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The orientation fluctuations of the director of a liquid crystal(LC) are measured after a quench
near the Fréedericksz transition, which is a second order transition driven by an electric field. We
report experimental evidence that, because of the critical slowing down, the LC presents, after the
quench, several properties of an aging system, such as power law scaling versus time of correlation
and response functions. During this slow relaxation, a well defined effective temperature, much
larger than the heat bath temperature, can be measured using the fluctuation dissipation relation.
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The characterization of the thermodynamic proper-
ties of out of equilibrium and of slow relaxing systems
is an important problem of great current interest which
is studied both theoretically and experimentally. One
of the main questions which has been investigated in
the recent years is how a temperature can be defined
for these out of equilibrium systems, mainly in the con-
text of aging glasses, whose relaxation is nonexponential
and extremely slow. Indeed when a glass is quenched
from above to below the glass transition temperature its
physical properties depend on the waiting time tw spent
after the quench at the low temperature T . For these
materials it has been proposed that a ”good definition”
(in the thermodynamic sense) of an effective tempera-
ture, Teff can be obtained by the so called fluctuation
dissipation relation (FDR) which is an extension of the
fluctuation dissipation theorem (FDT) for an out of equi-
librium system [1]. This Teff is a function of the age of
the system and of the observational time scale. To be
more precise, let us consider an observable θ, its conju-
gated variable Γ and the integrated response, χ(t, tw), of
θ(t), at time t, to a Heaviside perturbation given to Γ at
a time tw < t. This integrated response is related to the
correlation function C(t, tw) of the thermal fluctuations
δθ of θ by the FDR in the following way:

χ(t, tw) =
1

kB Teff(t, tw)
[C(t, t) − C(t, tw)] (1)

where kB is the Boltzmann constant. Of course at equi-
librium Teff = T and both χ(t, tw) and C(t, tw) depend
only on t − tw. For several models of aging dynamics it
has been shown that the Teff defined from eq. 1 is char-
acterized by only two temperatures and a characteristic
time, t∗, such that for (t−tw) > t∗ then Teff > T whereas
for (t− tw) < t∗, Teff = T [1, 2]. However in experiments
the results are less clear and the relevance for real ma-
terials of the Teff as defined by eq. 1 is still an open
question, which merits to be investigated [3, 4, 5]. The
point is that in general it is very difficult to find simple
theoretical models which can be directly compared with
experiments. The recent theoretical works on aging at

critical point are very useful in this sense. Indeed it has
been recently shown that a system which is quenched at
the critical point of a second order phase transition shares
several properties observed in the relaxation dynamics of
an aging glass [6, 7, 8]. For this reason this kind of behav-
ior has been named ”aging at critical point”. The theo-
retical predictions on this critical systems are very useful
because they can be a real benchmark to compare theory
with experiment. The purpose of this letter is to report
on experimental results on a critical system, which is, on
a first approximation, described by a Ginzburg-Landau
equation. Thus many results can be directly compared to
theory but at the same time as all new experimental mea-
surements they open new theoretical perspectives. From
a general point of view the main result of our investiga-
tion is that after a quench at the critical point the system
presents a violation of the fluctuation dissipation theorem
and that for long correlation times a well defined Teff can
be defined from eq. 1.

The system of our interest is the Fréedericksz transi-
tion of a liquid crystal (LC), submitted to an electric

field ~E [9, 10]. In this system, we measure the vari-
able ζ which is the spatially averaged alignment of the
LC molecules, whose local direction of alignment is de-
fined by the unit vector ~n. Let us first recall the general
properties of the Fréedericksz transition. The system un-
der consideration is a LC confined between two parallel
glass plates at a distance L = 9 µm. The inner sur-
faces of the confining plates have transparent Indium-
Tin-Oxyde (ITO) electrodes, used to apply the electric
field. Furthermore the plate surfaces, are coated by a
thin layer of polymer mechanically rubbed in one direc-
tion. This surface treatment causes the alignment of the
LC molecules in a unique direction parallel to the sur-
face (planar alignment),i.e. all the molecules have the
same director parallel to x-axis. The cell is next filled by
a LC having a positive dielectric anisotropy (p-pentyl-
cyanobiphenyl, 5CB, produced by Merck). The LC is
submitted to an electric field perpendicular to the plates,
by applying a voltage V between the ITO electrodes, i.e.

E = V/L. In order to avoid electrodynamics effects of the



2

motion of the ions invariably present in the liquid crys-
tal, we apply an AC voltage at a frequency fV = 1 kHz
(V =

√
2V0 cos(2πfV t)) [9, 10]. More details on the ex-

perimental set-up can be found in ref.[11, 12]. When V0

exceeds a threshold value Vc the planar state becomes
unstable and the LC molecules, except those anchored to
the glass surfaces, try to align parallel to the field, i.e.

the director, away from the confining plates, acquires a
component parallel to the applied electric field (z-axis).
This is the Fréedericksz transition whose properties are
those of a second order phase transition [9, 10]. For V0

close to Vc the motion of the director is characterized by
its angular displacement θ in xz-plane (θ is the angle be-
tween the x axis and ~n), whose space-time dependence
has the following form : θ = θ0(x, y, t) sin

(

πz
L

)

[9, 10, 13].
If θ0 remains small then its dynamics is described by a
Ginzburg-Landau equation and one expects mean-field
critical phenomena [9, 10, 13], in which θ0 is the order

parameter and ǫ =
V 2

0

V 2
c

− 1 is the reduced control param-

eter. We define the variable ζ as the spatially averaged
alignment of the LC molecules and more precisely :

ζ =
2

L

1

A

∫∫

A

dxdy

∫ L

0

(1 − n2
x)dz (2)

where A = πD2
0/4 is the area, in the (x, y) plane, of the

measuring region of diameter D0, which is about 2 mm
in our case. If θ0 remains small, ζ takes a simple form
in terms of θ0 (nx = cos(θ)) : ζ = 1/A

∫∫

A
dxdyθ20 . The

variable ζ is measured using the anisotropic properties of
the LC, i.e. the cell is a birefringent plate whose local
optical axis is parallel to ~n. This optical anisotropy can
be precisely estimated by measuring the phase shift Φ be-
tween two linearly polarized beams which cross the cell,
one polarized along x-axis (ordinary ray) and the other
along the y -axis (extraordinary ray). It can be shown
that ζ = a+bΦ where a and b are known coefficients (see
ref. [11, 12] for details). The phase Φ, measured by an in-
terferometer [14], is acquired with a resolution of 24 bits
at a sampling rate of 16384 Hz and then low pass filtered
at 500 Hz in order to suppress the AC voltage at fV .
The instrumental noise of the apparatus is three orders
of magnitude smaller than the amplitude δΦ of the fluc-
tuations of Φ induced by the thermal fluctuations of ζ. It
has been shown that ζ is characterized by a mean value
〈ζ〉 ∝ ǫ, by a divergent relaxation time τ = τo/ǫ and by
fluctuations which have a Lorentzian spectrum [12, 15].

In this letter, we consider the dynamic of ζ as a func-
tion of time after a quench from ǫ = ǫ1 > 0.3 to
ǫ = ǫ0 << 0.1. The fact that the control parameter is the
electric field allows one to have extremely fast quenches,
typically 2 ms. Furthermore the typical relaxation time
τ of ζ is about 10s, at ǫ0 ≃ 0. This means that we can
follow the out of equilibrium dynamics for about 4 order
of magnitude in time. This relaxation dynamics, which
lasts only a few seconds, allows us to repeat the experi-
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FIG. 1: a) Logarithm of the mean relaxation of the system,
log〈ζ(t)〉, as a function of time after a quench (◦) from ǫ1 = 0.3
to ǫ0 = 0.01. The continuous line represent the theoretical
response based on eq. 3 with 〈ζ〉 ≃ ψ2

0 . Dashed line is an
exponential relaxation. b) Logarithm of the mean relaxation
of the system as a function of the logarithm of time. The
continuous line represent the theoretical relaxation.

ment several times and to perform an ensemble average
(indicated by < . >) of the measured quantities. We de-
scribe here a specific case of a quench from ǫ1 = 0.3 to
ǫ0 = 0.01 (more details for other quenches will be given in
a longer reports). The typical mean value < ζ(t) > of ζ
after this quench is plotted in fig. 1 as a function of time t
(t = 0 is the time when the quench has been performed).
This mean dynamics of ζ is obtained by repeating the
same quench several times (7000 times). The behavior
of < ζ > remains constant for a certain time and then
slowly relaxes (see fig. 1b). Above a characteristic time
which is about 0.2 s in our case, the relaxation becomes
exponential. This behavior can be modelled by the equa-
tion of momentum [13], which neglecting the dependence
on (x, y) of θ0 is:

γAL
2

dθ0
dt

= B
[

2 ǫ θ0 − (κ+ ǫ+ 1) θ30
]

+ η (3)

where γ is a viscosity coefficient, B = Aπ2K1/4L, κ =
(K3 −K1)/K1 and K1, K2 and K3 are the three elastic
constants of the LC. η is a thermal noise delta-correlated
in time, such that: 〈η(t)〉 = 0 and 〈η(t1)η(t2)〉 =
kBTγALδ(t2 − t1). We decompose the dynamics of θ0
in a mean dynamics after the quench and its fluctua-
tions, i.e. θ0 = ψ0(t) + δθ0, where ψ0(t) = 〈θ0(t)〉.
The dynamics of Ψ0 obtained from the analytical solu-
tion of eq.3 is shown in fig.1 as a continuous line, which
perfectly agrees with the measured dynamics. The ex-
perimental data and the solution of eq.3 have two well
distinguish limits : for t ≫ τ ≡ τ0/(2ǫ), the relax-
ation is exponential (τ ≃ 0.22s at ǫ0 = 0.01) ; for
t ≪ τ ≡ τ0/(2ǫ), the dynamics of ψ0 is almost algebric

: ψ0(t) =
[

(κ+ 1)
(

t
τ0

+ 1
(κ+1)ψ0(0)

)]−1/2

. This behav-

ior is identical to the relaxation at the critical point [7].
Thus, the system should present aging phenomena in the
limit t≪ τ .

In our experimental system, we want to measure both
the correlation function of the thermal fluctuations δθ0
of θ0, Cθ(t, tw) ≡ 〈δθ0(t)δθ0(tw)〉, and the integrated re-
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FIG. 2: a) Correlations functions Cθ(t, tw) as a function of
t − tw for different fixed t = 0.2 (◦), 0.26 (�), 0.28 (⋄) and
0.31 (×) after the same quench of fig. 1. Inset: The correlation
functions have a simple master curve obtained by plotting
Cθ(t, tw)/Cθ(t, tw) versus (t− tw)/t.

sponse function χ(t, tw) of θ0, at time t to a perturbation,
given at time tw, to its conjugated external field, with
tw < t. In equilibrium χ(t, tw) and Cθ(t, tw) depends
only on the difference t − tw which is not the case here
because the system is out of equilibrium.

To compute χ(t, tw) and Cθ(t, tw) in our experiment
one has to consider that the measured variable is ζ. As
the area of the measuring beam is much larger than the
correlation length, the global variable measured by the
interferometer is ζ = 1

A

∫∫

θ20dxdy ≃ ψ2
0 + 2ψ0δθ0. Thus

the mean value of ζ is 〈ζ(t)〉 = ψ2
0(t) and the fluctua-

tions of δζ of ζ can be related to the fluctuations of θ0
: δζ(t) = 2ψ0(t)δθ0(t). The autocorrelation function of
θ0 is obtained using the values of ψ0(t) and ψ0(tw), i.e.

Cθ(t, tw) = 〈ζ(t)ζ(tw)〉/(4ψ0(t)ψ0(tw)). The Cθ(t, tw),
measured at various fixed t, are plotted as function of
t − tw in fig.2. We see that a simple scaling of the cor-
relation function can be obtained by plotting them as a
function of (t − tw)/t. Notice that such a kind of scal-
ing is typical for aging systems( see for example [2, 16])
Thus in agreement with theoretical predictions our sys-
tem presents aging properties during the slow relaxation
after a quench. The response function is obtained by ap-
plying a small change of the voltage V0, which modifies
the control parameter, i.e. ǫ = ǫ0 + δǫ. First, we have to
define the external torque conjugated to θ0. We separate
θ0(t) into the average part ψ0(t), solution of eq. 3 and a
deviation ∆(t) due to δǫ : θ0(t) = ψ0(t) + ∆(t). If the
response is linear, the average value of ∆ is proportional
to δǫ. In this limit, the equation of momentum can be
rewritten :

γAL
2

d∆

dt
= B

[

2 ǫ0 − (κ+ ǫ0 + 1)3ψ2
0

]

∆ +

+ 2 B δǫ ψ0(t)

(

1 − ψ2
0(t)

2

)

+ η +O(∆2) (4)

The external torque, and so the conjugated variable to
θ0, is equal to :

Γext = 2B δǫ ψ0(t)

(

1 − ψ0(t)
2

2

)

(5)
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FIG. 3: Parametric plot integrated response versus correla-
tion for tw = 0.19 s (◦), 0.31 s (�), 0.37 s (⋄), 0.43 s (+),
0.56 s (×). Continuous line are linear fits. Dashed line rep-
resents the Fluctuation-Dissipation Theorem at equilibrium.
Inset : value of the effective temperature, obtained by a linear
fit of the FD plots, as a function of the age of the system.

We define the linear response function
R(t, tw) =< ∆ > /Γext of θ0 to Γext using a Dirac delta
function for δǫ at an instant tw, i.e. δǫ(t) ∝ δ(t− tw). In
the experiment the Dirac delta function is approximated
by a triangular function of amplitude δǫ0 and duration
τr ≃ 2ms << τ , specifically: δǫ = δǫ0(1 − 2|t − tw|/τr
for |t − tw| < τr/2 and δǫ = 0 for |t − tw| > τr/2,
with τr/τ ≃ 10−4. The measured quantity is the
response Rζ,δǫ =< ∆ζ > /δǫ, of ζ(t) to δǫ(tw). As
∆ζ(t) = 2ψ0(t)∆ it follows that the linear response of θ0
to Γext is:

R(t, tw) =
Rζ,δǫ(t, tw)

4B ψ0(tw) ψ0(t)
(

1 − ψ0(tw)2

2

) (6)

For getting the integrated response function χ, we ap-
ply the perturbation at different times after the quench.
Then we measure in the experiment Rζ,δǫ and the value
of ψ0(t) as a function of time. These measured values
are replaced in eq. 6 to compute R(t, tw). The inte-
grated response χ is obtained by a numerical integration
of R(t, tw): χ(t, tw) =

∫ tw
t
R(t, t′)dt′ The integrated re-

sponse is related to the correlation by the FDR relations
(see eq. 1). We study the FDR during an aging process
by plotting the integrated response χ as a function of Cθ.
Due to the non-equilibrium process, it is not equivalent
if the parameter is the waiting time tw or the observation
time t.

First, tw is kept fixed. We can see in fig. 3 the FD
plot for four typical values of the age of the system tw.
χ is a linear function of Cθ as stated by eq. 1 with a
slope 1/Teff When tw increases, the slope Teff tends to
the temperature of the room T as can be seen in fig. 3.
The Fluctuation-Dissipation Theorem will be satisfied for
large tw. In the inset of figure 3, we have plotted the value
of Teff as a function of time tw. We can see that Teff

decreases with tw and tends to the ambient temperature
when tw tends to infinity.
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FIG. 4: a) Parametric plot integrated response versus corre-
lation for t = 0.4 s (◦), 0.5 s (�), 0.6 s (⋄) and 0.7 s (+).
Continuous line are linear fits. Dark line represents the FDT
at equilibrium. Inset : the characteristic time t∗ is plotted as
a function of t.

In a second time, t is kept constant, which is the orig-
inal way proposed by Cugliandolo and Kurchan and in
theoretical papers on the aging at critical point [1, 7].
The FDR plots can be seen in figure 4 for four char-
acteristics value of t. When tw is close to t (when the
correlation function is close to 1), the FDT is satisfied.
Below a value, C∗, which depends on t, the Fluctuation
Dissipation Theorem is not satisfied. The integrated lin-
ear response function remains linear in C but the slope
is almost three times the value at equilibrium. More pre-
cisely, if we define t∗ the characteristic time associated to
the value of C∗. For C < C∗, R remains linear in C and
the slope is not related to the thermal bath temperature
T but to a temperature Teff , which is independent of t
and almost twice T . This means that the slow dynamics
is characterized by a well defined temperature. In the
inset of figure 4, we have plotted the value of t∗ as a
function of t. We find that above a value of 0.22 s, t∗

is linear with t. The value 0.22 s corresponds to the re-
laxation time at the system at ǫ0. As simple picture can
explained this observation : we separate the time scale
between an aging part (0 < tw < 0.22) and an equilib-
rium part (t > 0.22 s). t∗ is defined as the time between
the equilibrium part and the aging one, thus it is equal to
t∗ = t−0.22. This behavior matches very well the exper-
imental result for t > 0.22s. The dependence of Teff on
the initial and final value of the quench is an important
features which will be discussed in a longer report.

In conclusion we have shown that a LC quenched close
to the critical point of the Fredericks transition presents
aging features, such as a power law rescaling of corre-
lation functions and the appearance of a well defined
Teff > T (working at fixed t). What is very interest-
ing here is that although we are not exactly at ǫ = 0
we observe a large interval of time where the predicted
aging at critical point can be observed. The results plot-
ted in fig.4 are not in perfect in agreement with those of
ref. [7] for the mean field calculation of the aging at the

critical point. The reason of this discrepancy is probably
related to the fact that eq. 3 is an approximation for the
dynamics of our system for which the spatial behavior
cannot be neglected. This open the discussion for fur-
ther theoretical and experimental development. Finally
we want to stress that the results of fig.4 are in excellent
quantitative agreement with the general predictions for
the Teff as defined by Cugliandolo and Kurchan. They
show the existence of a very well define effective temper-
ature independent of t for the slow dynamics t−tw larger
than a t∗. Notice that this result is in contrast with that
of fig.3 where we see that the temperature is a decreas-
ing function of tw. This different behavior obtained by
keeping fixed either t or tw has been widely discussed in
the theoretical literature, but it has never been so clearly
observed in an experiment. This observation is actually
very useful because in the study of FDR in polymers and
colloids the procedure, which is often applied for several
technical problem related to the measurement noise [3, 4]
is the one with tw fix (fig.3). This of course may provoke
several problems when comparing the experimental re-
sults with theory and our experimental results clearly
point out this problem.
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