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mioara.joldes@ens-lyon.fr

Christoph Lauter∗
christoph.lauter@ens-lyon.org
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Abstract

In many numerical programs there is a need for a high-
quality floating-point approximation of useful functions f ,
such as such as exp, sin, erf . In the actual implementation,
the function is replaced by a polynomial p, which leads to
an approximation error (absolute or relative) ε = p − f or
ε = p/f − 1. The tight yet certain bounding of this error is
an important step towards safe implementations.

The problem is difficult mainly because that approxima-
tion error is very small and the difference p−f is subject to
high cancellation. Previous approaches for computing the
supremum norm in this degenerate case, have proven to be
unsafe, not sufficiently tight or too tedious in manual work.

We present a safe and fast algorithm that computes a
tight lower and upper bound for the supremum norms of
approximation errors. The algorithm is based on a com-
bination of several techniques, including enhanced inter-
val arithmetic, automatic differentiation and isolation of the
roots of a polynomial. We have implemented our algorithm
and give timings on several examples.

Keywords: supremum/infinity norm, approxima-
tion error, certified computation, elementary function,
interval arithmetic, automatic/algorithmic differenti-
ation, roots isolation technique.

1. Introduction

Many numerical programs require computing ap-
proximated values of mathematical functions such as
exp, sin, arccos, erf , etc. These functions are usu-

∗Chr. Lauter was with ÉNS Lyon at the time this work was
completed. He is now with Intel Corporation, SSG-DPD-Numerics
team, 2111 NE 25th Avenue, M/S JF1-13, Hillsboro, OR, 97124, USA.

ally implemented in libraries called libm. Such li-
braries are available on most systems and many nu-
merical programs depend on them. Examples include
CRlibm, glibc, Sun libmcr and Intel R© MKL.

In general, these libms offer no guarantee on the
quality of the computed results. In order to allow
for a better portability and a better numerical qual-
ity of programs, the new IEEE 754-2008 standard [10]
recommends that the functions provided accordingly
to the standard be correctly rounded. Under round-
to-nearest this means that for a given function f , the
function code must always return the floating-point
number that is the closest to the exact value f(x).

Particular care is needed for guaranteeing such a
property. It can be shown [12] that for a large class
of functions it is sufficient to compute an approxima-
tion y of f(x) accurate enough and then to round y
to the target format. Using properties of the function
(such as exp(2x) = exp(x)2 for instance) it is possible
to perform a so-called range reduction so that we need
to approximate f on a small closed interval [a, b] only.

For computing the approximation y, a polynomial p
may be used. One must then prove that for each point
x ∈ [a, b], the error between p(x) and f(x) is small
enough: ∀x ∈ [a, b], |ε(x)| ≤ µ where µ is the target
approximation quality and ε is the approximation er-
ror defined by

ε(x) =
p(x)
f(x)

− 1 or ε(x) = p(x)− f(x)

depending on whether the relative or absolute error is
considered.

In other words, we want to prove that ‖ε‖∞ ≤ µ.
Here, ‖ε‖∞ denotes the infinity or supremum norm,
defined by ‖ε‖∞ = supx∈[a, b]{|ε(x)|}.



A simple numerical computation of the norm is
not satisfying: guaranteeing correct rounding means
guaranteeing a precise mathematical property and
this requires proving each assertion. We will ad-
dress here the problem of computing a certified bound
for the supremum norm of an approximation error:
given p and f , find an interval r (as thin as desired)
such that ‖ε‖∞ ∈ r.

By certified, we want to express the fact that the
correctness of the algorithm must be proven. Thus,
if there are no bugs in the implementation, the result
given by the algorithm can be trusted.

In order to protect oneself from programming er-
rors, one might want to compute, along with r, a cer-
tificate that can formally be checked using a proof as-
sistant such as COQ∗ or PVS†. Currently we do not
compute such a certificate. We will not address that
point, that we consider to be future work.

The polynomial p is often obtained with the Remez
algorithm which computes the polynomial that best
approximates f , i.e. that minimises the supremum
norm of the error. It might seem more interesting to
modify the Remez algorithm, making it certified, in-
stead of computing the supremum norm afterwards.
This only moves the problem: the Remez algorithm
requires to compute supremum norms [4]. Hence a
certified algorithm for computing supremum norms
is needed in a certified Remez algorithm.

This article presents a certified algorithm for com-
puting the supremum norm of an approximation er-
ror. The function f involved in the approximation er-
ror is supposed to be differentiable up to a sufficient
order n on the interval [a, b]. In Section 2, we pro-
vide a general view of previous approaches and we
show why they seem inappropriate for the particu-
lar problem we address herein. We sketch our algo-
rithm in Section 3.1. In Section 3.3, we show how to
compute safely and automatically an approximating
polynomial with a certified remainder. It uses classi-
cal techniques derived from automatic differentiation
that are first recalled in Sections 3.3.1. Then, we show
in Section 3.4 how to enclose the zeros of the deriva-
tive of the approximation error. Since we reduce to the
well-known case of enclosing the roots of a polyno-
mial, we first recall the corresponding classical tech-
niques in Section 3.4.1. Finally, in Section 4 we show
experimental results.

∗http://coq.inria.fr/
†http://pvs.csl.sri.com/

2. Previous work

2.1. Interval Arithmetic

The idea of using interval arithmetic for obtaining
guarantees on a numerical result, for encompassing
finiteness, round-off errors and uncertainty is well es-
tablished in the literature, e.g. [15]. It is a classical
way to perform validated computations with floating-
point arithmetic. In the following, we denote an inter-
val x as a pair x = [x, x] consisting of two numbers x
and x with x ≤ x. We define the midpoint of the inter-
val x as: mid (x) = (x+x)/2. The width of an interval is
x − x. Moreover, we denote by ϕ(x) = {ϕ(x)|x ∈ x}
the exact image of the function ϕ over the interval x.

One fundamental use of interval arithmetic is
bounding the image of a function over an interval.
However, when using interval calculations, the image
of the function is overestimated. As discussed in [17],
for a large class of functions, this overestimation is
proportional to the width of the evaluation interval.
We are therefore interested in using thin intervals for
obtaining reasonably tight bounds of the images.

In particular, when evaluating such a function ϕ
over a point interval x = [x, x], the interval enclosure
of ϕ(x) can be made arbitrarily tight by increasing the
precision used for evaluation [17]. This implies that
unless the value of ϕ(x) is zero, the sign of ϕ(x) can al-
ways be safely determined. In the sequel we will make
this assumption for all the functions that we deal with.

We use the MPFI library‡ for multiprecision inter-
val arithmetic. It allows for an arbitrarily high preci-
sion for the interval bounds.

When evaluating functions over intervals, the al-
gorithm presented in [5] can be used. It is based on
a Taylor expansion of order 1 and allows for obtain-
ing smaller overestimates. This leads to results of su-
perior quality compared to the usage of straightfor-
ward interval arithmetic. Another useful feature of
this algorithm is that it is able to overcome remov-
able singularities of functions using a heuristic based
on L’Hôpital’s rule. For example, the algorithm re-
turns a bounded interval for enclosing the image of
the function x 7→ sin(x)/x over an interval that con-
tains 0; straightforward interval arithmetic would di-
vide by zero and return [−∞, +∞] as a bound.

2.2. Previous solutions to a specific problem

Bounding the supremum norm ‖ε‖∞ of an approx-
imation error ε = p/f − 1 (or ε = p− f ) can be viewed
as a global optimisation problem [7].
‡http://gforge.inria.fr/projects/mpfi/



There are efficient floating-point techniques for
finding the global extremum of a function (see [2]
for instance). These techniques consist in numerically
finding a point x that is very close to a point x? where
the extremum of ε is reached. An approximate value
of the extremum ε(x?) is given by ε(x). Consequently
these techniques generally underestimate the supre-
mum norm. Algorithms implemented in tools like
Maple and Matlab typically suffer from this issue [5].
The particular difficulty of the problem we address
here is to find a value that is surely an upper-bound
of the actual value ‖ε‖∞.

The problem of finding a safe enclosure of the
global optimum of a function has been studied [11],
[14], [7]. However, the proposed algorithms are not
suitable for the case of an approximation error. In-
deed, the function ε is obtained by a subtraction be-
tween p and f . Since p approximates f very well, the
subtraction p(x)− f(x) is subject to high cancellation.
In floating-point arithmetic, cancellation can be over-
come by increasing working precision. Interval arith-
metic, in contrast, does not consider p and f in one
point x but on a whole interval x. Hence, as p and f
vary on x, even if they cancel in each point x ∈ x, in-
terval subtraction does not yield a smaller value. That
phenomenon, called decorrelation [6], cannot be sup-
pressed by mere usage of arbitrary precision. It leads
to very loose resulting interval bounds. For instance,
GlobSol [11] is not tailored for our specific problem
and produces completely loose bounds.

There are approaches addressing that specificity.
Decorrelation can be overcome if the variations of p
and f over an interval can explicitly be expressed and
that way transformed into benign cancellation of the
bounds of thin intervals, that behave like floating-
point numbers. A common way for achieving that
transformation is the use of a high order Taylor ex-
pansion T of the function ε = p− f (resp. ε = (p−f)/f).

As the Taylor polynomial is affected by some error,
a triangular inequality is used for upper-bounding the
supremum norm of the approximation error: ‖ε‖∞ ≤
‖T‖∞ + ‖ε− T‖∞. Two key problems occur: there is
a need for a tight bounding of ‖T‖∞ as well as for
the Taylor remainder ‖ε− T‖∞. Krämer used this ap-
proach and interval arithmetic in the development of
the FI LIB library [9]. However, his method has the
disadvantage that no formal proof can be produced,
the results are not very tight if they come near the ma-
chine precision [9] and the remainder bound is com-
puted manually.

Harrison also uses the idea of working with a Tay-
lor expansion of ε. He tightly bounds the supremum
norm of the polynomial ‖T‖∞ using a Sum of Squares

(SOS) decomposition algorithm [8]. Usually SOS al-
gorithms are either very slow or present numerical
problems [8]. The particular SOS algorithm presented
in [8] solves some of these issues. With that approach
results can be verified in the formal proof checker
HOL∗. Nevertheless, the second problem of automati-
cally bounding the Taylor remainder is not addressed.

For automatic bounding of Taylor remainders solu-
tions based on Taylor models have been proposed [6,
16]. Current implementations like COSY-INFINITY†

are either limited to double precision or do not seem
to offer the required safety. In particular, the Taylor
remainder bounds are analyzed by hand [21]. Taylor
models checked by formal tools like PVS may require
expensive computations [6].

Chevillard and Lauter proposed an algorithm for
computing the supremum norm of an approximation
error that has the advantage of offering a safe and au-
tomatically validated result [5]. They formally differ-
entiate the function ε and look for the zeros of ε′. All
zeros xi of this derivative are enclosed by intervals
xi, such that the diameters of xi are less than a pre-
defined small bound d, which is a parameter of their
algorithm. These tight intervals can be computed by
bisection or with interval Newton iteration. Then the
function ε is evaluated on each interval xi using the
algorithm mentioned in Section 2.1. The resulting in-
ner and outer enclosures [5] are combined to obtain
an interval enclosure of ‖ε‖∞ over [a, b]. As the enclo-
sures xi can be made small by adjusting the bound d,
decorrelation issues are alleviated by their algorithm
up to some point. However, when the approximation
polynomial p starts to become too correlated to f , their
approach breaks down because of computation time.

3. A polynomial-based approach

3.1. The algorithm at a glance

Our algorithm follows the same principal scheme
as that algorithm presented in [5]. A list Z of thin in-
tervals safely enclosing the zeros of the derivative ε′

is computed first. Then ε is evaluated on each interval
inZ , which yields ‖ε‖∞. The main novelty lies in how
the zeros of the derivative are bounded.

Our algorithm takes as input f and p, an interval
[a, b] and an argument that indicates if ε is an absolute
or relative error. It sets τ = p′ − f ′ for absolute error
or τ = p′f − f ′p for relative error. All zeros of ε′ are
zeros of τ . This choice is explained in Section 3.2.

∗http://www.cl.cam.ac.uk/˜jrh13/hol-light/
†http://bt.pa.msu.edu/index.htm



It then replaces τ by a Taylor polynomial T with a
known remainder bound ‖T − τ‖∞ ≤ θ. The value θ
is an additional parameter of the algorithm. The poly-
nomial T , of a heuristically determined order n − 1,
is obtained using an automatic differentiation based
technique, that will be discussed in Section 3.3.

The algorithm then safely encloses the zeros of the
translated polynomials T + θ and T − θ using existing
root finding techniques for polynomials, discussed in
Section 3.4.1. A technique explained in Section 3.4.2
then allows for deriving enclosures for the zeros of τ
from the enclosures of the zeros of these translated
polynomials. That yields the list Z of enclosures of
the zeros of the derivative.

3.2. Reducing error terms to polynomials

The key of our approach for computing the supre-
mum norm ‖ε‖∞ is the tight localisation of the zeros
of ε′. Actually, we know that if x is an extremum of ε
over [a, b], then x = a or x = b or ε′(x) = 0. We
want to compute a list Z of arbitrarily small z, such
that we are sure that every zero of ε′ lies in one of the
intervals z. Afterwards we just have to evaluate ε by
means of interval arithmetic on each z for obtaining a
safe enclosure of the extrema.

Remark that some z may possibly contain several
zeros of ε′. Likewise some z may not contain any zero
of ε′. What is important is that each zero of ε′ lies in
one of the zs and that the intervals z are thin enough
for the interval evaluation of ε on z to be an accurate
upper-bound of the exact image interval ε(z).

In the case of the absolute error, ε = p − f , so
ε′ = p′ − f ′. Let τ = p′ − f ′. The case of the rel-
ative error ε = p/f − 1 is more tricky. It holds that
ε′ = (p′f−f ′p)/f2. A problem occurs if f has a zero
in [a, b]. Actually ε may be bounded and even in-
finitely differentiable, although the function f van-
ishes at some point z. This happens when p has also a
zero in z.

We face a problem when it comes to compute the
Taylor expansion of ε′: it requires a division by f2.
Straightforward interval arithmetic ignores the fact
that p and f vanish simultaneously and returns some-
thing like [−∞, +∞]. In [5] a method based on
L’Hôpital’s rule has been proposed that makes it pos-
sible to evaluate such a division by interval arithmetic
and with a relevant result. However, this method sup-
poses that the function being evaluated is given by an
expression. As explained in Section 3.3, this would
hinder the use of automatic differentiation and hence
have a huge negative performance impact.

In consequence, in the case of the relative error, we

define τ by τ = p′f − f ′p. Thus, each zero of ε′ is
also a zero of τ . The reciprocal is not true: we may
have introduced new zeros. Anyway, there is no harm
in having these superfluous zeros, if the intervals z in
which they are enclosed are thin enough.

How can we make sure that we bound every zero
of τ without forgetting any? We reduce the problem
to the polynomial case. For this purpose, we compute
a polynomial T that approximates τ with a remain-
der bounded by θ: ∀x ∈ [a, b], |τ(x) − T (x)| ≤ θ. We
explain in the next Section 3.3 how we can compute
such a couple (T, θ). Of course, θ is chosen to be small
with respect to ‖ε‖∞. The smaller θ will be, the thin-
ner the enclosure of the zeros of τ will be. Once the
case is reduced to a polynomial, the zeros can easily
be bounded, as we will see in Section 3.4.

3.3. Computation of approximating polynomials

3.3.1 Some classical techniques derived from auto-
matic differentiation

Given a function τ defined on an interval [a, b] and a
real number θ, we want to automatically compute a
Taylor polynomial T such that ‖T − τ‖∞ ≤ θ. In prac-
tice, τ is given as an expression tree that represents the
function. An order n− 1 must be chosen for T .

Denoting by τ (i) the i-th derivative of τ , we need to
bound the ratio τ(n)

/n! on [a, b] automatically in order
to ensure that ‖T − τ‖∞ ≤ θ. Moreover, we need to
compute the Taylor approximation itself. This implies
to compute τ(i)

/i! for each integer i ∈ {0, . . . , n− 1}.
The naı̈ve approach consists in formally differenti-

ating n times function τ and successively evaluating
the expressions obtained this way. This is utterly in-
efficient because the size of the expressions grows too
fast with n.

Automatic differentiation is a technique that makes
it possible to evaluate the derivative of a numerical
function at some point, without actually differentiat-
ing it in a formal way. Even if the interest in automatic
differentiation usually lies on multivariate functions,
some authors focused on the problem of efficiently
computing the coefficients of the Taylor expansion of
a univariate function [1], [16].

Basically, automatic differentiation consists in do-
ing the same operations that would be done when
evaluating the expression of the derivative, but with-
out effectively writing the expression of the deriva-
tive. Instead of writing the memory-intensive expres-
sions of the successive derivatives, we work with com-
pact arrays [τ0, . . . , τn] where τi = τ(i)(x0)/i!.

Consider for instance the addition of two functions
u and v (supposed to be n times differentiable). If



[u0, . . . , un] and [v0, . . . , vn] are given, the array for
the function u+v is simply given by (u+v)i = ui+vi.

Considering Leibniz’ formula, it is also easy to see
that (u · v)i =

∑i
k=0 uk · vi−k.

Formulas for exp(u), cos(u), etc. may also be writ-
ten. The interested reader will find a complete intro-
duction to this domain in [15, Chap. 3.4] or [1].

More generally, it is possible to write a recursive
procedure that computes (u ◦ v)i from the (vk) com-
puted in x0 and the (uk) computed in v(x0). This al-
lows one to efficiently compute the first n derivatives
of any function τ given by an expression.

These procedures may be used with interval arith-
metic: if x0 is replaced by an interval x, and if the
procedures are applied with interval arithmetic, the
result is an interval τ i that encloses the scaled image
τ(i)(x)/i! of the i-th derivative of τ on the interval x.
In the following, we denote by AutoDiff(τ,n,x)
a procedure that returns an array [τx

0 , τ
x
1 , . . . , ..., τ

x
n],

where τ(i)(x)/i! ⊆ τx
i .

By applying that procedure to the interval x =
[x0, x0] and using a multiprecision interval arithmetic,
we also obtain a safe and arbitrarily tight enclosure of
τ(i)(x0)/i!. This will be useful for safely computing the
Taylor coefficients of τ .

3.3.2 Certified computation of approximating poly-
nomials

Taylor expansions with a certified remainder Let
n ∈ N. Any n times differentiable function τ over an
interval [a, b] around x0 can be written as

τ(x) =
n−1∑
i=0

τ (i)(x0)
i!

· (x− x0)i + ∆n(x, ξ),

where ∆n(x, ξ) =
τ (n)(ξ)(x− x0)n

n!
, x ∈ [a, b] and ξ

lies strictly between x and x0.
We face two problems. First we need to bound the

remainder ∆n(x, ξ). This bound does not need to be
tight: it suffices that we prove it to be small enough.
The second problem comes from the fact that the coef-
ficients ci = τ(i)(x0)/i! of the Taylor polynomial are not
exactly computable. Thus, we need to bound tightly
the difference between the polynomial we compute
and the actual Taylor polynomial.

a) It is easy to bound the term (x − x0)i, where
x, x0 ∈ [a, b] and i ∈ {0, ..., n}. Let xi be an en-
closing interval: (x− x0)i ∈ xi.

b) Bounding ∆n(x, ξ). We compute the enclosure

τ [a,b]
n 3 τ (n)(ξ)

n!
, where ξ ∈ [a, b]

with AutoDiff(τ,n,[a, b]). Let ∆ = τ [a,b]
n · xn.

Thus, ∆n(x, ξ) ∈∆.

c) Enclosing the coefficients ci, i ∈ {0, ..., n− 1}. We
obtain tight interval enclosures ci 3 ci by calling
AutoDiff(τ,n− 1,[x0, x0]).
The intervals ci can be made arbitrarily tight
since the automatic differentiation process is ap-
plied on a point interval (see Section 2.1).

d) Computation of the approximation polynomial.
Consider ti = mid (ci) and the polynomial T (x)
of degree n− 1,

T (x) =
n−1∑
i=0

ti(x− x0)i.

The difference between T and the actual Taylor
polynomial can easily be bounded using interval
arithmetic. We have ci ∈ ci, and thus (ci − ti) ∈
[ci − ti, ci − ti], which leads to

n−1∑
i=0

(ci − ti)(x− x0)i ∈
n−1∑
i=0

[ci − ti, ci − ti] · xi = δ.

Finally, the error between the function τ and its ap-
proximation polynomial T is bounded by δ + ∆:

∀x ∈ [a, b], τ(x)− T (x) ∈ δ + ∆.

Let θ ∈ R+ minimal such that δ + ∆ ⊆ [−θ, θ].
Thus, ∀x ∈ [a, b], |τ(x)− T (x)| ≤ θ.

Other approximations for a tighter remainder As
seen, a Taylor polynomial approximating τ is easy to
compute and its remainder can safely be bound. How-
ever, as the remainder may rapidly grow for larger do-
mains [a, b], a very high order may be required or the
interval to be cut into smaller pieces.

Other approximation techniques, giving a tighter,
though safe remainder bound, might be used in the
future. We are considering the following two tech-
niques.

Interpolation in Chebyshev points [4] commonly
yields approximations of superior quality compared
to Taylor polynomials. An explicit remainder bound
is known [4, Chap. 3]. Some technical issues must be
overcome for using that technique.

In practice, Taylor Models yield Taylor-like approx-
imations that seem to have much tighter remainder
interval bounds. They are equally safe. That better
tightness of the remainder bounds can be explained
by the fact that Taylor Models directly propagate them
through the automatic differentiation process.



3.4. Fast and certified bounding of the zeros of ε′

3.4.1 How to isolate the roots of polynomials

Given a univariate real polynomial T , we now want
to compute a list Z of disjoint thin intervals z such
that each root of T lies in one of the intervals z. We
may use general methods such as the interval Newton
method [17]. But we can also take advantage of the
fact that T is a polynomial and use a specific method
for isolating the real roots of a polynomial. There are
two main classes of such specific methods.

On the one hand we have the methods based on
“Descartes’ rule of signs”. Descartes based strate-
gies are well developed in the literature (see [19]).
Roughly speaking, the algorithm is based on bound-
ing the number of positive real roots by the number of
sign changes in the sequence of the coefficients of the
polynomial. This bounding criterion can efficiently be
applied for isolating the roots of a polynomial on the
interval ]0, 1]. For that purpose elementary transfor-
mations of the initial polynomial (like translation, ho-
mothety, reversal) are used.

Although the computation of the number of roots
in an interval is replaced by an upper-bound, the ter-
mination is guaranteed when the width of the search
interval becomes sufficiently small [19].

On the other hand, another class of algorithms for
isolating the real roots of a polynomial are the al-
gorithms based on Sturm’s method (see [3] for an
overview). Specifically, the exact number of distinct
real roots is computed using an algorithm based on
counting the sign changes in the Sturm sequence.
Sturm’s method offers the advantage of an exact num-
ber of roots compared to Descartes’ approach which
gives an upper-bound for the number of roots.

For isolating and refining the bounding of the roots,
both classes of algorithms use bisection [19].

However, the computation of the Sturm polyno-
mials poses more numerical problems [3] and has a
higher complexity compared to Descartes based pro-
cess [18]. In contrast, Descartes’ method may return
wrong results if the polynomial is not square-free. In
general, this condition can be ensured by computing
the greatest common divisor between the polynomial
and its first derivative, which is costly.

According to [19], isolating the roots of polynomi-
als can be done faster and safely using a hybrid al-
gorithm based on the Descartes’ method and interval
arithmetic. In fact, in that algorithm, each coefficient
of the polynomial is replaced by a tight interval that
encloses it. Consequently, this yields a decrease in the
average bit size of the coefficients and thus to the cost
of arithmetic operations.

3.4.2 Tight bounding of the zeros of a function

We have reduced the initial problem to the following
one: let τ be a function defined on an interval [a, b].
We suppose that τ is approximated by a polynomial T
with a remainder bounded in magnitude by θ. We
want to compute a list Z that contains intervals z (of
arbitrarily small width) such that

∀z ∈ [a, b], τ(z) = 0 =⇒ ∃z ∈ Z, z ∈ z.

Remark that τ(z) = 0 implies that |T (z)| ≤ θ. Thus,
it suffices to find the points z ∈ [a, b] such that T (z) is
included in the strip delimited by −θ and θ (see Fig-
ure 1). Formally, we look for the points z such that
both T (z) ≤ θ and T (z) ≥ −θ hold.

Suppose temporarily we could compute a list Lu of
intervals representing the points x ∈ [a, b] where T (x)
is below θ. The same way, let L` be a list of intervals
representing the points x where T (x) is above −θ. It
is clear that out of both lists we can compute intervals
zi for which T is in the strip delimited by −θ and θ.
Indeed it suffices to intersect the intervals in Lu and
L` (see Figure 1).

(Intervals ri and si not to scale for illustration purposes)

Figure 1. How to compute Z

Actually the list Lu can be computed with the fol-
lowing technique, that also applies for L`.
Lu represents the set of points x where T (x) ≤ θ,

i.e. T (x)− θ ≤ 0. T − θ is a polynomial: hence it has a
finite number of roots in the interval [a, b]. Moreover,
the areas where T − θ ≤ 0 are delimited by the zeros
of T − θ. Thus, it suffices to find the zeros of T − θ and
look at its sign on the left and on the right of each zero,
in order to know where T − θ is positive and where it
is negative.

Since we want certified results, we must be rig-
orous. We use one of the techniques of root isola-
tion for polynomials (Section 3.4.1). It returns the list
Zu = {z1, · · · , zk} of the roots of T − θ (the zis are in
fact thin enclosing intervals).

For each z ∈ Zu we must determine the sign of T−θ
at the left (and at the right) of z. Let z′ be the previous



interval in Zu (take z′ = [a, a] if z is the first one). We
know that T − θ does not change its sign between z′

and z. So, we simply need to determine the sign of
T − θ at any point x between them (e.g. the middle of
both values). This is achieved by evaluating (T − θ)
by interval arithmetic on the point-interval [x, x] with
enough precision (see Section 2.1).

Figure 2. How to compute Lu

The list Lu is then easy to obtain. If zi is a zero
characterised by the signs (+, −), it means that T − θ
becomes negative after zi. It becomes positive again
with the first following zj characterised by the signs
(−, +). Consequently we add [zi, zj ] to the list Lu. A
special rule applies for the first and the last zero. This
is illustrated in Figure 2.

4. Experimental results

We have implemented a prototype of the method
using the free Sollya tool∗, into which we will inte-
grate it in the future. Our prototype includes an im-
plementation of automatic differentiation in interval
arithmetic with arbitrary precision. For isolating the
roots of polynomials, we currently use an algorithm
that uses interval arithmetic and is based on Sturm’s
method. For comparison, we plan to implement an
algorithm based on Descartes’ rule of sign or on the
interval Newton algorithm in the near future.

In Table 1 we present nine examples of various
situations. Experiments were made on an Intel R©

Pentium R© D 3.00 GHz with a 2 GB RAM running
GNU/Linux and compiling with gcc. For each ex-
ample, we give the computation time and the qual-
ity of the computed bound. If the algorithm com-
putes a bound [`, u], the quality − log2 (u/`− 1) indi-
cates roughly the accuracy (in bits) given when con-
sidering u as an approximated value of ‖ε‖∞. Accu-
racy specifications, as for correct rounding, generally
ask for knowing the order of magnitude of the error.
Knowing about 15 significant bits is quite accurate.
∗http://sollya.gforge.inria.fr

The two first examples are those presented in [5].
With that technique, the second example was handled
in about 320 seconds on a 2.5 GHz Pentium 4. The
new algorithm has a speed-up factor of about 120.

The third example is a polynomial taken from the
source code of CRlibm†. It is the typical problem that
developers of libms address. The degree of p is 22,
which is quite high in this domain. Our algorithm
needs only 5 seconds to handle it.

In examples 4 through 9, the polynomial p is the
minimax, i.e. the polynomial of a given degree that
minimises the supremum norm of the error. These
examples involve more or less complicated functions
over intervals of various width. Examples 7 and 9
should be considered as quite hard for our algorithm
since the interval [a, b] has width 1: this is large when
using Taylor polynomials and it requires a high de-
gree. All examples are handled in less than 15 sec-
onds. This is reasonable for a computation that is
made once, when implementing a function in a libm.

5. Conclusion and future work

Bounding the approximation error ε = p/f − 1 be-
tween a function f and an approximating polyno-
mial p is indispensable when implementing correctly
rounded functions for mathematical libraries. Previ-
ous approaches prove to be unsatisfactory concerning
safety, automation or computation time.

In this paper, we presented a safe and fast algo-
rithm for bounding the supremum norm of approxi-
mation errors. We combined and reused several exist-
ing techniques and designed a new algorithm which
overcomes previous shortcomings. Our algorithm can
handle both absolute and relative errors.

Our algorithm uses automatic differentiation tech-
niques and interval arithmetic for a fast and safe
computation of high order derivatives over intervals.
This lets us compute automatically Taylor polynomi-
als with a safely bounded remainder. It will also per-
mit to use Chebyshev approximation polynomials in
the future. This should lead to a significant improve-
ment in the performance of the algorithm: a speed-up
of the computations and the possibility of tackling er-
ror functions defined over larger intervals. We also
consider using Taylor Models as a replacement. Other
techniques based on Cauchy’s formula allow for com-
puting certified polynomial approximations of ana-
lytic functions [16, 20]. Using them is future work.

We explained how we can use high order approxi-
mation polynomials and root isolation techniques for
finding tight enclosures of the zeros of ε′.

†http://lipforge.ens-lyon.fr/www/crlibm/



Example f [a, b] deg(p) mode deg(T ) quality time
#1 exp(x)− 1 [−0.25, 0.25] 5 relative 11 37.6 0.4 s
#2 log2(1 + x) [−2−9, 2−9] 7 relative 23 83.3 2.2 s
#3∗ arcsin(x + m) [a3, b3] 22 relative 37 15.9 5.1 s
#4 cos(x) [−0.5, 0.25] 15 relative 28 19.5 2.2 s
#5 exp(x) [−0.125, 0.125] 25 relative 41 42.3 7.8 s
#6 sin(x) [−0.5, 0.5] 9 absolute 14 21.5 0.5 s
#7 exp(cos(x)2 + 1) [1, 2] 15 relative 60 25.5 11.0 s
#8 tan(x) [0.25, 0.5] 10 relative 21 26.0 1.1 s
#9 x2.5 [1, 2] 7 relative 26 15.5 1.4 s

Table 1. Results of our algorithm on several examples

The implementation of our algorithm has success-
fully been used for various examples, including an
example really used in the code of CRlibm. All ex-
amples are safely handled, faster and more accurately
than in other related approaches currently available.

A current limitation of our algorithm is that no for-
mal proof is provided. In order to solve this issue, we
must see if it is possible to use one of the techniques
for surely isolating the zeros of a polynomial, in a
formal proof checker. Automatic differentiation must
also be available in the proof checker. Finally, arbi-
trary precision interval arithmetic must be performed
with the proof checker. That point has been solved re-
cently [13] and is no longer an issue.
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