector field representation are given by

(XM)N
K ≡ Θ̂M

α̂(tα̂)N
K = ΘM

α(tα)N
K +

(
ζ(tα)M

P (tα)N
K − δP

Mδ
K
N

)
θP . (2.22)

In particular, this gives an explicit expression for the intertwining tensor Z from (2.20)

ZM
PQ = (tα)(P

MΘQ)
α +

(
ζ(tα)P

(K(tα)Q
L) − δ

(K
P δ

L)
Q

)
θL , (2.23)

from which we will determine the values of ζ in the examples below. In every partic-

ular theory, supersymmetry will constrain the possible form of ΘM
α, this gives rise to

the so-called linear representation constraints on the embedding tensor. In addition,

consistency requires the components θM , ΘM
α of the embedding tensor to satisfy a

set of rather generic quadratic constraints. These express the fact that the embedding

tensor itself is invariant under the action of the gauge group. Evaluating this condition

for the different components gives rise to the equations

0
!
≡ δM θN = Θ̂M

α̂ δα̂ θN

= (tγ)N
Q ΘM

γ θQ +
(
ζ (tγ)M

K(tγ)N
L − δK

Mδ
L
N

)
θKθL , (2.24)

and

0
!
≡ δP ΘM

α = ΘP
β(tβ)M

NΘN
α + ΘP

βfβγ
αΘM

γ

+
(
ζ δα

β (tγ)P
Q(tγ)M

N − ζ fβγ
α δN

M (tγ)P
Q − δQ

P δ
N
M δα

β

)
θQΘN

β .

(2.25)

Together, they guarantee in particular that the gauge group generators (2.22) satisfy

[XM , XN ] = −(XM)N
K XK , (2.26)

i.e. these constraints ensure closure of the gauge algebra. We will show in the following

for various theories that every set of θM , ΘM
α that satisfies the given linear representa-

tion constraints and the quadratic relations (2.24), (2.25) defines a consistent gauging

which in case θM 6= 0 involves a gauging of the trombone symmetry.

Let us finally note that the quadratic constraints (2.24), (2.25) in particular imply

the relations

θM ZM
PQ = 0 = Θ̂M

α ZM
PQ , (2.27)

i.e. orthogonality between the embedding tensor and the intertwining tensor Z from

(2.23). This plays an important role in the hierarchy of antisymmetric p-forms [11, 31].
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3 Algebraic structure in various dimensions

In this section, we work out the above construction for the maximal supergravities in

dimensions 6 ≥ D ≥ 3, for which the global symmetry groups are given by SO(5, 5),

E6(6), E7(7), and E8(8), respectively. We determine for the various cases the value of the

parameter ζ in (2.18), which completely fixes the algebraic structure. Furthermore, we

evaluate the quadratic constraints (2.24), (2.25) and show that they admit non-trivial

solutions. As a result we obtain the full set of consistency constraints for gaugings that

involve a local trombone symmetry (1.1).

We will discuss in most detail the case D = 6 in which the symmetry group is the

smallest and accordingly the algebraic structures are the simplest ones. Subsequently,

we report the results in lower dimensions which are obtained in complete analogy with

slightly bigger computational effort.

3.1 D = 6

The ungauged theory in D = 6 dimensions was constructed in [32], its general gaugings

were given in [26], to which we refer for details of the structure. The global symmetry

group of the ungauged theory is the orthogonal group SO(5, 5). Vector and two-form

fields of this theory transform in the 16c and 10 representations, respectively, with the

generators tα = t[ij] given by

(tij)M
N = (γij)M

N , (tij)k
l = 4 ηk[i δ

l
j] , (3.1)

respectively. Here, i, j, . . . = 1, . . . , 10, and M,N = 1, . . . , 16, label the vector and the

spinor representation of SO(5, 5), respectively. The tensors ηij and (γij)M
N denote the

invariant form and the gamma matrices of SO(5, 5), respectively. We use the former

to raise and lower vector indices. A non-trivial relation among the generators that we

will exploit in the following, is7

(tα)M
K(tα)N

L = − 1
32

(γij)M
K (γij)N

L = 1
16
δK
Mδ

L
N + 1

4
δL
Mδ

K
N − 1

8
(γi)MN(γi)

KL ,

(3.2)

which can be proven by further contraction with gamma matrices.

The embedding tensor Θ̂M
α a priori lives in the tensor product

16s ⊗ 45 = 16s ⊕ 144c ⊕ 560s , (3.3)

where 45 is the adjoint of SO(5, 5). In absence of the R
+-gauging, supersymmetry

restricts the embedding tensor ΘM
α to the irreducible 144c representation in this de-

composition [9, 26]. I.e. it can be parametrized in terms of a gamma-traceless vector-

spinor θMi as

ΘM
ij = −θN [i γj]

NM , with γi MN θ
Ni ≡ 0 . (3.4)

7As mentioned above, adjoint indices are raised and lowered with the invariant form καβ ≡ Tr[tαtβ ]

which here is given by κij,kl = −32 δi[kδl]j .
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In this case, the intertwining tensor (2.20) is given by

ZM
PQ = −θLi γj

L(P (γij)Q)
M = − (γi)PQ θ

Mi , (3.5)

where we have used the properties of the SO(5, 5) gamma matrices. The form of (3.5)

shows that in indices (PQ), this tensor projects onto a subrepresentation

(16c ⊗ 16c)sym −→ 10 , (3.6)

within the full symmetric tensor product. According to the general discussion above,

this must reproduce the field content of the two-forms of the theory. E.g. the general

coupling (2.19) reduces to

HM
µν = FM

µν − gθMiBµν i , (3.7)

with two-forms Bµν i ≡ (γi)PQB
PQ
µν transforming in the 10. Indeed, this precisely

coincides with the field content of the ungauged theory. Remarkably, this gives a

purely bosonic justification of the restriction of the embedding tensor within (3.3).

Any other component in ΘM
α would have required a larger set of two-forms and thus

be in conflict with the field content of the theory (which in turn is determined by

supersymmetry).

Let us now repeat this analysis in presence of an R
+-gauging, i.e. for non-vanishing

tensor θM . In this case, the gauge group generators (2.22) are given by

XMN
K = −θLi γj

LM (γij)N
K − 1

32
ζ (γij)M

L (γij)N
K θL − θM δK

N . (3.8)

Using (3.2), we obtain for the intertwining tensor Z of (2.23)

ZM
PQ = −(γi)PQ

(
θMi + ζ

8
(γi)ML θL

)
+ (5ζ

16
− 1) δM

(P θQ) . (3.9)

Comparing this tensor to (3.5) shows that choosing ζ = 16/5, Z projects onto the same

subspace (3.6) as in absence of the R
+-gauging

ZM
PQ = (γi)PQ Ẑ

Mi , ẐKi ≡ − θKi − 2
5
(γi)KL θL . (3.10)

Any other value of ζ would require a larger set of two-forms for consistency of the

gauged theory and thus eventually be inconsistent with supersymmetry.

To summarize, we have found that the presence of a 16s component in the embed-

ding tensor (3.3) is possible, if simultaneously the R
+ trombone symmetry is gauged.

The explicit ansatz for the gauge group generators is given by (3.8) with ζ = 16/5. This

finishes the discussion of the linear representation constraint satisfied by the embedding

tensor in presence of an R
+-gauging.

It remains to evaluate the quadratic constraints (2.24), (2.25) required for consis-

tency of the gauging. The constraints (2.24) split into

(γi)
K[M θN ]i θK

!
≡ 0 , θKi θK

!
≡ − 2

5
(γi)KL θKθL , (3.11)
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in terms of the irreducible components θKi and θK . These constraints, which are

automatically satisfied for θK = 0 transform under SO(5, 5) in the 120 and the 10

representation, respectively. Note that the part transforming in the 126s +126c which

could in principle be present in (2.24) is absent in (3.11), thanks to the particular

choice of ζ. This is crucial for the existence of non-trivial solutions. Some computation

shows that the remaining quadratic constraints (2.25) may be cast into the form

θMmθN
m

!
≡ (γm)K(MθN)

m θK + 1
5
γMN

m θKiθK ,

θMiθN [k(γl])MN
!
≡ 1

10
(γkl)M

NθMiθN − 3
5
θMθ

M [kηl]i , (3.12)

transforming in the 10⊕126c⊕320 of SO(5, 5) and showing explicitly how the known

quadratic constraints of [26] are modified by the presence of a non-vanishing θM .

Every solution θM , θMi of the combined set of quadratic constraints (3.11), (3.12)

will give rise to a consistent gauging of the maximal supergravity in D = 6. We have

shown that this complete set of constraints transforms as

Rquad = (10 ⊕ 126c ⊕ 320) ⊕ (10 ⊕ 120) , (3.13)

of which the last two representations correspond to (3.11) and are only relevant for a

non-vanishing θM . An important non-trivial result in this computation (which again

hinges on the particular value of ζ = 16/5 in (2.18) determined above) is the absence of

the 1728 representation in (3.12) which is a priori possible in (2.25). As it constitutes

the major part of the tensor product θMi⊗θK , a mixed constraint in this representation

would presumably exclude any solution with both θMi and θK non-vanishing. Instead,

we expect a rather rich class of solutions of the quadratic constraints (3.11), (3.12)

with simultaneously non-vanishing θMi and θK . We leave the study of such theories to

future work.

Let us analyze here in detail the subclass of gaugings with θMi = 0, which are thus

complementary to the gaugings studied in [26]. These theories are parametrized by an

SO(5, 5) spinor θM for which the constraints (3.11) reduce to

(γi)
KL θKθL ≡ 0 . (3.14)

Funny enough, this is precisely the structure of an SO(10) pure spinor (albeit for a dif-

ferent real form than the usual SO(1, 9)) that shows up in a very different context here

— classifying a particular subsector of possible gaugings in maximal six-dimensional

supergravity. We can use this to employ the well-known parametrization of the general

solution of this quadratic constraint upon decomposing θM into its GL(5)-irreducible

parts (ξ, ξm, ξ[mn]) with m,n = 1, . . . , 5, according to the branching

16s −→ 1−5 ⊕ 5′+3 ⊕ 10−1 , (3.15)

of SO(5, 5) under GL(5). In terms of these components, the quadratic constraint (alias

the pure spinor condition (3.14)) decomposes into the conditions

ξ ξm = ǫmklpq ξklξpq , ξm ξmn = 0 , (3.16)
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with the totally antisymmetric tensor ǫmklpq. On a patch with ξ 6= 0, these equations

are simultaneously solved by setting

ξm = ǫmklpq ξklξpq /ξ , (3.17)

leaving 11 independent real parameters (ξ, ξmn) in the general solution.

We have thus found a particular class of maximal supersymmetric gaugings defined

by θM = (ξ, ξm, ξ[mn]) with ξm given in (3.17). Moreover, this is the most general

gauging with the components θMi = 0. As GL(5) is the global symmetry group of seven-

dimensional maximal supergravity, it is tempting to speculate that these theories have

a possible higher-dimensional origin as particular (generalized) circle compactifications

from seven dimensions. In the following we will see that a very similar pattern shows

up for the analogous class of gaugings in lower dimensions.

3.2 D = 5

The ungauged theory in D = 5 dimensions was constructed in [33], its general gaug-

ings were given in [10]. The global symmetry group of the ungauged theory is E6(6).

Vector and two-form fields of this theory transform in the mutually dual 27 and 27

representation. In the ungauged theory, only the vector fields appear in the Lagrangian

while the two-forms are defined as their on-shell duals. A non-trivial relation among

the E6(6) generators that we will exploit in the following, is

(tα)M
K(tα)N

L = 1
18
δK
Mδ

L
N + 1

6
δL
Mδ

K
N − 5

3
dMNP d

KLP , (3.18)

where dMNK and dMNK are the totally symmetric E6(6) invariant tensors, normalized

as dMNKd
MNL = δL

K , see [10] for further useful relations.

The embedding tensor Θ̂M
α a priori lives in the tensor product

27 ⊗ 78 = 27 ⊕ 351 ⊕ 1728 , (3.19)

where 78 is the adjoint of E6(6). In absence of the R
+-gauging, supersymmetry restricts

the embedding tensor ΘM
α to the 351 representation in this decomposition [9, 10]. I.e.

it can be parametrized in terms of an antisymmetric matrix ZMN = −ZNM as

ΘM
α = 12ZPQ (tα)R

S dRKLdMPKdSQL . (3.20)

Using (3.18), we obtain for the full intertwining tensor Z of (2.23)

ZM
PQ = dPQL (ZML − 5ζ

3
dMLQθQ) + (2ζ

9
− 1) δM

(P θQ) . (3.21)

This shows that choosing ζ = 9/2, this tensor simplifies to

ZM
PQ = dPQL (ZML − 15

2
dMLQθQ) ≡ dPQL Ẑ

ML , (3.22)

and thus projects onto a single subrepresentation

(27 ⊗ 27)sym −→ 27 , (3.23)
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within the full symmetric tensor product, and thus onto the same subspace as in

absence of the R
+-gauging. This is precisely compatible with the two-forms present in

the theory. Any other value of ζ would for consistency require a larger set of two-forms

and thus be incompatible with supersymmetry.

It is interesting to note, that in absence of the R
+-gauging, the tensor ẐMN of (3.22)

is totally antisymmetric and as such also shows up in the topological coupling of the

two-forms in the action LB dB = ZMN BM ∧ dBN . The fact that for non-vanishing θK

this tensor is no longer antisymmetric reflects the fact that the R
+-gaugings in general

do no longer admit an action.

It remains to evaluate the quadratic constraints (2.24), (2.25) required for consis-

tency of the gauging. The quadratic constraints (2.24) split into

ZPQθR dPKMdQLNd
KLR !

≡ 0 , ZMNθN
!
≡ 15 dMKL θKθL , (3.24)

in terms of the irreducible components ZMN and θK . These constraints, which are

automatically satisfied for θM = 0 transform under E6(6) in the 351 and the 27, re-

spectively. After some computation, the quadratic constraints (2.25) take the form

4(tα)K
L ZKRZNSdRSL + 3(tα)K

L ZKNθL + 3(tα)K
N ZKLθL

!
≡ 0 . (3.25)

The first term transforms under E6(6) in the 27+1728 [10], and the form of (3.25) shows

that the additional terms (upon imposing (3.24)) fall into the same representations.

I.e. the total quadratic constraint transforms as

Rquad = (27 ⊕ 1728) ⊕ (27 ⊕ 351) , (3.26)

of which the last two representations correspond to (3.24) and are only relevant in

presence of an R
+-gauging. An important non-trivial result in this constraint analysis

(which again hinges on the particular value of ζ = 9/2 in (2.18)) is the absence of

the 7371 representation which is a priori possible in (3.25). As it constitutes the

major part of the tensor product ZMN ⊗ θK , its presence among the constraints would

presumably exclude any solution with both ZMN and θK non-vanishing.

Let us finally discuss the particular gaugings for which ZMN = 0 and which are

thus complementary to those constructed in [10]. In this case, the only non-trivial

quadratic constraint on the remaining component θK comes from (3.24) and is given

by

dMKL θKθL
!
≡ 0 . (3.27)

This condition can be viewed as the “analogue of a pure spinor” (3.14) for the excep-

tional group E6(6). We can employ a similar technique to explicitly solve it. To this

end, we decompose θM into its (SO(5, 5) × R
+)-irreducible parts (λ, λi, λα) according

to the branching

27 −→ 1+4 ⊕ 10−2 ⊕ 16+1
s . (3.28)
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The quadratic constraint (3.27) accordingly decomposes into the equations

λλi = (γi)
αβ λαλβ , (γi)αβ λi λβ = 0 , λi λ

i = 0 , (3.29)

with the SO(5, 5) tensors (γi)
αβ introduced in the last subsection.8 On a patch where

λ 6= 0, these equations are simultaneously solved by setting

λi = (γi)
αβ λαλβ /λ . (3.30)

This is straightforwardly verified using the well-known identity (γi)(αβ(γi)
γ)δ = 0 for

SO(5, 5) gamma-matrices. In total, this leaves 17 independent real parameters (λ, λα)

for the general solution of (3.27).

3.3 D = 4

The ungauged theory in D = 4 dimensions was constructed in [2], its general gaugings

were given in [24]. The global symmetry group of the ungauged theory is E7(7). Vector

and two-form fields of this theory transform in the 56 and the adjoint 133 representa-

tions, respectively. In the ungauged theory, only 28 electric vector fields appear in the

Lagrangian while their 28 magnetic duals are defined on-shell. Similarly, the two-forms

are defined on-shell as duals to the scalar fields of the theory.

A non-trivial relation among the E7(7) generators that we will exploit in the follow-

ing, is

(tα)M
K(tα)N

L = 1
24
δK
Mδ

L
N + 1

12
δL
Mδ

K
N + (tα)MN (tα)KL − 1

24
ΩMN ΩKL , (3.31)

where the fundamental indices have been raised and lowered with the symplectic matrix

ΩMN (and we use north-west south-east conventions, i.e. XM = ΩMNXN , etc.).

The embedding tensor Θ̂M
α a priori lives in the tensor product

56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480 . (3.32)

In absence of the R
+-gauging, supersymmetry restricts the embedding tensor ΘM

α

to the 912 representation in this decomposition [9, 24], i.e. to a tensor satisfying the

condition ΘM
α = −2(tβ t

α)M
N ΘN

β.

Using (3.31), we obtain for the full intertwining tensor Z of (2.23)

ZM
PQ = (tα)PQ

(
− 1

2
ΘL

α ΩML + ζ (tα)ML θL

)
+ ( ζ

8
− 1) δM

(P θQ) . (3.33)

This shows that upon choosing ζ = 8, this tensor simplifies to

ZM
PQ = −1

2
(tα)PQ

(
ΘMα − 16 (tα)ML θL

)
≡ (tα)PQ ẐMα , (3.34)

8In contrast to the last subsection, we here use indices α, β for the SO(5, 5) spinor representation,

as capital indices M, N in this section are reserved for the E6(6) fundamental representation of the

vector fields.
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and thus projects onto a single subrepresentation

(56 ⊗ 56)sym −→ 133 , (3.35)

within the full symmetric tensor product, which is the same subspace as in absence of

the R
+-gauging. This is precisely compatible with the content of two-forms present in

the theory. Any other value of ζ would for consistency require a larger set of two-forms

and thus be incompatible with supersymmetry.

It remains to evaluate the quadratic constraints (2.24), (2.25) required for consis-

tency of the gauging. The quadratic constraints (2.24) split into

(tγ)[M
Q ΘN ]

γ θQ
!
≡ 0 , ΩPQ ΘP

α θQ
!
≡ − 16 (tα)KL θK θL , (3.36)

transforming in the 1539 and the 133 of E7(7), respectively. As in the higher dimen-

sions discussed above, the quadratic constraint (2.25) in presence of a θM induces a

modification of the known quadratic constraints [24] which is given by

ΘM
α ΘN

β ΩMN !
≡ 8 θM ΘN

[α tβ]MN − 4 fαβ
γ θM ΘN

γ ΩMN . (3.37)

Together, we find that the total set of quadratic constraints transforms under E7(7) in

the representation

Rquad = (133 ⊕ 8645) ⊕ (133 ⊕ 1539) , (3.38)

of which the last two representations correspond to (3.36) and are only relevant in

presence of a non-vanishing θM .

Let us finally discuss the particular gaugings for which ΘM
α = 0 and which are

thus complementary to those constructed previously in [24]. In this case, the only non-

trivial quadratic constraint on the remaining component θK comes from (3.36) and is

given by

(tα)KL θKθL
!
≡ 0 . (3.39)

This condition can be viewed as the “analogue of a pure spinor” (3.14) for the ex-

ceptional group E7(7). In complete analogy to the analysis for the groups SO(5, 5)

and E6(6) above, we can find its most general solution by decomposing θM into its

(E6(6) × R
+)-irreducible parts (η, ηm, η

m, η̃) according to the branching

56 −→ 1−3 ⊕ 27−1 ⊕ 27′+1 ⊕ 1+3 . (3.40)

The quadratic constraint (3.39) accordingly decomposes into the set of equations

η ηm = dmkl ηkηl , η̃ ηm = dmkl η
kηl , ηη̃ − 2

15
ηmη

m = 0 = (ta)n
m ηmη

n , (3.41)
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with the E6(6) tensors dmnk and E6(6) generators (ta)n
m introduced in the last subsec-

tion.9 On a patch where η 6= 0, these equations are simultaneously solved by setting

ηm = dmkl ηkηl/η , η̃ = 2
15
dpqrηpηqηr/η

2 , (3.42)

upon using the identity dp(kldmn)qd
pqr = 2

15
δr
(kdlmn). This leaves 28 independent param-

eters (η, ηm) in the general solution.10

3.4 D = 3

The ungauged theory in D = 3 dimensions was constructed in [35], its general gaugings

were given in [8]. The global symmetry group of the ungauged theory is E8(8). The

three-dimensional theory is special in that the ungauged theory does not carry any

vector fields which appear in the gauged theory via a Chern-Simons coupling. As

they are dual to the scalar fields, they transform in the adjoint of E8(8), which is the

248-dimensional representation with generators11

(tM)N
K = −fMN

K , (3.43)

in terms of the structure constants of E8(8). Two forms transform in the 1 ⊕ 3875

representation of E8(8). Although these forms are non-propagating in three dimensions,

their field content can be inferred from the supersymmetry algebra or from their on-

shell duality to the embedding tensor [31].

The embedding tensor Θ̂MN a priori lives in the tensor product

248 ⊗ 248 = 1 ⊕ 248 ⊕ 3875 ⊕ 27000 ⊕ 30380 . (3.44)

In absence of the R
+-gauging, supersymmetry restricts the embedding tensor to the

reducible 1 ⊕ 3875 representation in this decomposition [8]. Explicitly, this is a sym-

metric tensor ΘMN which satisfies

ΘMN =
(
(P1)MN

KL + (P3875)MN
KL

)
ΘKL , (3.45)

with the projectors

(P1)MN
KL = 1

248
ηMN ηKL ,

(P3875)MN
KL = 1

7
δ K
(MδLN ) −

1
14
fPK

(MfN )P
L − 1

56
ηMN ηKL . (3.46)

9In contrast to the last subsection, we here use indices m, n for the E6(6) fundamental representa-

tion, as capital indices M,N in this section are reserved for the E7(7) fundamental representation of

the vector fields.
10As a byproduct, we thus find that an E7(7) vector θM subject to the quadratic condition (3.39)

represents a very compact way to describe the non-linear conformal realization of this group [34] on

a 27-dimensional vector space.
11In order to facilitate comparison with previous work in three dimensions [8, 31], we use in this

section calligraphic indices for the fundamental (=adjoint) representation. Moreover, we use the

Cartan-Killing form ηMN rather than the rescaled form κMN = 60 ηMN defined in footnote 4 and

used in the previous sections to raise and lower adjoint indices.
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Using (2.18), we obtain for the full intertwining tensor Z of (2.23)

ZM
PQ = fLK

(PΘQ)L +
(
ζfLM

(PfQ)L
K − δ M

(P δKQ)

)
θK . (3.47)

With the explicit form of the projectors (3.46) this shows that choosing ζ = 1/2, the

tensor Z projects onto the subrepresentation

(248 ⊗ 228)sym −→ 1 ⊕ 3875 , (3.48)

within the full symmetric tensor product, and thus onto the same subspace as in

absence of the R
+-gauging. This is precisely compatible with the two-forms present

in the theory (which are dual to the embedding tensor) and thus compatible with

supersymmetry as we shall explicitly demonstrate in the next section.

It is interesting to note, that in absence of the R
+-gauging, the tensor Θ̂MN = ΘMN

is symmetric in its two indices and also shows up as a metric of the Chern-Simons term

in the action LCS = ΘMNA
M ∧ dAN . The fact that for non-vanishing θK, this tensor

is no longer symmetric again reflects the fact that the R
+-gaugings in general do no

longer admit an action.

It remains to evaluate the quadratic constraints (2.24), (2.25) required for consis-

tency of the gauging which yields

θMθN − 1
2
fQP

NfMQ
LθPθL = ΘLMfN

LPθP , (3.49)

2ΘMLΘT (NfP)
LT − ΘNPθM − ΘL(NfP)

LT fMT
QθQ = 0 . (3.50)

In particular, contraction of these equations implies that

θMθM = 0 , ηMNΘMN θK = 0 = ΘKM θM . (3.51)

With some effort one can show that these constraints transform in the

Rquad = (3875 ⊕ 147250) ⊕ (1 ⊕ 2 · 248 ⊕ 3875 ⊕ 30380) , (3.52)

of which the last four representations correspond to (3.49) and (3.51) and are only

relevant for a non-vanishing θM. Notably, the 779247 representation which is not

excluded by group theory arguments and could in principle show up among these

constraints is explicitly absent. We shall come back to (a proof of) this fact in the next

section.

The second equation in (3.51) implies that the singlet 1 and the vector 248 com-

ponent of the embedding tensor cannot be switched on simultaneously. Absence of the

vector θM corresponds to the theories without gauging of the R
+ scaling symmetry.

As these theories have been discussed in detail in [8], we shall in the following assume

a non-vanishing vector θM and thus a vanishing singlet component ηMNΘMN of the

three-dimensional embedding tensor.
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Let us finally discuss the particular gaugings for which ΘMN = 0 and which are thus

complementary to those constructed in [8]. In this case, the only non-trivial quadratic

constraint on the remaining component θK comes from (3.49) and is given by

(
(P1)MN

KL + (P3875)MN
KL

)
θK θL

!
≡ 0 . (3.53)

As in higher dimensions, this condition can thus be viewed as the “analogue of a pure

spinor” (3.14) for the exceptional group E8(8). We can use the same technology in

order to find its general solution. As the calculation is somewhat more involved that

for the higher-dimensional cases, we defer the details to appendix B and just present the

solution here. Decomposing θM under E7(7) × R
+ into components (η̃, η̃m, ξ, ξα, ηm, η)

according to the decomposition12

248 −→ 1+2 ⊕ 56+1 ⊕ 10 ⊕ 1330 ⊕ 56−1 ⊕ 1−2 , (3.54)

the general solution of (3.53) can be expressed in terms of the 58 parameters η, ηm, ξ

as

ξα = −
6

η
(tα)mn ηm ηn ,

η̃m =
ξ

η
ηm −

24

η2
(tα)m

n (tα)pq ηn ηp ηq ,

η̃ =
ξ2

η
−

2

η
ξα ξα . (3.55)

We note that the second term in η̃ is related to the quartic invariant (tα)kl(tα)mn ηkηlηmηn

of E7(7). Like for E7(7) above, the explicit solution (3.55) in terms of 58 parameters

shows that a vector subject to the bilinear condition (3.53) represents a very compact

way to describe the non-linear conformal realization of E8(8) given in [34].

3.5 Summary

We have in this section explicitly constructed the gauge group generators of the gaug-

ings of maximal supergravity that involve also a gauging of the on-shell scaling sym-

metry (1.1). In dimensions 3 ≤ D ≤ 6, these generators are given by (2.18) with the

respective values of ζ computed above in the various subsections. The possibility of a

local scaling symmetry gives rise to another set of parameters θM within the embedding

tensor that transform in the dual vector representation. We have worked out for all

cases the quadratic constraints on the embedding tensor required for consistency. In

particular, for those gaugings that are exclusively triggered by the new parameters θM ,

we have furthermore given the explicit solution of these consistency constraints in all

cases.

12Here, we use indices m and α for the fundamental 56 and the adjoint 133 of E7(7), respectively.
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While so far we have only derived the necessary algebraic consistency constraints,

it remains to show that every solution to these constraints (e.g. to equations (3.36),

(3.37) in D = 4 dimensions) indeed gives rise to a consistent theory. In particular, it

remains to determine the deformed field equations — as the theory no longer admits

an action, the analysis must be performed on the level of the equations of motion.

This will be the subject of the next section. We pick the example of the maximal

D = 3 supergravity, for which the algebraic structure is the most involved one, and

show how the equations of motion must be modified under gauging in order to remain

supersymmetric.

4 Supersymmetry

In this section we will take as an example the maximal three-dimensional theory and

work out the full set of the deformed equations of motion. In particular, this will

show that the quadratic constraints (3.49), (3.50) are sufficient for consistency of the

theory, in other words, that every solution to these equations defines a consistent and

maximally supersymmetric gauging in three dimensions. Upon dimensional reduction

the algebraic structures which connect gauging and supersymmetry are embedded into

the increasing symmetry algebras. The results of this section thus give some strong

evidence that also the algebraic constraints we have derived in sections 3.1 – 3.3 for

the higher dimensions are sufficient for compatibility with supersymmetry.

As we have repeatedly mentioned, the resulting theory does not admit an action.

The analysis must therefore be performed on the level of the equations of motion.

After reviewing the three-dimensional theory we analyze the deformed supersymmetry

algebra and in section 4.4 we derive the full set of the deformed equations of motion

(to lowest order in the fermions).

4.1 The three-dimensional theory

We recall some basic notations of the maximal three-dimensional supergravity and its

gaugings, see [35, 8] for details. Also we have collected in appendix A.1 our conventions

for the exceptional group E8(8).

The scalar fields in three dimensions are described by an E8(8)-valued matrix VM
M,

with the two indices labeling the 248-dimensional adjoint representation and indicating

the transformation properties

δV = ΛV − Vh(x) , Λ ∈ e8(8) , h(x) ∈ so(16) , (4.1)

under global E8(8) and local SO(16), respectively. In particular, it is customary to split

the group matrix according to VM
M = {VM

IJ ,V
M

A}, according to the decomposition

of e8(8) into its compact subalgebra so(16) = 〈X [IJ ]〉 and 128 noncompact generators

{Y A}. Here I, J, . . . and A,B, . . ., respectively, label the 16 and 128s representations
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of SO(16). Eventually we will also need indices Ȧ, Ḃ, . . . labelling the conjugate spinor

representation 128c. Naturally we will also encounter SO(16) gamma matrices ΓI
AȦ

in

what follows. We will freely raise and lower SO(16) indices.

In this basis, the Cartan-Killing form ηMN of E8(8) takes the form

ηMN VM
IJV

N
KL = −2δIJ

KL , ηMN VM
AV

N
B = δAB . (4.2)

and the E8(8) structure constants fMNK can be expressed as

fMNK = VM
MVN

NVK
K f

MNK

= −VM
IJV

N
KLV

K
MN

(
δIKδLMδNJ

)
− 3

4
V [M

IJV
N

AV
K]

B

(
ΓIJ

AB

)
. (4.3)

The inverse matrix VM
M is defined by13

VKL
M VM

IJ = 2δIJ
KL , VA

M VM
B = δA

B . (4.4)

The standard gaugings are defined in terms of the embedding tensor ΘMN . The

fermionic mass terms of the theory as well as the scalar potential can be expressed in

terms of the T -tensor

TM|N ≡ ΘMN VM
MVN

N , (4.5)

obtained by dressing the embedding tensor with the scalar matrix VM
M. Similarly,

the crucial object in the description of the gaugings with local scaling symmetry will

be the dressed new component θM:

TM ≡ θM VM
M . (4.6)

As ΘMN is restricted to live in the 1⊕ 3875 representation of E8(8), the same applies

to the T -tensor. It can hence be expressed as

ΘMN = VM
MVN

N TM|N

= 1
4
VM

IJVN
KL

(
δ

I[K
A

L]J
1 − δ

J [K
A

L]I
1 + 1

64
ΓIJKL

ȦḂ
AȦḂ

3

)

− V(M
IJVN )

A
(
Γ

[I

AȦ
A

J ]Ȧ
2

)
+ VM

AVN
B

(
1
16

ΓI
AȦ

ΓI
BḂ

AȦḂ
3

)
. (4.7)

in terms of three tensors A1, A2 and A3 transforming in the 135, 1920c and 1820 of

SO(16), respectively, i.e. satisfying

AIJ
1 = AJI

1 ΓI
AȦ
AIȦ

2 = 0 , AȦḂ
3 = 1

3072
ΓIJKL

ȦḂ
ΓIJKL

ĊḊ
AĊḊ

3 . (4.8)

In the standard gauged theory (in absence of the R
+-gauging), these terms describe

the various fermionic mass term in the Lagrangian while the scalar potential is given

by

W (φ) = 1
4
g2

(
AIȦ

2 AIȦ
2 − 2AIJ

1 A
IJ
1

)
. (4.9)

13Note that these conventions gives rise to the relations VM
IJ ≡ ηMNVNIJ = −VIJ

M and VM
A ≡

ηMNVNA = VA
M, cf. appendix A.1.
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Similarly, we now introduce tensors BIJ and BA in order to parametrize the different

SO(16) components of the new part (4.6) of the T -tensor

θM = VM
M TM = 1

2
VM

IJ BIJ + VM
ABA . (4.10)

With the currents

V−1(∂µ − gAM
µ Θ̂MN tN )V ≡ 1

2
QIJ

µ X
IJ + PA

µ Y
A , (4.11)

we find among the various components of the T -tensor the differential relations

DµA
IJ
1 = Γ

(I

AȦ
A

J)Ȧ
2 PA

µ ,

DµA
IȦ
2 = 1

2

(
ΓM

AȦ
AIM

1 + ΓI
AḂ

AȦḂ
3 − 1

16
(ΓIΓJ)ȦḂΓJ

AĊ
AĊḂ

3

)
PA

µ ,

DµBIJ = 1
2
ΓIJ

AB BA PB
µ , DµBA = 1

4
ΓIJ

AB BIJ P
B
µ , (4.12)

where Dµ denotes the full SO(16)-covariant derivative.

4.2 Implications of the quadratic constraint

In this section we will compute and collect a number of relations that can be derived

from the quadratic constraints (3.49), (3.50) on the embedding tensor. The section is

largely technical and since the algebraic calculations become quite involved we have

made repeated use of the computer algebra system Cadabra [36] to organize and sim-

plify the computation.

We have seen that the gauging of the theory is described in terms of the embedding

tensor, which is parametrized by components ΘMN , θM, subject to the relations (3.49),

(3.50). The equations of motion of the theory on the other hand feature the dressed

version of the embedding tensor defined in (4.5) and (4.6). In order to appreciate

the consequences of the quadratic constraint, we will thus have to translate equa-

tions (3.49), (3.50) into relations between the scalar dependent tensors A1,2,3 and B

from (4.7), (4.10).

Let us start from the simplest set of constraints (3.51). Its second equation trans-

lates into

ηMNΘMN BA = 0 = ηMNΘMN BIJ , (4.13)

and as mentioned above, it is automatically solved if ΘMN transforms in the 3875

and has no singlet component. Plugging the explicit expansions (4.7), (4.10) into the

remaining equations of (3.51) gives rise to the relations

BIJBIJ − 2BABA = 0 ,

A
K[I
1 B

J ]K
+ Γ

[I

AȦ
A

J ]Ȧ
2 BA − 1

128
ΓIJKL

ȦḂ
AȦḂ

3 BKL = 0 ,

8 ΓI
AȦ
AJȦ

2 BIJ − ΓI
AȦ

ΓI
BḂ

AȦḂ
3 BB = 0 . (4.14)
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We note that these constraints transform in the 1, 120, and 128s of SO(16), respec-

tively. On the other hand, from evaluating (3.49) for M = [IK] and N = [JK] we

obtain after subsequent symmetrisation and antisymmetrisation in I, J , two equations

in the 135, and 120

8BIKBJK + 8A
K(I
1 B

J)K − 4Γ
(I

AȦ
A

J)Ȧ
2 BA − δIJ BABA = 0 ,

−6A
K[I
1 B

J ]K − 3Γ
[I

AȦ
A

J ]Ȧ
2 BA + 1

64
ΓIJKL

ȦḂ
AȦḂ

3 BKL = 0 , (4.15)

respectively. Instead, choosing in (3.49) M = [IJ ] and N = A and contracting the

equation with ΓJ
AȦ

leads to

0 = 7ΓJ
AȦ
BIJBA − 7

16
ΓI

AȦ
ΓJK

AB BJKBB + 7
2
ΓJ

AȦ
AIJ

1 BA − AJȦ
2 BIJ + 3

2
ΓI

AḂ
AȦḂ

3 BA

− 1
2
(ΓIΓK)ȦḂ A

JḂ
2 BJK − 5

4
ΓJK

ȦḂ
AIḂ

2 BJK − 3
16

(ΓIΓJ)ȦḂΓJ
BĊ

AḂĊ
3 BB . (4.16)

Upon interchanging M and N in (3.49), the same contraction yields

0 = 7ΓJ
AȦ
BIJBA − 7

16
ΓI

AȦ
ΓJK

AB BJKBB − 6AJȦ
2 BIJ + 2ΓI

AḂ
AȦḂ

3 BA

+ 1
2
(ΓIΓK)ȦḂ A

JḂ
2 BJK − 1

2
ΓJK

ȦḂ
AIḂ

2 BJK − 1
32

(ΓIΓJ)ȦḂΓJ
BĊ

AḂĊ
3 BB . (4.17)

Under SO(16) the two equations (4.16) and (4.17) transform in the 128s ⊕ 1920c and

it is straightforward to verify that the two parts in the 128s (obtained by further

contraction with ΓI
BȦ

) are proportional to the last equation of (4.14).

Finally, we evaluate part of the quadratic constraint (3.50). Choosing M = [JK],

N = [IM ], P = [KM ] and symmetrizing in (IJ) leads to the relation

0 = AIK
1 AJK

1 − 1
2
AIȦ

2 AJȦ
2 + A

K(I
1 B

J)K − 1
4
Γ

(I

AȦ
A

J)Ȧ
2 BA

− 1
16
δIJ (AKL

1 AKL
1 − 1

2
AKȦ

2 AKȦ
2 ) , (4.18)

in the 135 of SO(16). Choosing in (3.50) M = A, N = [IM ], P = [KM ] and

contracting with ΓK
AȦ

we obtain

1
64

ΓIJKL
ĊḊ

ΓKL
ȦḂ

AJḂ
2 AĊḊ

3 = −32AIJ
1 A

JȦ
2 + 2(ΓIΓJ)ȦḂ A

JK
1 AJḂ

2 + 10AIḂ
2 AȦḂ

3

− (ΓIΓJ)ȦḂ A
JĊ
2 AḂĊ

3 + 20ΓJ
AȦ
AIJ

1 BA + 2AJȦ
2 BIJ

− 7
2
ΓJK

ȦḂ
AIḂ

2 BJK + (ΓIΓK)ȦḂ A
JḂ
2 BJK . (4.19)

Choosing instead M = [IM ], N = [KM ], P = A before contracting with ΓK
AȦ

, we

obtain

1
64

ΓIJKL
ĊḊ

ΓKL
ȦḂ

AJḂ
2 AĊḊ

3 = 64AIJ
1 A

JȦ
2 − 4(ΓIΓJ)ȦḂ A

JK
1 AJḂ

2 − 22AIḂ
2 AȦḂ

3

+ (ΓIΓJ)ȦḂ A
JĊ
2 AḂĊ

3 + ΓJ
AȦ
AIJ

1 BA + 64AJȦ
2 BIJ

− 2(ΓIΓK)ȦḂ A
JḂ
2 BJK − 11ΓI

AḂ
AȦḂ

3 BA

− 1
16

(ΓIΓJ)ȦḂΓJ
AĊ

AḂĊ
3 BA . (4.20)

23



Again these two equations transform in the 128s ⊕ 1920c and one verifies that both

128s parts reduce to the last equation of (4.14). We note that in absence of the vector

θM, (i.e. for BIJ = 0 = BA) all these equations consistently reduce to equations (4.17)

and (4.19) of [8]. Together, we have thus shown that the lowest SO(16) representations

appearing in the quadratic constraint are given by

Rquad = 1 ⊕ 3 · 120 ⊕ 2 · 128s ⊕ 3 · 135 ⊕ 4 · 1920c ⊕ . . . , (4.21)

in agreement with the corresponding decomposition of (3.52). In particular, the fact

that within all the above equations there are only two independent constraints in

the 128s finally proves that there is no E8(8) representation 779247 in the quadratic

constraint (3.52). Its presence would have excluded all solutions to the quadratic

constraint with both ΘMN and θM non-vanishing.

In order to study supersymmetry of the equations of motion in the next section, we

will need the following particular linear combinations of the above constraints in the

the 128s ⊕ 1920c representation

0 = 3AIJ
1 A

JȦ
2 − AIḂ

2 AȦḂ
3 + 3AJȦ

2 BIJ − 1
4
AIḂ

2 BJKΓJK
ȦḂ

+ 3
4
AIJ

1 BAΓJ
AȦ

− 1
4
AȦḂ

3 BAΓI
AḂ

+BABIJΓJ
AȦ

− 3
16
AJK

1 AKḂ
2 (ΓIΓJ)ȦḂ + 1

16
AJĊ

2 AḂĊ
3 (ΓIΓJ)ȦḂ

− 1
4
AKḂ

2 BJK(ΓIΓJ)ȦḂ + 1
64
AḂĊ

3 BA(ΓIΓJ)ȦḂΓJ
AĊ

− 1
16
BABJK(ΓIΓJK)ȦA .

(4.22)

Again, in absence of BIJ and BA this equation consistently reduces to the constraint

derived in [8], section 4.4.

4.3 Supersymmetry algebra

We will now study the effect of the gauging on the three-dimensional supersymmetry

algebra. This will allow us to derive the deformed supersymmetry transformation rules

which we will subsequently use to determine the full set of deformed field equations.

For the standard gaugings (in absence of the vector θM), the supersymmetry algebra

in three dimensions has recently been computed for all p-forms [31].

For the bosonic fields eµ
α, V and AM

µ , the supersymmetry transformation rules are

given by

δeµ
α = iǭIγαψµ

I , V−1δV = ΓI
AȦ
χ̄ȦǫI Y A ,

δAµ
M = 2VM

IJ ǭ
Iψµ

J − iΓI
AȦ VM

A ǭ
Iγµχ

Ȧ , (4.23)

and do not change upon gauging.14 The fermionic fields appearing in these transforma-

tions are 16 gravitinos ψµ
I and 128 spin-1/2 fermions χȦ transforming under SO(16).

14Our space-time conventions are a signature (+ − −) for the three-dimensional metric gµν , and

eγµνρ = −iεµνρ for the SO(1, 2) γ-matrices.
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In the presence of a gauging their supersymmetry variations are given (up to higher

order fermionic contributions) by

δǫψ
I
µ = Dµǫ

I + ig
(
AIJ

1 + β1BIJ

)
γµǫ

J ,

δǫχ
Ȧ =

i

2
γµǫIΓI

AȦ
PA

µ + g
(
AIȦ

2 + β2 ΓI
AȦ
BA

)
ǫI , (4.24)

with the tensors A1, A2 and B from (4.7), (4.10) above and some constants β1,2. The

covariant derivative is explicitly given by

Dµǫ
I = (∂µ + 1

4
ω̂µ

ab γab −
1
2
Aµ) ǫI + QIJ

µ ǫ
J . (4.25)

The effect of a gauging with non-vanishing vector θM in these transformations is fur-

thermore reflected by the terms in BIJ and BA which are entirely determined by their

index structure up to the global factors β1,2. The latter are fixed by demanding closure

of the supersymmetry algebra into diffeomorphisms, Lorentz transformations, SO(16)

transformations and gauge transformations:

[δǫ1 , δǫ2 ] = δξ + δω + δh + δΛ . (4.26)

Setting β1 = −1, β2 = 1
4

, one can verify that the supersymmetry transformations

(4.23), (4.24) close on the vielbein eµ
α and on the scalar fields V into the algebra (4.26)

with diffeomorphism and gauge parameter given by

ξµ = −i ǭ[1
Iγµǫ2]

I ,

ΛM = −ξρAM
ρ − 2VM

IJ ǭ[1
Iǫ2]

J . (4.27)

On the vector fields, the commutator of two supersymmetry transformations yields

(again up to higher order fermionic terms)

[δǫ1 , δǫ2 ]A
M
µ = (δξ + δΛ)AM

µ −
4

7
g

(
ZM

PQ VP
IKVQ

JK − θMδIJ

)
ξIJ
µ

− ξν
(
FM

µν + e εµνρ V
M

A Pρ A
)
, (4.28)

with ξIJ
µ = −i ǭ[1

Iγµǫ2]
J and the non-abelian field strength

FM
µν = 2∂[µA

M
ν] + g X[NP]

MAN
µ A

P
ν . (4.29)

In order to arrive at this result, one needs the explicit expression of the intertwining

tensor ZM
PQ which may be obtained after some calculation by plugging (4.7), (4.10)

into (3.47):

ZM
PQ VP

IKVQ
JK = −7

2
(VM

IKA
KJ
1 + VM

JKA
KI
1 ) + 7

2
VM

AΓ
(I

AȦ
A

J)Ȧ
2 (4.30)

+ 7VM
K(IBJ)K − 1

2

(
VM

KLBKL − 15
4
VM

ABA

)
δIJ .
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A priori, the result (4.28) differs by its last two terms from the expected supersymmetry

algebra (4.26). The last term is precisely the duality equation between scalars and

vector fields in three dimensions and signifies the fact that the supersymmetry algebra

closes only modulo the equations of motion [31]. In order to understand the second

term in (4.28) we recall that in the gauged theory the vector fields always appear

contracted as Θ̂MN AM
µ or θMAM

µ . Under this contraction, the second term in (4.28)

consistently vanishes as a result of the quadratic constraints (2.27) and (3.51).15

We have thereby established the full set of deformed supersymmetry transformation

rules for the general gauged theory in three dimensions.

4.4 Equations of motion

We have now all the ingredients to derive the full deformed theory. As the gaugings with

local scaling symmetry do no longer admit an action, one must consider the deformation

directly on the level of the equations of motion. The general gauging is parametrized

by an embedding tensor with components ΘMN , θM which defines covariant derivatives

according to (2.15), (2.18). For non-vanishing θM the gauge group also includes the

generator of the scaling symmetry (1.1). The embedding tensor defines the scalar

field dependent tensors A1,2,3 and B which show up in the modified supersymmetry

transformation rules (4.23), (4.23) derived in the last subsection.

In the computation of the supersymmetry algebra (4.28), we have already met the

first dynamical equations

Θ̂MN

(
Fµν

M + e εµνρ V
M

A Pρ A
)

= 0 ,

θM

(
Fµν

M + e εµνρ V
M

A Pρ A
)

= 0 . (4.31)

Note that this first order duality equation between vector and scalar fields is only

imposed under projection with Θ̂MN and θM, respectively. This implies that not

the full set of bosonic field equations but only a projection thereof can be retrieved

from integrability of this equation. In particular, all contributions from a possible

scalar potential will be invisible in the second order scalar field equations obtained

from (4.31).

In order to find the full set of field equations, we start from the equations of motion

of the gravitino of the ungauged theory [35]

iγρµνDµψ
I
ν −

1

2
γνγρχȦΓI

AȦ
PA

ν = 0 . (4.32)

Upon gauging, derivatives are covariantized, i.e. Dµ → Dµ, PA
µ → PA

µ . Moreover, in

absence of a θM the right hand side of this equation is modified by terms proportional

to the tensors A1 and A2 from (4.7) [8]. It is thus natural to assume that for the full

15As in [31] one may alternatively absorb this term into additional gauge transformations related

to the further introduction of two-form tensor fields.
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gauging the r.h.s. also receives corrections proportional to the tensors BIJ and BA. Up

to factors α1,2, these are entirely determined by their SO(16) structure:

iγρµνDµψ
I
ν −

1

2
γνγρχȦΓI

AȦ
PA

ν = −g
(
AIK

1 + α1BIK

)
γρνψK

ν

+ ig
(
AIȦ

2 + α2 ΓI
AȦ
BA

)
γρχȦ . (4.33)

In order to verify consistency and to determine the factors α1,2 we compute the trans-

formation of this equation under supersymmetry. We will in this calculation neglect

cubic terms in the fermions, i.e. only consider variation of the fermionic fields in (4.33).

The first term gives rise to a contribution involving the commutator of two covariant

derivatives (4.25) which can be simplified using (2.11) to

iγρµν DµDνǫ
I = i

2
γρµν

(
QIJ

µν ǫ
J − 1

2
Fµν ǫ

I + 1
4
R̂µν

ab γab ǫ
I
)

= i
2
γQIJ

µν ǫ
J + i

2

(
(R̂(ρµ)− 1

2
gρµ R̂) γµ − 1

2
Fµνγ

ρµν − 1
2
Fρµγµ

)
ǫI .

(4.34)

with the abelian field strength Fµν = gθMFM
µν and

QIJ
µν ≡ 2∂[µ Q

IJ
ν] + 2QK[I

µ QJ ]K
ν = − 1

2
ΓIJ

ABP
A
µ P

B
ν − gFM

µν Θ̂MNVN
IJ , (4.35)

obtained from integrability of (4.11). Likewise, variation of the second term on the

l.h.s. of (4.33) creates terms bilinear in PA
µ which after some calculation simplify to

i
4
γρµν ΓIJ

ABP
A
µ P

B
ν ǫ

J − 1
2
i
(
PρAPµA − 1

2
gρµ PνAPA

ν

)
γµ ǫ

I . (4.36)

The total variation of the l.h.s. of (4.33) is thus given by the sum of (4.34) and (4.36)

together with the order g contributions from (4.24). Altogether we obtain

δǫ(l.h.s.) = 1
2
i
(
R̂(ρµ) − 1

2
gρµ R̂ − PρAPµA + 1

2
gρµ PνAPA

ν

)
γµǫ

I

− 1
2
igγρµνFM

µν Θ̂MNVN
IJ ǫ

J − 1
4
iγρµνFµνǫ

I − 1
4
iFρµγµǫ

I

− gγρµνDµ

(
(AIJ

1 −BIJ)γνǫ
J
)
− 1

2
gγνγρΓI

AȦ
PA

ν

(
AJȦ

2 + 1
4
ΓJ

BȦ
BB

)
ǫJ .

Using the duality equations (4.31) to replace the various field strengths and the differ-

ential relations (4.12), this variation reduces to

δǫ(l.h.s.) = 1
2
i
(
R̂(ρµ) − 1

2
gρµ R̂ − PρAPµA + 1

2
gρµ PνAPA

ν

)
γµǫ

I

+ gΓ
[I

AȦ
A

J ]Ȧ
2 PρAǫJ − 1

4
gΓIJ

ABBB PρAǫJ + 1
2
gBAP

ρAǫI + 1
4
gγρµBAP

A
µ ǫ

I

− gγρµ
(
Γ

(I

AȦ
A

J)Ȧ
2 + 1

2
ΓIJ

ABBB

)
PA

µ ǫ
J − gγρµν(AIJ

1 −BIJ)γνDµǫ
J

+ 1
2
gγρνΓI

AȦ

(
AJȦ

2 + 1
4
ΓJ

BȦ
BB

)
PA

ν ǫ
J − 1

2
gΓI

AȦ

(
AJȦ

2 + 1
4
ΓJ

BȦ
BB

)
PρAǫJ ,
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where we have also made use of the relation VM
A Θ̂MNVN

IJ = Γ
[I

AȦ
A

J ]Ȧ
2 + 1

4
ΓIJ

ABBB,

obtained from (2.18) with (4.7), (4.10). Collecting terms, we finally arrive at

δǫ(l.h.s.) = 1
2
i
(
R̂(ρµ) − 1

2
gρµ R̂ − PρAPµA + 1

2
gρµ PνAPA

ν

)
γµǫ

I

− 1
8
g
(
4ΓJ

AȦ
AIȦ

2 + 3ΓIJ
ABBB − 3δIJBA

)(
PρA + γρµPA

µ

)
ǫJ

− g(AIJ
1 −BIJ) γρνDνǫ

J . (4.37)

While the first term will be part of the Einstein equations, the remaining terms cannot

be part of any bosonic equations of motion and must therefore be cancelled by the

variation of the r.h.s. of (4.33). As this variation is given by

δǫ(r.h.s.) = −g(AIJ
1 + α1BIJ) γρνDνǫ

J

− 1
2
gΓJ

AȦ

(
AIȦ

2 + α2 ΓI
BȦ
BB

)
γργµ PA

µ ǫ
J + O(g2) , (4.38)

one observes immediately that with α1 = −1, α2 = −3
4
, all terms in order g cancel

against (4.37). It remains to study the order g2 terms in (4.38). Note that by now we

have fixed all free parameters, i.e. the remaining terms pose a non-trivial consistency

check on the supersymmetry of the equations of motion. Applying the order g variation

on the r.h.s. of (4.33), we obtain

δ(g2)
ǫ (r.h.s.) = −2ig2

(
AIK

1 + α1BIK

) (
AKJ

1 −BKJ

)
γρǫJ

+ ig2
(
AIȦ

2 + α2 ΓI
AȦ
BA

) (
AJȦ

2 + 1
4
ΓJ

BȦ
BB

)
γρǫJ . (4.39)

The result can be simplified upon expanding the products and using the bilinear rela-

tions between the tensors A1,2,3, B, derived in section 4.2. We first observe that the

combination 2A1A1 − A2A2 can be replaced using (4.18). Furthermore, by virtue of

(4.14) and (4.15) we can eliminate all the ΓIBAA2 terms and obtain altogether

δ(g2)
ǫ (r.h.s.) = −ig2

(
(2(α1 − α2) + 1

2
)BIKBJK + (2α1 − 3α2 −

1
4
)BIKA

JK
1

+ (α2 + 3
4
)BJKA

IK
1 − 1

16
δIJ(2AKL

1 AKL
1 − AKȦ

2 AKȦ
2 −BABA)

)
γρǫJ .

(4.40)

Remarkably, with the choice α1 = −1, α2 = −3
4

imposed earlier, the first three terms

in this variation vanish and the result is again proportional to δIJ and can thus be

absorbed into the Einstein equations, as required for consistency. Combining (4.40)

with (4.37) and (4.38) we thus finally obtain the modified Einstein equation

R̂(µν) −
1
2
gµν R̂ = PA

µ P
A
ν − 1

2
gµν P

ρAPA
ρ − 1

2
gµν W (φ) , (4.41)

with

W (φ) ≡ 1
4
g2

(
AIȦ

2 AIȦ
2 +BABA − 2AIJ

1 A
IJ
1

)
, (4.42)
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playing the role of an effective (scalar field dependent) cosmological constant in this

equation. Comparing this result to (4.9), we observe that the effect of a gauging

of the scaling symmetry R
+ is a positive contribution to this effective cosmological

constant. The same effect will occur in the corresponding higher dimensional theories.

In standard gravity theories the scalar dependent function W (φ) would correspond to

the scalar potential from which in particular also the scalar masses are derived. This is

different in the presence of an R
+-gauging: as the resulting theory does in general not

admit an action, it is not clear if the mass contributions to the scalar field equations

descend from a scalar potential — and we will see in equation (4.44) below explicitly

that this is not the case. To this end, we note that the variation of (4.42) is given by

δ W (φ) = −1
4
g2ΓI

AȦ

(
3AIJ

1 A
JȦ
2 − AIḂ

2 AȦḂ
3 + 1

8
ΓJ

BȦ
BIJBB

)
δΣA , (4.43)

as can be derived from the differential relations (4.12) upon replacing PA
µ by δΣA.

By calculating the supersymmetry variation of the gravitino field equation we have

thus fixed all unknown coefficients in this equation and obtained the modified Einstein

equation up to its fermionic contributions. The latter may in principle be obtained by

repeating the calculation including all higher order fermionic terms. The remaining set

of equations of motion are the Dirac equation for the spin-1/2 fields and the scalar field

equation. These may be determined in complete analogy to the calculation presented.

Rather than going once more through the technical details, we just present the resulting

equations:

γµDµχ
Ȧ = i

2
γµγνψI

µΓI
AȦ

PA
ν + g

(
AIȦ

2 + 1
4
ΓI

AȦ
BA

)
γµψI

µ − ig
(
AȦḂ

3 + 1
4
BIJΓIJ

ȦḂ

)
χḂ ,

DµPA
µ = 1

8
g2 ΓI

AȦ

(
3AIJ

1 A
JȦ
2 − AȦḂ

3 AIḂ
2 + 2BIJA

JȦ
2 − 2 ΓJ

BȦ
BIJBB

)
. (4.44)

The quadratic constraint (4.22) crucially enters in the derivation of these equations. We

have thus obtained the full set of deformed equations of motion for the general gauged

maximal theory in three dimensions to lowest order in the fermions. Comparing (4.44)

to (4.43) one observes that the scalar mass terms (the r.h.s. of (4.44)) for non-vanishing

BA do not descend from the potential W (φ). This is another manifestation of the fact

that the resulting theory does not admit an action.

5 Conclusions and Outlook

In this paper we have constructed the gaugings of maximal supergravity in which the

trombone symmetry (1.1) becomes part of the local gauge symmetries. We have set

up the algebraic formalism to describe these theories as an extension of the standard

gaugings. More precisely, the gaugings are parametrized by a constant embedding ten-

sor Θ̂M
α̂ which has irreducible components (ΘM

α, θM). In case the second component

is zero, θM = 0, these theories reduce to the standard gaugings with gauge group inside
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the duality group G. Non-vanishing θM on the other hand amounts to the inclusion of

the scaling symmetry (1.1) into the gauge group.

The explicit form of the gauge group generators is given in (2.18) where the value

of ζ has been determined in section 3 for the maximal supergravities in various di-

mensions. As a result we find that gauging of the scaling symmetry (1.1) necessitates

simultaneous gauging of certain generators within the duality group G. We have worked

out the algebraic consistency constraints bilinear in the components (ΘM
α, θM). For

the particular class of theories with ΘM
α = 0 (which thus correspond to a “minimal”

gauging of the trombone symmetry), we have explicitly constructed the general solution

to these consistency constraints. Interestingly, this solution relies on a generalization

of the “pure spinor” structure of SO(10) to the higher-rank exceptional groups.

Finally, we have for the example of the three-dimensional theory worked out the

deformed supersymmetry algebra and the full set of equations of motion. In particular,

we have shown that gaugings involving the trombone symmetry are compatible with

supersymmetry provided the components of the embedding tensor satisfy the aforemen-

tioned algebraic consistency constraints. Since these theories in general do no longer

admit an action they must be constructed on the level of the equations of motion which

are uniquely determined by supersymmetry.

As a generic feature of a gauging of the trombone symmetry we have found a

positive contribution to the cosmological constant. The same shows up in the cor-

responding higher-dimensional theories. The existence of a ten-dimensional de Sitter

vacuum in the theory of [13, 14] has been investigated in [17]. From this point of

view it will be interesting to analyze the general structure of the equations of motion

and their solutions for the theories with “minimal” gauging of the trombone symmetry

given in this paper. Another interesting question is about the structure of theories for

which both components ΘM
α and θM are non-vanishing. The presence of additional

deformation parameters θM as compared to the standard gaugings (which moreover

give rise to positive contributions in the cosmological constant) may prove useful in

the search for stable de Sitter vacua in N > 1 supersymmetric theories which to date

seem extremely rare [37, 38]. Of course, a higher-dimensional interpretation for these

additional deformation parameters would be highly desirable.

Let us finally discuss another intriguing aspect about the theories we have con-

structed. It is well known that the representation in which the embedding tensor

transforms under G in the standard gaugings (column ‘Θ’ of table 1) is the represen-

tation dual to the totally antisymmetric (D− 1)-forms of the theory as predicted from

the underlying very extended Kac-Moody algebra E11 [39, 40]. More precisely, the

embedding tensor can be identified with the integration constants which arise upon

solving the non-dynamical field equations for the (D − 1)-forms [31]. In contrast, the

additional gaugings we have constructed allow for additional components θM of the

embedding tensor transforming in the representation dual to the vector fields. For

these constants there is no dual (D − 1)-form in the field content of the theories, i.e.

an E11 origin of these theories is a priori unclear. However, following the discussion in
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the introduction, the trombone symmetries in the various dimensions seem intimately

linked to the duality groups G, such that one would expect that all these gaugings can

be cast into a common framework. Indeed, some observations hint in this direction:

Inspecting a little closer the full field content as predicted by E11, as given in the tables

of [40], one observes that there does exist an object in the correct G representation with

D−1 space-time indices which however is not an antisymmetric form but a tensor with

mixed symmetry CM
µ,[ν1ν2...,νD−2]. Like the (D − 1)-forms, such a field does not possess

propagating degrees of freedom (see e.g. [41]) and can consistently be set to zero. It is

a highly intriguing question if the presence of such tensors with mixed symmetry could

in some way trigger the deformations of the presented type.

In fact, the pattern continues: the antisymmetric D-forms in standard gaugings

turn out to transform under G in the representation which is dual to the quadratic

constraint on the embedding tensor [31]. As we have shown in this paper, the pres-

ence of the additional components θM gives rise to additional quadratic constraints,

cf. equations (3.13), (3.26), (3.38), (3.52), for the various dimensions. Comparing these

additional representations to the tables of [40] we find again a matching of representa-

tions with tensors carrying D space-time indices with mixed symmetry structure!

After reduction to D = 2 dimensions, all these tensors embed into representa-

tions of the affine symmetry algebra E9(9). Table 1 shows that remarkably under this

algebra there is no longer a difference between the theories triggered by the new pa-

rameters θ and the standard gaugings: both Θ and θ combine into a single irreducible

(infinite-dimensional) representation of E9(9) [25], suggesting that also under the bigger

algebras E10 and E11 there should be a uniform and common structure underlying all

the gaugings.

Along these lines, let us recall that as we have seen throughout the construction,

gaugings that involve a local trombone symmetry do no longer admit an action and

have thus been constructed on the level of the equations of motion. This is by no

means surprising since they involve the gauging of a symmetry that was not off-shell

realized. However, a similar fate applies to part of the duality groups G in even space-

time dimensions. E.g. in D = 4 dimensions (depending on the electric frame chosen)

only an SL(8) subgroup of G = E7(7) is realized as a symmetry of the action while

the full E7(7) can only be realized on the combined set of equations of motion and

Bianchi identities [2]. Nevertheless, in this theory it is possible to gauge subgroups

within the full E7(7) on the level of the action — upon introducing further higher-rank

p-forms [42]. The same pattern extends to all even dimensions [24, 25, 26]. It would be

very exciting (and further complete the presumed E11 picture underlying the theory)

if also the theories presented in this paper could be lifted to an action precisely by

introducing precisely the additional higher-rank tensors of mixed symmetry mentioned

above. In this respect we mention the recent construction of a parent action for the

dual graviton — the simplest of all tensors with mixed symmetry — which is based

on Stückelberg-type couplings to higher-rank tensor fields in a way reminiscent of the

structures appearing in gauged supergravity [43].
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Appendix

A Algebra conventions

A.1 E8(8) conventions.

The algebra e8(8) is generated by 248 generators tM

[ tM, tN ] = fMN
K tK , (A.1)

which may be split into 120 compact ones XIJ = −XJI], corresponding to the maximal

compact subalgeba so(16) of the algebra, and 128 non-compact ones Y A, with SO(16)

vector indices I, J, ... = 1, ..., 16, and spinor indices A,B, ... = 1, ..., 128. Dotted indices

Ȧ, Ḃ, ... label the conjugate SO(16) spinor representation. An extra factor of 1
2

always

appears when summing over antisymmetrized index pairs [IJ ]. E8(8) indices are raised

and lowered by means of the Cartan-Killing metric

ηMN =
1

60
Tr tMtN . (A.2)

In the SO(16) basis, the components of the Cartan-Killing form are ηAB = δAB and

ηIJ,KL = −2δIJ
KL and the completely antisymmetric structure constants of the algebra

are given by

f IJ, KL, MN = −8 δ[I[Kδ
L]J ]
MN , f IJ, A, B = −

1

2
ΓIJ

AB . (A.3)

An important object is the group-valued scalar matrix VM
M = {VM

IJ ,V
M

A}. It

satisfies

ηMN VM
IJV

N
KL = −2δIJ

KL , ηMN VM
AV

N
B = δAB , (A.4)

which allows to express its inverse explicitly as

VM
M =

{
VIJ

M = −VM
IJ ≡ ηMNVN IJ

VA
M = VM

A ≡ ηMNVNA . (A.5)

The fact that the structure constants (A.3) are E8(8) invariant tensors and thus invariant

under contraction with VM
M is reflected by equations (4.3).
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A.2 E7(7) conventions and identities.

The algeba e7(7) is generated by 133 generators tα

[tα, tβ] = fαβ
γ tγ . (A.6)

Its fundamental representation has dimension 56; indices m,n = 1, . . . , 56, can be

raised and lowered with the symplectic matrix Ωmn where we use north-west south-

east conventions

Xm = ΩmnXn , Xm = XnΩnm . (A.7)

We raise and lower the adjoint indices α, β = 1, . . . 133, with the invariant metric

καβ = Tr(tαtβ) proportional to the Cartan-Killing form. It is related to the structure

constants fαβ
γ as

fαγ
δfβδ

γ = 3κγδ . (A.8)

By performing various contractions, one can prove the non-trivial relation (3.31)

between E7(7) generators

(tα)m
k(tα)n

l = 1
24
δk
mδ

l
n + 1

12
δl
mδ

k
n + (tα)mn (tα)kl − 1

24
Ωmn Ωkl . (A.9)

E.g., contracting the indices k and n, we find in particular

8 (tα)m
k(tα)k

l = 19 δl
m . (A.10)

We will need some more identities for this algebra. The first one takes the form

9(tα)m
k(tβ)kn(tα)(pq(tβ)rs) + 2(tα)[m

(r
(tα)

pq
δ

s)
n] = 1

8
Ωmn(tα)(pq(tα)rs) . (A.11)

Note that this identity is antisymmetric in [mn] and totally symmetric in (pqrs). The

existence of such a relation thus follows from the fact that there are only two indepen-

dent invariant tensors with this index structure (only two singlets in in the correspond-

ingly symmetrized tensor product of fundamental representations). The coefficients

can be determined by performing various contractions.

In a similar way we obtain another important relation which is totally symmetric

in indices (klmnpq):

(tβ)(kl(tβ)mn(tα)pq) + 8(tα)rs(tβ)r
(k(tγ)s

l(tβ)mn(tγ)
pq) = 0 . (A.12)

A.3 E8(8) algebra in the E7(7) × SL(2) basis

Under its maximal subgroup E7(7) × SL(2), the adjoint representation of E8(8) breaks

as

248 −→ (133,1) ⊕ (56,2) ⊕ (1,3) . (A.13)
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Accordingly, we split the generators tM into tα, tm,a and t(ab), where m and α denote

the fundamental and the adjoint representation of E7(7), respectively, while a, b denote

the doublet of SL(2) In these generators, the algebra takes the form

[tα, tβ] = fαβ
δ tδ , [t(ab), t(cd)] = 2δe

(a ǫb)(c δ
f
d) t(ef) ,

[tm, a, t(bc)] = ǫa(b tm, c) , [tm, a, tα] = (tα)m
n tn, a ,

[tm, a, tn, b] = 1
12

Ωmn t(ab) + ǫab (tα)mn tα . (A.14)

Here, we use the E7(7)-invariant tensors introduced in section A.2 and the SL(2)-

invariant ǫ-symbol ǫab.

B Solution of the E8(8) constraint (3.53)

A particular class of gaugings we have studied in this paper are those theories which

are triggered by a single constant vector θM . In three dimensions, this vector is subject

to the quadratic constraint (3.53)
(
(P1)MN

KL + (P3875)MN
KL

)
θK θL

!
≡ 0 . (B.1)

In this appendix we will analyze in detail this quadratic constraint and derive its general

solution given in (3.55) in the main text. Explicitly, the constraint (B.1) reads

θMθM = 0 , θMθN − 1
2
fQP

MfNQ
L θPθL = 0 . (B.2)

B.1 The constraint under E7(7) × SL(2)

In order to solve the constraint (B.1), we employ the same technique that allowed to

explicitly solve the pure spinor constraint (3.14) in D = 6 and its analogues (3.27),

(3.39) in D = 5 and D = 4, respectively. It is useful first break E8(8) under its subgroup

E7(7) × SL(2) as given explicitly in section A.3 above. The adjoint representation

breaks according to (A.13) such that we can parametrize the vector θM by components

{θα, θm,a, θ(ab)}. The constraint (B.1) under this subgroup breaks into

1 ⊕ 3875 −→ 2 · (1, 1) ⊕ (1539,1) ⊕ (56,2) ⊕ (912,2) ⊕ (133, 3) . (B.3)

As a first step we will express this constraint explicitly in terms of the E7(7) × SL(2)

components {θα, θm,a, θ(ab)}. To this end, we start from the general E7(7)×SL(2) singlet

bilinear in the components of θM

Φσ,τ ≡ θ(cd) θ(cd) + σ ǫcd Ωkp θk, c θp, d + τ θα θ
α , (B.4)

labeled by two relative coefficients σ, τ . With respect to E8(8), the general bilinear

expression in θM transforms in the representation

(248 ⊗ 248)sym = 1 ⊕ 3875 ⊕ 27000 . (B.5)
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In order to identify the constraint (B.1) we seek within the three linearly indepen-

dent singlets (B.4) the two combinations corresponding to the r.h.s. of (B.3), i.e. the

two singlets descending from the E8(8) representations 1 and 3875 — while the third

combination corresponds to the singlet descending from the 27000.

To this end we compute the action of an E8(8) generator tm, a on Φσ,τ . As θM
transforms in the adjoint representation of E8(8), this action can directly be deduced

from (A.14). The result is given by

tm,a · Φσ,τ = 1
6

(σ − 12) ǫcd θm, c θ(ad) + 2 (σ + τ) (tα)m
n θn, a θα . (B.6)

This shows that Φ12,−12 is an E8(8) singlet, i.e. we have identified the singlet descending

from the 1 of E8(8). Applying another generator tn, b on (B.6) and contracting all free

indices gives rise to

Ωnmǫab tn, b · tm, a · Φσ,τ = 7
9
(12 − σ) θ(ab) θ(ab) + 4 (σ + τ)θαθα

−1
4
(12 − 20σ − 19τ) Ωmnǫab θm, a θn, b . (B.7)

Note that the operator C ≡ Ωnmǫab tn, btm, a acting on Φσ,τ is proportional to the

quadratic Casimir of E8(8). Diagonalizing its action (B.7) we find

C · Φ12,−12 = 0 , C · Φ 12

7
, 12

7

= 8 Φ 12

7
, 12

7

, C · Φ− 9

7
,− 108

133

=
31

3
Φ− 9

7
,− 108

133

, (B.8)

and can thereby identify the singlets Φ12,−12 and Φ 12

7
, 12

7

descending from the 1 and the

3875 of E8(8), respectively.

The full constraint (B.1) can thus be obtained as the E8(8) orbit of the second

singlet. The action of two E8(8) generators on Φ 12

7
, 12

7

is given by

7 tn, b · tm, a · Φ 12

7
, 12

7

= −Ωnm ǫcd θ(bc) θ(ad) + (tα)nm θαθ(ab) (B.9)

− 6 ǫba ǫ
cd θm, c θn,d − 6 θm, b θn, a

+ 48 ǫba (tα)m
k (tβ)kn θβ θα + 48 (tα)m

k (tβ)n
p θk, a θp, b .

By various contractions one finds from this equation and from (B.6) the different parts

of (B.3). As a result, we give the constraint (B.1) explicitly in terms of the components

{θα, θm,a, θ(ab)}:

θ(cd) θ(cd) + 12 ǫcd Ωkp θk, c θp, d − 12 θα θ
α !

≡ 0 , (1,1)(1)

7θ(cd) θ(cd) + 12 ǫcd Ωkp θk, c θp, d + 12 θα θ
α !

≡ 0 , (1,1)(3875)

ǫcd θm, c θ(ad) − 4(tα)m
n θn, a θα

!
≡ 0 , (56,2)

θα θ(ab) + 6 (tα)mn θm, a θn, b
!
≡ 0 , (133,3)

ǫab θ[m, a θn], b − 6 (tα)[m
k (tβ)n]k θα θβ − trace

!
≡ 0 . (1539,1) (B.10)

We have left out the constraint in the (912,2) which is obtained by the action of

three E8(8) generators on Φ 12

7
, 12

7

. As we shall see in the next section, this part of the

constraint is automatically satisfied and does not lead to new constraints.
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B.2 Solving the constraint

For the explicit solution of (B.10), we further break these equations under E7(7) ×

R
+. According to the decomposition (3.54), we break the vector θM into components

(η̃, η̃m, ξ, ξα, ηm, η) defined as

η̃ ≡ θ(++) , ξ ≡ θ(+−) , η ≡ θ(−−) ,

η̃m ≡ θm, + , ηm ≡ θm,− , ξα ≡ θα , (B.11)

where we have broken up the SL(2) components introduced in the last subsection. In

terms of these components, the full set of constraints (B.10) takes the form

η η̃ − ξ2 + 12 Ωmn η̃m ηn − 6 ξα ξ
α !

≡ 0 , (10
(1))

7η η̃ − 7ξ2 + 12 Ωmn η̃m ηn + 6 ξα ξ
α !

≡ 0 , (10
(3875))

η̃ ηm − ξη̃m + 4 (tα)m
n ξα η̃n

!
≡ 0 , (56+1)

η η̃m − ξηm − 4 (tα)m
n ξα ηn

!
≡ 0 , (56−1)

ξα η̃ + 6 (tα)mn η̃m η̃n
!
≡ 0 , (133+2)

ξα ξ + 6 (tα)mn η̃m ηn
!
≡ 0 , (1330)

ξα η + 6 (tα)mn ηm ηn
!
≡ 0 , (133−2)

η̃[m ηn] −
1
56

ΩmnΩkpη̃kηp − 3(tα)[m
k (tβ)n]kξβξα + 3

56
Ωmnξ

αξα
!
≡ 0 , (15390)

(B.12)

where again we have left out the two equations in the 912±1 which we will justify

shortly.

In analogy to the higher-dimensional cases, we start from a given set of 57 param-

eters η, ηm and try to determine the remaining ones by virtue of (B.12). Equation

(133−2) directly determines ξα

ξα = −
6

η
(tα)mn ηm ηn . (B.13)

With (56−1), we find for η̃m

η̃m =
ξ

η
ηm −

24

η2
(tα)m

n (tα)pq ηn ηp ηq . (B.14)

Equation (1330) is then automatically satisfied. Its verification requires the vanish-

ing of the term quartic in ηm which simply follows from the absence of an adjoint

representation in the totally symmetric tensor product (56⊗4)sym.

Continuing with the 133+2, we obtain after using (B.13), (B.14)

η̃ ξα = −
6

η2
(tα)mn ηm ηn ξ

2 −
96

η2
(tα)mn (tβ)m

k (tγ)n
l ηk ηl ξβ ξγ . (B.15)

36



The last term can be simplified by means of the identity (A.12). Multiplying the latter

with six ηm’s, we find

(tα)mn (tβ)m
k (tγ)n

l ηk ηl ξβ ξγ =
η

48
ξβ ξ

β ξα .

Equation (B.15) can be solved by setting

η̃ =
ξ2

η
−

2

η
ξα ξ

α . (B.16)

We have thus determined all unknown parameters and verified the solution (3.55).

It is straightforward to check, that the two singlets in (B.12) are automatically satisfied

with (B.13), (B.14), (B.16). Furthermore, the 56+1 reduces to

0 =
2

η

(
ηm ξ

β ξβ − 8 (tα)m
n (tβ)n

k ηk ξα ξβ

)
, (B.17)

which can be verified upon multiplying the identity (A.11) with five ηm’s. Finally, the

15390 reduces to

0 = −
12

η2

(
2η[n(tα)m]

p(tα)qr ηpηqηr + 9(tα)m
k(tβ)nk(tβ)pq(tα)rs ηpηqηrηs

)

− trace , (B.18)

which is another consequence of (A.11).

We have thus verified, that the solution (B.13), (B.14), (B.16) satisfies all constraint

equations (B.12). In principle, there are two more equations to verify which transform

in the 912±1. However, with the given solution all constraint equations translate into

relations among a product of ηm’s transforming in the fundamental 56. Since there is

no 912 representation in the corresponding completely symmetrized tensor products

of the fundamental 56, every such constraint is automatically satisfied. This finishes

the proof of (3.55).
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