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Abstract

We introduce the concept of Conversion/Preference Games, or CP

games for short. CP games generalize the standard notion of strategic
games. First we exemplify the use of CP games. Second we formally in-

troduce and define the CP-games formalism. Then we sketch two ‘real-life’

applications, namely a connection between CP games and gene regulation

networks, and the use of CP games to formalize implied information in

Chinese Wall security. We end with a study of a particular fixed-point

construction over CP games and of the resulting existence of equilibria in

possibly infinite games.

1 Introduction

We give a stand-alone account of Conversion/Preference games or CP games,
as originally used in [8]. CP games are built from a set of players and a set of
(game) situations. The ability of the players to change a situation to another
is formalised in conversion relations. A preference relation dictates how the
players compare the different situations against each other. The three main aims
of this article are to show i) that discrete Nash-style game theory is possible and
natural, ii) that the two basic CP concepts of Conversion and Preference are
of wider interest, and iii) that game-theoretic notions are both applicable and
relevant in situations where no payoff function need exist, or where the payoff
concept would dramatically alter what aspects of the game are being considered.

2 Basic concepts

To start with, let us give the two main notions of games. First, a game involves
players. Second, a game is characterized by situations. In CP games these
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situations will be called situations or sometimes synopses or game situations.
A player can move from one situation to another, but she1 does that under
some constraints as she has no total freedom to perform her moves, therefore
a relation called conversion is defined for each player; it tells what moves a
player is allowed to perform. Conversion of player Alice will be written 99KAlice.
As such, conversion tells basically the rules of the game. In chess it would
say “a player can move her bishop along a diagonal”, but it does not tell the
game line of the player. In other words it does not tell why the player chooses to
move or to “convert” her situation. Another relation called preference compares
situations in order for a player to choose a better move or to perform a better
conversion. Preference of player Beth will be written //

Beth and when we write
s //

Beth s′ we mean that Beth prefers s′ to s or, rather than s, she chooses s′

or in situation s she is attracted toward situation s′. Preference (or choice) is
somewhat disconnected from conversion, a player can clearly prefer a situation
she cannot move to and vice versa she can move to a situation she does not
prefer. Moreover players may share the same conversion relation, but this not
a rule and the may share or not the same preference relation or not. Those
different situation sill be illustrated by examples throughout the article.

A key concept in games is this of equilibrium. As a player can convert a
situation, she can convert it into a situation she likes better, in the sense that
she prefers the new situation she converted to. A player is happy in a situation,
if there is no situation she can convert into and she prefers. A situation is
an equilibrium if each player is happy with this situation. We will see that
this concept of equilibrium captures and generalizes the concept known as Nash
equilibrium in strategic games, hence the name abstract Nash equilibrium.

3 Some examples

Let us present the above concepts of conversion, preference and equilibrium
through examples. We will introduce a new concept called change of mind.

3.1 A simple game on a square

As an introduction, we will look at variations of a simple game on a board.

1See the preface of [4] for the use of personal pronouns
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3.1.1 A first version

Imagine a simple game where Alice and Beth play using tokens on a square. We
number the four positions as 1, 2, 3 and 4.
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Assume that player Alice has a red round token and that player Beth has
a blue squared token. The two players place their tokens on vertices and then
they move along edges. They can also decide not to move. Assume that Alice
and Beth never put their token on a vertex taken by the other player and a
position further than this impossible situation is better than a position closer.
In other words, a position with Alice on vertex i and Beth on vertex j with i− j

even is preferred to a position with i − j odd.

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

Figure 1: Conversion and preference for the square game

The game has 12 situations, which we write i|j for 1 ≤ i, j ≤ 4 and i 6= j. The
above pictured situation corresponds to 1|2. The two conversions are described
by Figure 1 left. In this figure, 99K is Alice’s conversion and 99K is Beth’s
conversion.

In this game, both players share the same preference, namely the following:
since a player does not want her token on a position next to the other token,
she prefers a situation where her token is on the opposite corner of the other
token. This gives the preference given in Figure 1 right. The arrow from 1|2 to
1|3 means players prefer 1|3 to 1|2.

From the conversion and the preference we build a relation that we call
change of mind. Alice can change her mind from a situation s to a new one s′,
if she can convert s into the new situation s′ and rather than s she chooses s′.
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4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

Figure 2: Agent changes of mind (on the left) and (general) change of mind (on
the right) for the square game

Changes of mind for Alice and Beth are given in Figure 2 on the left. In this
figure, // is Alice’s change of mind and // is Beth’s conversion. The
(general) change of mind is the union of the agent change of mind, it is given
by Figure 2 on the right. The equilibria are the end points (or “minimal point”)
for that relation, namely 1|3, 4|2, 3|1 and 2|4. This means that no change of
mind arrows leave those nodes. In these situations players have their tokens on
opposite corners and they do not move. An equilibrium like 1|3 which is an end
point is called an Abstract Nash Equilibrium.

3.1.2 A second version

We propose a second version of the game, where moves of the token can only
be made clockwise. This implies to change the conversion changes, but also the
preference, as a player does want not to be threatened by another token placed
before hers clockwise and prefers a situation that places this token as far as
possible. The conversions, the preferences and the changes of mind are given in
Figure 3 (page 5). If one looks at the equilibrium, one sees that there is no fixed
position where players are happy. To be happy the players have to move around
for ever, one chasing the other. It is not really a cycle, but a perpetual move.
We also call that an equilibrium. It is sometimes called a dynamic equilibrium
or a stationary state.

3.1.3 A third version

The third version is meant to present an interesting feature of the change of
mind. In this version, we use the same rules as the second one, except that we
suppose that the game does not start with both token on the board. Actually
it starts as follows. Alice has put her token on node 1 (this game positions is
described as 1|ω). Then Beth chooses a position among 2, 3 or 4. The conversion
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4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|3 3|1

1|4 3|4

2|3 2|1

2|4

Figure 3: Conversion, preference and change of mind for the second version of
the square game

is given in Figure 4 left. Beth may choose not to play, but in this case she loses,
in other words, she prefers any position to 1|ω. We do not draw the preference
relation, as it would make for an entangled picture. The change of mind is
given on Figure 4 right (page 6). There is again a dynamic equilibrium and one
sees that this dynamic equilibrium is not the whole game, indeed one enters the
perpetual move after at least one step in the game.

3.2 Strategic games

In this presentation of strategic games we do not use payoff functions, but
directly a preference relation (See Section 1.1.2 of [4] for a discussion) and we
present several games.

3.2.1 The Prisoner’s Dilemma

The problem is stated usually as follows
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4|2

4|3 4|1

1|2 3|2

1|ω 1|3 3|1

1|4 3|4

2|3 2|1

2|4

4|2

4|3 4|1

1|2 3|2

1|ω 1|3 3|1

1|4 3|4

2|3 2|1

2|4

Figure 4: Conversion and change of mind for the third version of the square
game

Two suspects, A and B, are arrested by the police. The police have
insufficient evidence for a conviction, and, having separated both
prisoners, visit each of them to offer the same deal: if one acts as an
informer against the other (finks) and the other remains quiet, the
betrayer goes free and the quiet accomplice receives the full sentence.
If both stay quiet, the police can sentence both prisoners to a reduced
sentence in jail for a minor charge. If each finks, each will receive a
similar intermediate sentence. Each prisoner must make the choice
of whether to fink or to remain quiet. However, neither prisoner
knows for sure what choice the other prisoner will make. So the
question this dilemma poses is: What will happen? How will the
prisoners act?

Each prisoner can be into two states, either fink (F ) or be quiet (Q). Each
prisoner can go from Q to F and vice-versa, hence the following conversion,
where 99K is prisoner A conversion and 99K is prisoner B conversion (Figure 5
left). Each prisoner prefers to go free over being sentenced and prefers a light
sentence to a full sentence. Hence the preference are given in Figure 5 right,
where is prisoner A preference and is prisoner B preference.

Q, Q Q, F

F, Q F, F

Q, Q Q, F

F, Q F, F

Figure 5: Conversion and preference in the prisoner’s dilemma
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From this we get the change of mind of Figure 6. One sees clearly that the
only equilibrium is F, F despite both prefer Q, Q as shown on Figure 5 right.

Q, Q Q, F

F, Q F, F

Q, Q Q, F

F, Q F, F

Figure 6: Agent and (general) change of mind in the prisoner’s dilemma

Such an equilibrium is called a Nash equilibrium in strategic game theory.
The paradox comes from the fact that F, F is an equilibrium despite the fact

one has: Q, Q F, F in the preference.

3.2.2 Matching Pennies

This second example is also classic. This is a simple example of strategic game
where there is no singleton equilibrium. As an equilibrium can contain more
than one situation, we call singleton equilibrium a CP equilibrium which con-
tains only one situation. This boils down to the kind of equilibrium we have
introduced so far.

The game is played between two players, Player A and Player B.
Each player has a penny and must secretly turn the penny to heads
(H) or tails (T ). The players then reveal their choices simultane-
ously. If the pennies match (both heads or both tails), Player A
wins. If the pennies do not match (one heads and one tails), Player
B wins.

The conversion is similar to this of the prisoner’s dilemma (Figure 7 left)
and the preference is given by who wins (Figure 7 center).

Change of mind for matching pennies is in Figure 7 right. One notices that
there is a cycle. This cycle is the equilibrium. No player has clear mind of what
to play and changes her minds each time she loses.

3.2.3 Scissors, Paper, Stone

Here we present the famous game known as scissors, paper, stone. It involves
two players, Alice and Beth who announce either scissors (C) or paper (P )
or stone (T ) with the rules that stone beats scissors, scissors beat paper, and
paper beats stone. There are nine situations (see below), one sees that Alice
may convert her situation C, P into P, P or T, P and the same for the other

7



H, H H, T

T, H T, T

H, H H, T

T, H T, T

H, H H, T

T, H T, T

H, H H, T

T, H T, T

Figure 7: Conversion, preference and (general) change of mind in Matching
Pennies

situations. The conversion is given below left. Since the rules, it seems clear
that Alice prefers P, P to T, P and C, P to P, P , hence the preference given below
right with is Alice’s preference and is Beth’s preference. To avoid a
cumbersome diagram, in the preference we do not put the arrows deduced by
transitivity.

C, C C, P C, T

P, C P, P P, T

T, C T, P T, T

C, C C, P C, T

P, C P, P P, T

T, C T, P T, T

From the above conversion and preference, one gets the following change of
mind.
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C, C C, P C, T

P, C P, P P, T

T, C T, P T, T

One sees also perpetual moves as in the matching pennies of which it is a
generalization.

3.2.4 Strategic games as CP games

A strategic game is a specific kind of CP games. To be a strategic game, a CP
game has to fulfill the following conditions.

1. Each situation is a n-Cartesian product, where n is the number of players.
The constituents of the Cartesian product are called strategies.

2. Conversion for player a, written 99Ka, is any change along the a-th di-
mension, i.e., (s1, ..., sa, ..., sn) 99Ka (s1, ..., s

′
a, ..., sn). Hence in strategic

games, conversion is an equivalent relation, namely

• symmetric, (s 99Ka s′ implies s′ 99Ka s),

• transitive, (s 99Ka s′ and s′ 99Ka s′′ imply s 99Ka s′′),

• and reflexive (s 99Ka s).

3.3 Blink and you lose

Blink and you lose is a game played on a simple graph with two undifferentiated
tokens. There are three positions:

?>=<89:;•• ?>=<89:; ?>=<89:;• ?>=<89:;• ?>=<89:; ?>=<89:;••

There are two players, Left and Right. The leftmost position above is the
winning position for Left and the rightmost position is the winning position for
Right. In other words, the one who owns both token is the winner. Let us call
the positions L, C, and R respectively. One plays by taking a token on the
opposite node.

3.3.1 A first tactic: Foresight

A player realizes that she can win by taking the opponent’s token faster than
the opponent can react, i.e., player Left can convert C into L by outpacing
player Right. Player Right, in turn, can convert C into R. This version of the
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game has two singleton equilibria: L and R. This is described by the following
conversion

L C R

preference is

L C R

where is the preference for Left and is the preference for Right.
The change of mind is then:

L C R

and one sees that there are two equilibria: namely L and R, which means that
players have taken both token and keep them.

3.3.2 A second tactic: Hindsight

A player, say Left, analyzes what would happen if she does not act. In case Right
acts, the game would end up in R and Left loses. As we all know, people hate to
lose so they have an aversion for a losing position. Actually Left concludes that
she could have prevented the R outcome by acting. In other words, it is within
Left ’s power to convert R into C. Similarly for player Right from L to C.

L C R

We call naturally aversion the relation that escapes from positions a player
does not want to be, especially a losing position. Aversion deserves its name
as it works like conversion, but flies from bad position. We get the following
change of mind:

L C R

where C is singleton equilibrium or an Abstract Nash Equilibrium.

3.3.3 A third tactic: Omnisight

The players have both hindsight and foresight, resulting in a CP game

L C R

with one change-of-mind equilibrium covering all outcomes thus, no singleton
equilibrium (or Abstract Nash Equilibrium) exists.

L C R

10



3.4 The λ phage as a CP game

The λ phage is a game inspired from biology [5, 6]. The origin of the game will
be given in Section 6, here we give just the rules of the game.

There are three players cI, cro and Env. The game can be seen as a game
with two tokens moving on two graphs where each player may choose to move
one of the two tokens2. Env moves one token from the bottom position. The
conversion is therefore the same for the three players3 and is given by the fol-
lowing rightmost diagram:

?>=<89:;2

?>=<89:;1

?>=<89:;1

?>=<89:;0

?>=<89:;0

cI cro

?>=<89:;

?>=<89:;

?>=<89:;•

?>=<89:;•

?>=<89:;

cI cro

〈cI2, cro0〉 oo //___
OO

���
�

�
〈cI2, cro1〉OO

���
�

�

〈cI1, cro0〉 oo //___
OO

���
�

�
〈cI1, cro1〉OO

���
�

�

〈cI0, cro0〉 oo //___ 〈cI0, cro1〉

The preference is difficult to describe as an actual game to be played, it comes
from the genetics and is specific to each player. The philosophy is as follows: a
gene prefers a position if it is “pushed forward” that position.

〈cI2, cro0〉

≻

≻
〈cI2, cro1〉

≻

≻

≻

〈cI1, cro0〉

≻

〈cI1, cro1〉

≻

≻

〈cI0, cro0〉 〈cI0, cro1〉

〈cI2, cro0〉 〈cI2, cro1〉

⊃

⊃

〈cI1, cro0〉 〈cI1, cro1〉

⊃

〈cI0, cro0〉 〈cI0, cro1〉

2In the asynchronous version.
3Note the difference with the square game where players had different conversions and the

same preference. The fact that the conversion is the same for everybody seems to be a feature
of biologic game. Moreover notice also that, unlike in strategic games, the conversion is not
transitive.
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〈cI2, cro0〉 〈cI2, cro1〉

〈cI1, cro0〉 〈cI1, cro1〉

〈cI0, cro0〉

⊳

⊳ 〈cI0, cro1〉

From the conversion and the preferences one deduces three changes of mind.

〈cI2, cro0〉

≻

〈cI2, cro1〉

≻

≻

〈cI1, cro0〉

≻

〈cI1, cro1〉

≻

≻

〈cI0, cro0〉 〈cI0, cro1〉

〈cI2, cro0〉 〈cI2, cro1〉

⊃

〈cI1, cro0〉 〈cI1, cro1〉

⊃

〈cI0, cro0〉 〈cI0, cro1〉

〈cI2, cro0〉 〈cI2, cro1〉

〈cI1, cro0〉 〈cI1, cro1〉

〈cI0, cro0〉

⊳

⊳ 〈cI0, cro1〉

from which we deduce the (general) change of mind of the game:

〈cI2, cro0〉

��

〈cI2, cro1〉

��

oo

〈cI1, cro0〉

UU

〈cI1, cro1〉

UU

oo

��
〈cI0, cro0〉

OO

// 〈cI0, cro1〉

One sees one singleton equilibrium namely 〈cI0, cro1〉 (called the lyse) and one
dynamic equilibrium namely {〈cI2, cro0〉, 〈cI1, cro0〉} (called the lysogen).

4 Formal presentation of CP games

To define a CP game we have to define four concepts:

• a set A of agents,
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• a set S of situations,

• for every agent a a relation 99Ka on S, called conversion,

• for every agent a a relation //

a on S, called preference.

From these relations we are going to define a relation called change of mind.
Before let us introduce formally what a game is.

Definition 1 (Game) A game is a 4-uple 〈A,S, (99Ka)a∈A, ( //

a)a∈A〉.

Example 1 (Square game 1rst version) For the first version of the square
game we have:

• A = {Alice,Beth},

• S = {1|2, 1|3, 1|4, 2|3, 2|4, 2|1, 3|4, 3|1, 3|2, 4|1, 4|2, 4|3},

• Conversions 99KAlice and 99KBeth are given by Figure 1 left,

• //

Alice is the same as //

Beth and this relation is given by Figure 1 right.

4.1 Abstract Nash equilibrium or singleton equilibrium

Let us look at a first kind of equilibria.

Definition 2 (Abstract Nash equilibrium or singleton equilibrium) A
singleton equilibrium is a situation s such that:

∀a ∈ A, s′ ∈ S . (s 99Ka s′) =⇒ ¬(s //

a s′).

We write EqaN
G (s) (aN stands for abstract Nash).

In the previous paragraphs, we have seen examples of singleton equilibria.
If we are at such an equilibrium, this is fine, but if not, we may wonder how to
reach an equilibrium. If s is not an equilibrium, this means that s fulfills

∃s′ ∈ S . s 99Ka s′ ∧ s //

a s′

which is the negation of

∀s′ ∈ S . (s 99Ka s′) =⇒ ¬(s //

a s′).

The relation s 99Ka s′ ∧ s //

a s′ between s and s′ is a derived one. Let us call
it change of mind for a and write it //

a. We say that a changes her mind,
because she is not happy with s and hopes that following //

a she will reach
not necessary the equilibrium, but at least a better situation. Actually since
we want to make everyone happy, we have to progress along all the //

a’s.
Thus we consider a more general relation which we call just change of mind and
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which is the union of the //
a’s. We define this new relation as the union of

the changes of mind of the agents.

// ,
⋃

a∈A

//
a.

Now suppose that we progress along // . What happens if we reach an s

from which we cannot progress further? This means

∀a ∈ A, s′ ∈ S . ¬(s 99Ka s′ ∧ s //

a s′)

in other words, s is an equilibrium. Hence to reach an equilibrium, we progress
along // until we are stuck. In graph theory, a vertex from which there is
no outgoing arrow is called an end point or a sink. In relation theory it is called
a minimal element :

�� ��?
??

?

������
��

•?? ??����
____????

Thus we look for end points in the graph.

4.2 Dynamic equilibrium

Actually this progression along // is not the panacea to reach an equilib-
rium. Indeed it could be the case that this progression never ends, since we enter
a perpetual move (think at the square game 2nd version, Figure 4). Actually
we identify this perpetual move as a second kind of equilibrium.

4.2.1 Strongly connected components

Here it is relevant to give some concepts of graph theory. A graph4 is strongly
connected, if given two nodes n1 and n2 there is always a path going from
n1 to n2 and a path going from n2 to n1. Not all the graphs are strongly
connected, but they may contain some maximal subgraphs that are strongly
connected; “maximal” means that one cannot add nodes without breaking the
strong connectedness. Such a strongly connected subgraph is called a strongly
connected components, SCC in short.

4In this paper, when we say “graph” , we mean always “oriented graph” or “digraph”.
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4|2

4|3 4|1

1|2 3|2

1|ω 1|3 3|1

1|4 3|4

2|3 2|1

2|4

Figure 8: A game with two SCC’s

The graph below has six SCC’s:

•

�� ��

•

vvvv•

�� ��

•
!! !!

vvvv

•aaaa

�� ��
•

�� ��

•jjjj

�� ��

•

vvvv•

vvvv

• ** ** •

VVVV

•

JJ JJ

•jjjj

JJ JJ

The graph of Figure 4 has two SCC’s (Figure 8).
From a graph, we can deduce a new graph, which we call the reduced graph

(or condensation [1]), whose nodes are the SCC’s and the arcs are given as
follows: there is an arc from an SCC S1 to an SCC S2 (assuming that S1 is
different from S2), if there exists a node n1 in S1, a node s2 in S2 and an arc
between n1 and n2. By construction the reduced graph has no cycle and its
strongly connected components are singletons. The reduced graphs associated
with the graphs given above are as follows:

•
�� ��

•

qqqq•

## ##

•

qqqq
�� ��

• •

{1|ω} // //___ {1|3, 1|2, 1|4, ...}
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4.2.2 Dynamic equilibria as strongly connected components

At the price of extending the notion of equilibrium, we can prove that there
is always an equilibrium in finite non degenerated games, i.e., in games with a
finite non zero number of game situations. Indeed given a graph, we compute
its reduced graph. Then in this reduced graph, we look for end points. There
is always such an end point since in a finite acyclic graph (the reduced graph is
always acyclic) there exists always at least an end point.

CP Equilibria are end points in the reduced graph.

We write EqCP
G (A) to say that the subset A of situations is a CP equilibrium.

We can now split equilibria into two categories?

1. CP Equilibria (i.e., Dynamic equilibria) are equilibria associated with an
SCC and may contain many situations.

2. Abstract Nash Equilibria (aka Singleton equilibria) are equilibria associ-
ated with an SCC that contains exactly one situation, i.e., associated with
an SCC which is a singleton, hence the name singleton equilibrium. There
are specific dynamic equilibria.

Tarjan [9] has shown that the reduced graph can be computed in linear time
w.r.t. the numbers of nodes and edges of the original graph. Therefore CP
equilibria can be computed in linear time in the number of game situations and
edges in the change of mind relation, which provides an efficient algorithm to
compute CP equilibria.

5 What are CP good for?

After the success of strategic games over years, one may wonder why we in-
troduce a new concept, namely CP games. The first nice feature is a theorem
that says that there always exists an equilibrium. We know that pure strategic
games do not enjoy that property and that to obtain such equilibria, Nash had
to extend the concept of strategic game to this of probabilistic games. Similarly
we have relaxed the notion of equilibrium to this of CP equilibrium.

Beside abstract Nash equilibria that are really like those of strategic games.
CP games have other equilibria that biologists called dynamic equilibria and
that correspond to phenomena they actually consider. Physicists speak about
stationary states in that case.

Economists know that the concept of payoff is somewhat artificial5. In CP
games the concept of payoff is completely abandoned, no number are attached
to situations and a general relation between situations is proposed instead.

In normal form strategic games, moves from one situation to another are
tightly ruled and strong restrictions are imposed, namely right and left moves

5See for instance Osborne’s introduction of his textbook [4].
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for one player, back and forth moves for another player and up and down moves
for a third, etc., unlike CP games where very general moves between situations
ruled by the conversions are allowed, like diagonal moves for instance or on the
opposite more restricted moves like horizontal or vertical moves to a neighbor
situation only (see the λ phage). The flexibility of the conversions and the
preferences makes possible to formalize many situations, like some that occur
in biology.

It is known that games are a good framework to analyze models where the
principle of causality fails. CP games allow analyzing a larger class of models.

6 Gene regulation networks as CP games

In the λ phage, levels 0, 1, 2, for a gene, correspond to levels of activation or
levels of concentration of the corresponding protein. Thus cI has three levels.
0 corresponds to the gene being inactive (the protein is absent), 1 corresponds
to the gene being moderately active (the protein is present but moderately
concentrated), 2 corresponds to the gene being highly active (the protein is con-
centrated). On the other hand, cro has two levels of activation, corresponding to
the gene being inactive or active. Env has only one level, it is always active. A
gene can move from one level at a time, as translated by the conversion relation
on page 11. It has been shown that cI is a repressor for cro and a repressor for
itself at level 2 and an activator for itself at level 1. This leads to the preference

≻ for cI on the left of diagram on page 11. On the other hand, it has
been shown that cro is a repressor for cI, this leads to the preference and an
activator for itself at level 1. This leads to the preference ⊃ for cro on
the right of diagram on page 11. Moreover when both genes are inactive, the
environment may lead to activate either cI or cro, this leads to the preference

⊲ of the diagram on page 12.
The two equilibria correspond to two well-known states of the λ phage:

the lyse and the lysogen, which the phage always reaches. In particular the
lysogen {〈cI2, cro0〉, 〈cI1, cro0〉} is a relatively stable state, where the phage
seems inactive (dormant state). This is due to the fact that the concentration
of the protein associated to cI is controlled: if it is too concentrated, a repression
process makes the concentration to decrease and vice-versa if the concentration
is too low an activation process makes it to increase. These antagonistic actions
maintain the concentration at an intermediate level and the associated state
is stable. The state 〈cI0, cro1〉 corresponds to what is called the lyse of the
λ phage.

What is amazing in the presentation as CP games is that these states are
actually computed as CP equilibria. Somewhat connected approaches are [12,
11].
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7 Chinese Wall information security and corpo-

rate liability

A main claim of this article is that CP games, simple as they are, is a natural for-
malism whose conversion/preference distinction is of wider relevance. We shall
further justify the claim in this section, with an example chosen because of the
succinctness of its CP-game presentation and because the conversion/preference
distinction is of stand-alone interest in the context of the example, without any
consideration of equilibrium analysis.
The concept of Chinese Wall information security pertains to the prevention
of insider trading, and more generally the insulation of insider knowledge [2].
Chinese Wall requirements are codified in laws in many countries, and are in-
teresting to informaticians in part because Chinese Wall security is different
from military-style need to know. In particular, any information is in principle
accessible to the subjects in question, but access is only granted if the subject is
not already in possession of information that could create a conflict of interest.
Formally, we consider a set of subjects, P (for people), a set of interests classes,
I, a set of companies, C, with interest classification function I : C → I, and a
set of objects, O, with ownership function C : O → C. The typical scenario is
that the subjects are consultants and the interest classes consists, for example,
of bank, oil company, etc., with the requirement that no consultant handles
objects, i.e., information, for more than one, e.g., bank. In other words, we are
considering a game played by the subjects, A = P , over complete accounts of
what objects each subject has had access to, S = ⊗p∈P 2O. Writing sp for the
p-projection of an s ∈ S, [2, Axiom 2] that governs when a subject, p, is allowed
to gain access to an object amounts to the conversion relation where s 99Kp s′

iff

∀p′ . p 6= p′ ⇒ sp′ = s′p′

∧
∃o . s′p = sp ∪ {o} ∧ (∀o′ ∈ sp . I(C(o)) 6= I(C(o′)) ∨ C(o) = C(o′))

In words, subject p may convert s to s′ if the situations only differ by some
object, o, being added to the p-projection and, for all other objects in sp, o

either belongs to a different interest class or hails from the same company. By
[2, Axiom 3], we are only interested in situations that can be reached from the

situation where no subject has had access to any object,
−→
∅ . With this, [2,

Theorem 2] says: “A subject can at most have access to one company dataset
in each conflict of interest class”. Formally, we have the following.

Definition 3 A state, s ∈ S, has no insider trading if

NIT(s) , ∀p ∈ P . ∀o1, o2 ∈ sp . I(C(o1)) 6= I(C(o2)) ∨ C(o1) = C(o2)

Theorem 1 Given a Chinese Wall CP game form, 〈P,⊗p∈P 2O, (99Kp)p∈P 〉,
no derived Chinese Wall CP game can reach a situation with insider trading.

∀( //

p)p∈P . ∀s .
−→
∅ // ∗ s ⇒ NIT(s)
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While logically straightforward, the point of the CP-game version of the theorem
is that it is universally quantified over the family of preference relations. In other
words, the theorem explicitly states that for a company that implements Chinese
Wall regulations for its subjects (the conversion relations), no matter what those
employees may be tempted to do (the preference relations), insider trading can
only take place if one of the employees breaks the company’s rules. This means
that the CP-game version of the result formalizes a notion of corporate liability
protection, which is directly relevant to the study of Chinese Wall information
security.

8 Conversion or preference, how to choose?

The attentive reader may have noticed that what counts to compute equilibria
is the change of mind and that keeping the same set of equilibria there is some
freedom on the conversion and the preference provided one keeps the same
change of mind. More precisely, we have

//
a = 99Ka ∩ //

a

= (99Ka ∪ R) ∩ //

a when R ∩ //

a= ∅
= 99Ka ∩ ( //

a ∪T ) when T ∩ 99Ka= ∅

On another hand, one notices that in some examples, the preference is in-
dependent of the agent whereas, in others, the conversion is independent of the
agent. It seems that this is correlated with the domain of application. In partic-
ular, we may emit the following hypothesis. In biology, conversion is physics and
chemistry, whereas preference is the part that cannot be explained by physics
and chemistry, then we may induce that change of mind (combination of physics
and true biology) is life. Indeed since physics and chemistry is the same for ev-
eryone, it makes sense to say that conversion is the same for everybody, whereas,
due to evolution and biological effects, preference, changes with agents.

9 Fixed point construction, and equilibria in in-

finite games

For proving the existence of a fixed point for every probabilistic game, Nash [3]
used Kakutani’s fixed point theorem. Since we deal with discrete games, we
present in this section a proof of the existence of equilibrium based on a Tarski
fixed-point theorem [10]. Recall that Tarski’s theorem uses an update function,
say f , on a lattice and builds a fixed point starting from an element, say a,
by iteration, a, f(a), ..., fn(a), ... Here the lattice is the powerset P(S) of
situations ordered by the subset order.

In analogy to Nash’s update function, the function takes a subset of situa-
tions and creates a new subset based on how the agents would like to improve
upon the old subset.
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Definition 4 (Update) Given a game G and a subset C ⊆ S of the set of
situations, let U (C) ,

⋃
s∈C{s′ | s→∗s′}.

With this, we have the following result, covering all CP games.

Lemma 1 Given (any) G, U has a complete lattice of fixed points.6

Not all fixed points will correspond to equilibria but the equilibria are the
least, non-empty fixed points of the update function.

Lemma 2 Given G, with change-of-mind relation →.

EqCP
G (C)
m

U (C) = C ∧ C 6= ∅ ∧ (∀C′ . ∅ ( C′ ( C =⇒ U (C′) 6⊆ C′)

Proof By two direct arguments. The only interesting step is from bottom
to top and showing that, for any two s1, s2 ∈ C, we have s1→∗s2. We first note
that U is post-fixpointed: C ⊆ U (C), idempotent: U (U (C)) = U (C), and
order-preserving: C1 ⊆ C2 =⇒ U (C1) ⊆ U (C2). By order-preservation and
U (C) = C, we have U ({s1}) ⊆ C. If ¬(s1→∗s2), then s2 ∈ C \ U ({s1}), i.e.,
U ({s1}) ( C. By post-fixpointed-ness, U ({s1}) is non-empty and, by assump-
tion of least-ness, we may therefore conclude U (U ({s1})) 6⊆ U ({s1}). This
contradicts idempotency, and thus s1→∗s2. �

CP equilibria are therefore atomic, in the sense that neither anything smaller
nor anything bigger will have the same defining properties. For finite G, a count-
ing argument shows that the complete lattice of U -fixed point will have least,
non-empty elements, thus guaranteeing existence. For the infinite case, e.g., the
following unbounded change-of-mind relation will not lead to the existence of
least, non-empty elements in the fixed-point lattice because all tails are fixed
points.

•
$$ $$
•

$$ $$
•

&& &&
• . . .

However there are infinite cases where the existence of a CP equilibrium can
be guaranteed, namely when there exists an SCC C, which is extremal for the
reduced change of mind.

More generally, a sufficient condition for the existence of EqCP
G is that some

s can reach only finitely many other elements in S using →∗. The condition is
also necessary if we restrict attention to finite EqCP

G . In particular, finite games

have EqCP
G . Because of the role played by reduced graphs above, also games

with finite reduced graphs have EqCP
G .

6We note that complete lattices are non-empty by definition.
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10 Conclusion

We have presented conversion preference games as a strict extension of strategic
games and we have proved that in a finite CP game an equilibrium always exists
and under some conditions in infinite games as well. This theory is infancy and
we expect it to generate as many theorems as the classical Nash game theory.
See for instance [7].
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Nash theorem with quadratic complexity and dynamic equilibria. Research
Report IS-RR-2006-006, JAIST, May 2006.

[9] Robert E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal on computing, pages 146–160, Januar 1972.

[10] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.
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