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Computing floating-point square roots
via bivariate polynomial evaluation

Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, Guillaume Revy

Abstract—In this paper we show how to reduce the computation of correctly-rounded square roots of binary floating-point data to the

fixed-point evaluation of some particular integer polynomials in two variables. By designing parallel and accurate evaluation schemes

for such bivariate polynomials, we show further that this approach allows for high instruction-level parallelism (ILP) exposure, and thus

potentially low latency implementations. Then, as an illustration, we detail a C implementation of our method in the case of IEEE

754-2008 binary32 floating-point data (formerly called single precision in the 1985 version of the IEEE 754 standard). This software

implementation, which assumes 32-bit integer arithmetic only, is almost complete in the sense that it supports special operands,

subnormal numbers, and all rounding modes, but not exception handling (that is, status flags are not set). Finally we have carried out

experiments with this implementation using the ST200 VLIW compiler from STMicroelectronics. The results obtained demonstrate the

practical interest of our approach in that context: for all rounding modes, the generated assembly code is optimally scheduled and has

indeed low latency (23 cycles).

Index Terms—Binary floating-point arithmetic, square root, correct rounding, polynomial evaluation, instruction-level parallelism,

rounding error analysis, C software implementation, VLIW integer processor.

✦

1 INTRODUCTION

THIS paper deals with the design and software im-
plementation of an efficient sqrt operator for com-

puting square roots of binary floating-point data. As
mandated by the IEEE 754 standard (whose initial 1985
version [1] has been revised in 2008 [2]), our implementa-
tion supports gradual underflow and the four rounding
modes. However, the status flags used for handling
exceptions are not set.

As for other basic arithmetic operators, the IEEE 754
standard specifies that sqrt operates on and returns
floating-point data. Floating-point data are either spe-
cial data (signed infinities, signed zeros, not-a-numbers)
or nonzero finite floating-point numbers. In radix two,
nonzero finite floating-point numbers have the form x =
±m · 2e, with e an integer such that

emin ≤ e ≤ emax, (1)

and m a positive rational number having binary expan-
sion

m = (0.0 · · · 0︸ ︷︷ ︸
λ zeros

1mλ+1 · · ·mp−1)2. (2)

Since m is nonzero, the number λ of its leading zeros
varies in {0, 1, . . . , p − 1}. If x ∈ (−2emin , 2emin) then x is
subnormal, else x is normal. On the one hand, subnormal
numbers are such that e = emin and λ > 0. On the
other hand, normal numbers will be considered only
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through their normalized representation, that is, the unique
representation of the form ±m · 2e for which λ = 0.

The parameters emin, emax, p used so far represent the
extremal exponents and the precision of a given binary
format. In this paper, we assume they satisfy

2 ≤ p ≤ 1− emin = emax.

This assumption is verified for all the binary formats
defined in [2].

The IEEE 754-2008 standard further prescribes that the
operator sqrt : x 7→ r specifically behaves as follows:

• If x equals either −0, +0, or +∞ then r equals x.
• If x is nonzero negative or NaN then r is NaN.

Those two cases cover what we shall call special operands.
In all other cases x is a positive nonzero finite floating-
point number, that is,

x = m · 2e, (3)

with e as in (1) and m as in (2); the result specified by
the IEEE 754-2008 standard is then the so-called correctly-
rounded value

r = ◦(
√

x), (4)

where ◦ is any of the usual four rounding modes: to
nearest even (RN), up (RU), down (RD), and to zero
(RZ). In fact, since

√
x ≥ 0, rounding to zero is the same

as rounding down. Therefore considering only the first
three rounding modes is enough:

◦ ∈ {RN, RD, RU}.

As we will recall in Section 2, deducing r from x essen-
tially amounts to taking the square root, up to scaling,
of the significand m. For doing this, many algorithms
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are available (see for example the survey [3] and the
reference books [4], [5], [6]). The method we introduce
in this paper is based exclusively on the evaluation
of a suitable bivariate polynomial. Since polynomial
evaluation is intrinsically parallel, this approach allows
for very high ILP exposure. Thus, in some contexts such
as VLIW processors, a significant reduction of latency
can be expected.

The paper is organized as follows. Section 2.1 reviews
three mathematical properties of square roots of binary
floating-point numbers, and Section 2.2 shows how to
use them to deduce the usual high level algorithmic
description of the sqrt operator.

In Section 3.1 we then show how to introduce suitable
bivariate polynomials that approximate our square root
function. In particular, we give some approximation and
evaluation error bounds that are sufficient to ensure
correct rounding, along with an example of such a
polynomial and its error bounds in the case of the bi-
nary32 format. Section 3.2 then details, for each rounding
mode, how to deduce a correctly-rounded value from
the approximate polynomial value obtained so far. A
summary of our new approach is given in Section 3.3.

A detailed C implementation of this approach is given
in Section 4, for the binary32 format and assuming that
32-bit integer arithmetic is available: Section 4.1 shows
how to handle special operands; Section 4.2 deals with
the computation of the result exponent and a parity bit
related to the input exponent (which is needed several
times in the rest of the algorithm); Sections 4.3 and 4.4
show how to compute the evaluation point and the value
of the polynomial at this evaluation point; there, we
also explain how the accuracy of the evaluation scheme
has been verified; Finally, Section 4.5 details how to
implement each of the rounding modes.

For this implementation, all is needed is a C com-
piler that implements 32-bit arithmetic. However, our
design has been guided by a specific target, the ST231
VLIW integer processor from STMicroelectronics. Thus,
Section 5 is devoted to some experiments carried out
with this target and the ST200 VLIW compiler. After a
review of the main features of the ST231 in Section 5.1,
the performance results we have obtained in this context
are presented and analysed in Section 5.2.

2 PROPERTIES OF FLOATING-POINT SQUARE

ROOTS AND GENERAL ALGORITHM

The usual scheme for moving from (3) to (4) follows from
three basic properties which we recall now.

2.1 Floating-point square root properties

Property 2.1: For x as in (3), the real number
√

x lies
in the range of positive normal floating-point numbers,
that is, √

x ∈
[
2emin , (2− 21−p) · 2emax

]
.

Proof: Using (1), (2) and (3) gives 21−p+emin ≤ x <
21+emax . The square root function being monotonically
increasing, we obtain 2(1−p+emin)/2 ≤ √x < 2(1+emax)/2.
The assumption p ≤ 1 − emin gives the lower bound
2emin ≤ √x. The upper bound on

√
x follows from the

fact that p ≥ 1 implies 1 ≤ 2 − 21−p and from the fact
that emax ≥ 1 implies (1 + emax)/2 ≤ emax.

This first property implies that ◦(√x) is a positive
normal floating-point number. Correctly-rounded square
roots thus never denormalize nor under/overflow, a fact
which will simplify the implementation considerably.

In order to find the normalized representation of
◦(√x), let

e′ = e− λ and m′ = m · 2λ. (5)

It follows that the positive (sub)normal number x de-
fined in (3) satisfies x = m′ · 2e′

and that m′ ∈ [1, 2).
Taking the square root then yields

√
x = ℓ · 2d,

where the real ℓ and the integer d are given by

ℓ = σ
√

m′ with σ =

{
1 if e′ is even,√

2 if e′ is odd,
(6)

and, using ⌊ ⌋ to denote the usual floor function,

d = ⌊e′/2⌋. (7)

It follows from the definition of σ and m′ that ℓ is a
real number in [1, 2). Therefore, rounding

√
x amounts

to round ℓ, and we have shown the following property:
Property 2.2: Let x, ℓ, d be as above. Then

◦(
√

x) = ◦(ℓ) · 2d.

In general the fact that ℓ ∈ [1, 2) only implies the
weaker enclosure ◦(ℓ) ∈ [1, 2]. This yields two separate
cases: if ◦(ℓ) < 2 then Property 2.2 already gives the
normalized representation of the result r; if ◦(ℓ) = 2
then we must further correct d after rounding, in order
to return r = 2d+1 · 1 instead of the unnormalized
representation 2d · 2 given by Property 2.2. The next
property characterizes precisely when such a correction
is needed or not. In particular, it is never needed in
rounding-to-nearest mode.

Property 2.3: One has ◦(ℓ) = 2 if and only if ◦ = RU
and e is odd and m = 2− 21−p.

Proof: Assume first that ◦(ℓ) = 2. Then necessarily
ℓ > 2− 21−p. Recalling that ℓ = σ

√
m′ and using the fact

that 1 ≤
√

m′ ≤ m′ ≤ 2 − 21−p, we get σ > 1 and thus
σ =
√

2. Therefore, ◦(ℓ) = 2 implies that e is odd and that√
m′ >

√
2 · (1 − 2−p). It follows that m′ > 2 − 2 · 21−p,

which is the floating-point predecessor of 2−21−p. Then
m′ must be equal to 2−21−p, and thus λ = 0 and m = m′.
With σ =

√
2 and m′ = m = 2−21−p, one may check that

ℓ < 2 − 2−p. Since 2 − 2−p is the midpoint between the
two consecutive floating-point numbers 2− 21−p and 2,
we have that ◦(ℓ) = 2 implies ◦ = RU. Conversely, if e is
odd and m = 2− 21−p then ℓ > 2− 21−p. Taking ◦ = RU
further gives ◦(ℓ) = 2.
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2.2 High level description of square root algorithms

Together with the IEEE 754-2008 specification recalled
in Introduction, the properties of Subsection 2.1 lead to
a general algorithm for computing floating-point square
roots, shown in Figure 1 and Figure 2 for the different
possible rounding modes. In particular, ◦(ℓ) and d are
two functions of m and e which can be computed
independently from each other.

x ∈ {x < 0,±0,±∞, NaN}x = m · 2e or

Handle special inputCompute dCompute ◦(ℓ)

r ∈ {±0, +∞, NaN}orr = ◦(ℓ) · 2d

Fig. 1. Square root algorithm for ◦ ∈ {RN, RD}.

x ∈ {x < 0,±0,±∞, NaN}x = m · 2e or

Handle special inputCompute ◦(ℓ) Compute d

Compute correction c

c = (m = 2 − 21−p) && (e is odd)

r ∈ {±0, +∞, NaN}orr =
◦(ℓ)
2c · 2d+c

Fig. 2. Square root algorithm for ◦ = RU.

Given m and e, computing d is algorithmically easy
since by (5) and (7) we have

d = ⌊(e− λ)/2⌋ . (8)

However, computing ◦(ℓ) from m and e is far less
immediate and typically dominates the cost. In the next
section, we present a new way of producing ◦(ℓ), which
we have chosen because we believe it allows to express
the most ILP.

3 COMPUTING ◦(ℓ) BY CORRECTING TRUN-
CATED APPROXIMATIONS

It is useful to start by characterizing, for each rounding
mode, the meaning of ◦(ℓ). Since ℓ ∈ [1, 2), we have
the following, where n denotes a normal floating-point
number:

• RN(ℓ) is the unique n such that

−2−p < ℓ− n < 2−p, (9)

• RD(ℓ) is the unique n such that

0 ≤ ℓ− n < 21−p, (10)

• RU(ℓ) is the unique n such that

−21−p < ℓ− n ≤ 0. (11)

Both inequalities in (9) are strict because of the fact that
a square root cannot be the exact midpoint between two
consecutive floating-point numbers (see for example [4,
Theorem 9.4], [5, p. 242], or [6, p. 463]). Note also that
both (9) and (10) imply n ∈ [1, 2), whereas (11) implies
n ∈ [1, 2].

Given p, ◦, m′, and σ, there are many ways of produc-
ing such an n A way that will allow to express much
ILP is by correcting a truncated approximation of ℓ. This
approach (detailed for example in [6, p. 459] for division)
has three main steps:

• compute a real number v that approximates ℓ from
above with absolute error less than 2−p, that is,

−2−p < ℓ− v ≤ 0; (12)

• deduce w by truncating v after p fraction bits:

0 ≤ v − w < 2−p; (13)

• obtain n by adding, if necessary, a small correction
to w and then by truncating after p− 1 fraction bits.

Of course the binary expansion of v in (12) will be
finite: by “real number” we simply mean a number with
precision higher than the target precision p. Typically,
v will be representable with k bits, the number of bits
of the encoding of the underlying binary format (for
example, p = 24 and k = 32; see Section 4). On the other
hand, using ℓ ≤

√
2 ·
√

2− 21−p one may check that if v
satisfies (12) then necessarily

1 ≤ v < 2. (14)

Therefore, the binary expansion of v has the form

v = (1.v1 . . . vp−1vp . . . vk−1)2. (15)

Our approach for computing v as in (12) and (15) by
means of bivariate polynomial evaluation is detailed in
Section 3.1 below.

Once v is known, truncation gives

w = (1.v1 . . . vp−1vp)2. (16)

The fraction of w is wider than that of n by one bit.
We will see in Section 3.2 how to correct w into n by
using both this extra bit and the fact that, because of (12)
and (13),

|ℓ− w| < 2−p. (17)

3.1 Computing v by bivariate polynomial evaluation

The problem is, given p, m′, and σ, to compute an
approximation v to ℓ such that (12) holds. Such a v will
in fact be obtained as a solution to

∣∣(ℓ + 2−p−1)− v
∣∣ < 2−p−1. (18)

Although slightly more strict than (12), this form will
be the natural result of some derivations based on the
triangle inequality.

Computing v such that (18) holds usually relies on
either iterative refinement (Newton-Raphson or Gold-
schmidt method [6, § 7.3]), or polynomial evaluation [7], or
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a combination of both [8], [9]. The approach we shall de-
tail now is based exclusively on polynomial evaluation.
However, instead of using two polynomials as in [7], we
will use a single one; this makes the approach simpler,
more flexible and eventually faster.

The main steps for producing v via polynomial eval-
uation are shown on the diagram below:

ℓ + 2−p−1 −−−−→ F (s, t)

?

y
yfunction approximation

v ←−−−−−−−−−−−−−
polynomial evaluation

P (s, t)

First, using (6) and defining

τ = m′ − 1, (19)

the real number ℓ+2−p−1 is seen as the value at (s, t) =
(σ, τ) of the function

F (s, t) = 2−p−1 + s
√

1 + t. (20)

Then, let

S = {1,
√

2} and T = {h · 21−p}h=0,1,...,2p−1−1

be the variation domains of, respectively, σ and τ , and
let

1− = 1− 21−p.

Since T ⊂ [0, 1−], a second step is the approximation
of F (s, t) on {1,

√
2} × [0, 1−] by a bivariate polynomial

P (s, t). The function F being linear with respect to its
first variable, a natural choice for P is

P (s, t) = 2−p−1 + s · a(t), (21)

with a(t) a univariate polynomial that approximates√
1 + t on [0, 1−]. The third and last step is the evaluation

of P at (σ, τ) by a finite-precision, straight-line program
P , the resulting value P(σ, τ) being assigned to v.

Intuitively, if a(t) is “close enough” to
√

1 + t over the
whole interval [0, 1−] and if P evaluates P “accurately
enough” on the whole domain S ×T then, in particular,
the resulting value v should be close enough to ℓ+2−p−1

in the sense of (18). This claim is made precise by the
next lemma.

Lemma 1: Given p, σ, τ , a, P , P as above, let α(a) be
the approximation error defined by

α(a) = max
t∈[0,1−]

∣∣√1 + t− a(t)
∣∣ ,

and let ρ(P) be the rounding error defined by

ρ(P) = max
(s,t)∈S×T

|P (s, t)− P(s, t)| .

Let further v = P(σ, τ). If
√

2 · α(a) + ρ(P) < 2−p−1 (22)

then v satisfies (18).

Proof: Using the definitions of F and P , we have
∣∣(ℓ + 2−p−1)− v

∣∣ = |F (σ, τ)− P(σ, τ)|
≤ |F (σ, τ)− P (σ, τ)|

+ |P (σ, τ)− P(σ, τ)|
≤ σ

∣∣√1 + τ − a(τ)
∣∣ + ρ(P).

Since 1 ≤ σ ≤
√

2 and τ ∈ [0, 1−], it follows that
∣∣(ℓ + 2−p−1)− v

∣∣ ≤
√

2 · α(a) + ρ(P),

which concludes the proof.
It remains to find a polynomial approximant a to-

gether with an evaluation program P so that α(a) and
ρ(P) satisfy (22). Since α(a) and ρ(P) may be real num-
bers, a certificate will consist in computing two dyadic
numbers dα and dρ such that

α(a) ≤ dα, ρ(P) ≤ dρ,
√

2 · dα + dρ < 2−p−1.

The construction of a and P is highly context-dependent:
it is guided by both the value of p and some features of
the target processor (register precision k, instruction set,
latencies, degree of parallelism,...). In the two paragraphs
below we illustrate how to choose a and P in the case
where (k, p) = (32, 24).

3.1.1 Constructing a polynomial approximant

Since P in (21) will be evaluated at run-time, a small
degree for a is usually preferred. One may guess the
smallest possible value of deg(a) as follows. The round-
ing error ρ(P) in (22) being non-negative, a must satisfy

α(a) < 2−p−3/2. (23)

Now let R[t]d be the ring of univariate real polynomials
of degree d ∈ N and recall (for example from [10, §3.2])
that the minimax polynomial of degree d with respect to√

1 + t on [0, 1−] is the unique a∗ ∈ R[t]d such that

α∗
d := α(a∗) ≤ α(a), for all a ∈ R[t]d. (24)

Thus, by combining (23) and (24),

α∗
deg(a) < 2−p−3/2.

A lower bound on deg(a) can then be guessed by esti-
mating α∗

d numerically for increasing values of d until
2−p−3/2 is reached.

For example, for p = 24 the degree of a must sat-
isfy α∗

deg(a) < 2−25.5. Comparing to the estimations
(computed using e.g. Remez’ algorithm (available for
example in Sollya1; see also [10, §3.5] and [11])) in Table 1
indicates that a should be of degree at least 8.

TABLE 1

Numerical estimations of α∗
d for 5 ≤ d ≤ 10.

d 5 6 7 8 9 10

− log2(α∗

d
) 19.58 22.47 25.31 28.12 30.89 33.65

1. http://sollya.gforge.inria.fr/
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Once we have an idea of the smallest possible degree
for a, it remains to find a machine representation of a. For
this representation, a typical choice is the monomial basis
1, t, t2, . . . together with some coefficients a0, a1, a2, . . .
that are exactly representable using at most k bits. Con-
tinuing the previous example where k = 32, it turns out
that, in this case, truncating the Remez coefficients is
enough and gives a(Y ) =

∑8
i=0 aiY

i, where

a0 = 1, and, for 1 ≤ i ≤ 8, ai = (−1)
i+1

Ai · 2−31.
(25)

The values found for each Ai are displayed in Listing 2.
Each of those integers can be stored using only 32 bits.
In addition, notice that

A8 ≤ · · · ≤ A2 ≤ A1 ≤ A0. (26)

A certified infinite-norm computation (implemented for
example in Sollya; see also [12]) applied to this particular
polynomial gives a bound less than 2−25.5, as required
by (23). (The computed bound has the form 2−25.972....)

3.1.2 Writing an evaluation program

The evaluation program P is typically a piece of C
code that implements a finite-precision computation of
P (s, t). It should be accurate enough in the sense of (22)
and, since we favor latency (rather than throuput, for
example), as fast as possible.

Such an implementation will not require using
floating-point arithmetic, and fixed-point arithmetic will
suffice to evaluate P (s, t) accurately enough. In addition,
we have the lemma below, which shows that the input
(s, t) and the output P (s, t) both have a fairly small
range.

Lemma 2: s ∈ {1,
√

2}, t ∈ [0, 1−], and P (s, t) ∈ (1, 2).
Proof: The ranges for s and t are clearly S and T .

Let us now find the range of P (s, t). It follows from the
definition of α(a) and the bound in (23) that

√
1 + t− 2−p−3/2 < a(t) <

√
1 + t + 2−p−3/2. (27)

Thus, using t ≥ 0 gives a(t) > 1 − 2−p−3/2. Using t ≤
1− = 1− 21−p gives a(t) <

√
2− 21−p + 2−p−3/2 ≤

√
2−

2−p−3/2. It the follows from 1 ≤ s ≤
√

2 and

1− 2−p−3/2 < a(t) <
√

2− 2−p−3/2

that P (s, t) = 2−p−1 + s · a(t) lies in the range (1, 2).
With α(a) ≤ 2−25.972... as in the previous paragraph, a

sufficient condition on ρ(P) for (22) to be satisfied is

ρ(P) < 2−25 −
√

2 · 2−25.972... = 2−26.840....

Rounding the evaluation point. When designing an
evaluation program P that achieves this accuracy, a
preliminary step is to make the input (σ, τ) machine-
representable. On the one hand, the binary expansion of
τ is 0.mλ+1 · · ·mp−1 and thus, since λ is non-negative, τ
is already representable using k bits provided p− 1 ≤ k.

On the other hand, writing RNk for rounding-to-nearest
in precision k, we shall replace σ defined in (6) by

σ̂ =

{
1, e′ even,

RNk(
√

2), e′ odd.
(28)

The lemma below gives an upper bound on the loss of
accuracy that occurs when rounding the input (σ, τ) to
(σ̂, τ).

Lemma 3: Given p, k, s, t, a, P , P as above, let Ŝ =
{1, RNk(

√
2)} and define

ρ̂(P) = max
(s,t)∈Ŝ×T

|P (s, t)− P(s, t)|.

Then
ρ(P) < 2−k+1/2 + ρ̂(P).

Proof: Let (s, t) ∈ Ŝ × T . Writing ŝ = RNk(s), we
deduce from (21) that

|P (s, t)− P (ŝ, t)| = |s− ŝ| · |a(t)|.

On the one hand, by definition of rounding-to-nearest
in precision k, we have |s − ŝ| ≤ 2−k. On the other
hand, it follows from (27) that 0 < a(t) <

√
2. Therefore,

|P (s, t)−P (ŝ, t)| < 2−k+1/2 and, by applying the triangle
inequality to the definition of ρ(P),

ρ(P) < 2−k+1/2 + max
(s,t)∈S×T

|P (ŝ, t)− P(s, t)| .

Now, P(s, t) = P(ŝ, t) and the conclusion follows.
Applying Lemma 3 with k = 32 shows that we are left

with finding an evaluation program P such that

ρ̂(P) ≤ 2−26.840... − 2−31.5 = 2−26.899.... (29)

Designing an evaluation program. By evaluation pro-
gram, we mean a division-free straight-line program,
that is, roughly, a set of instructions computing P (s, t)
from s, t, p and the ai’s by using only additions, sub-
tractions and multiplications, without branching. In our
context we shall assume first unbounded parallelism
and thus parenthesize the expression P (s, t) in order
to expose as much ILP as we can. An example of such
parenthesization is

P (s, t) =
[((

2−p−1 + s · (a0 + a1t)
)

+ a2 · (s · t2)
)

+a3t · (s · t2)
]

+
[(

t2 · (s · t2)
)
·
(
(a4 + a5t) + t2 ·

(
(a6 + a7t) + a8t

2
))]

.

Note that t2 and s·t2 are common subexpressions. With
unlimited parallelism and latencies of 1 for addition, of 3
for multiplication, and of 1 for multiplication by a power
of two (that is, a shift), such a parenthesization gives a
latency of 13 (compared to 34 for Horner’s scheme).

Accuracy issues. In our example, the rounding error
of the program P that implements in fixed-point arith-
metic the above parenthesization must satisfy (29). This
requirement will be checked in Section 4.4.
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For now, let us notice that this parenthesization can in
fact be implemented using 32-bit unsigned integers only,
which avoids to loose one bit of precision because of the
need to store the sign of the coefficients ai. Indeed, an
appropriate choice of arithmetic operators can be found,
that ensures that all intermediate variables are positive:

P (s, t) =
[((

2−p−1 + s · (a0 + a1t)
)
− |a2| · (s · t2)

)

+a3t · (s · t2)
]

−
[(

t2 · (s · t2)
)
·

(
(|a4| − a5t) + t2 ·

(
(|a6| − a7t) + |a8|t2

))]
. (30)

3.2 Correction to ensure correct rounding

For each rounding mode ◦ we will now obtain n = ◦(ℓ)
by correcting w in (16) and (17). How to correct w
depends on whether w is above or below ℓ. Thus the
rounding algorithms below rely on either w ≥ ℓ or
w > ℓ, which can both be implemented exactly (see
Subsection 4.5).

3.2.1 Rounding to nearest

An algorithm producing n as in (9) is:

if w ≥ ℓ then
n := truncate w after p− 1 fraction bits

else
n := truncate w + 2−p after p− 1 fraction bits

If vp = 0 the above algorithm always returns the value
w; this is the desired result, for in this case w is already
a floating-point number and thus (17) implies (9). If vp =
1 then w is the midpoint between the two consecutive
floating-point numbers w− 2−p and w + 2−p: the former
is returned when w > ℓ, the latter when w < ℓ, and (17)
implies (9) in both cases; the case w = ℓ never happens
because ℓ cannot be a midpoint.

3.2.2 Rounding down

An algorithm producing n as in (10) is:

if w > ℓ then
n := truncate w − 2−p after p− 1 fraction bits

else
n := truncate w after p− 1 fraction bits

If vp = 1 then the above algorithm always returns the
floating-point number w − 2−p which, because of (17),
satisfies (10) as required. If vp = 0 then w is already a
floating-point number: if w > ℓ, the algorithm returns
w − 21−p, which is the floating-point predecessor of
w, by truncating the midpoint w − 2−p; if w ≤ ℓ, the
returned value is w; in both cases, using (17) yields (10),
as required.

3.2.3 Rounding up

An algorithm producing n as in (11) is:

if w ≥ ℓ then
n := truncate w + 2−p after p− 1 fraction bits

else
n := truncate w + 21−p after p− 1 fraction bits

If vp = 1 then the above algorithm always produces the
floating-point number w + 2−p which, because of (17),
satisfies (11) as required. If vp = 0 then w is already a
floating-point number: if w ≥ ℓ, the algorithm returns w;
if w < ℓ, it returns w + 21−p, which is the floating-point
successor of w; in both cases, using (17) yields (11), as
required.

3.3 Summary: main steps of the computation of ◦(ℓ)
The box “Compute ◦(ℓ)” in Figures 1 and 2 can be
replaced by the ones in Figure 3 below. This figure re-
capitulates the main steps of the approach we have pro-
posed in Sections 3.1 and 3.2 for deducing the correctly-
rounded value ◦(ℓ) from m and e.

x = m · 2e

Compute m′ and the parity of e′

Compute s and t

Compute v ≈ P (s, t)

Truncate v into w

Round by correcting w

◦(ℓ)

Fig. 3. Computation of ◦(ℓ) for ◦ ∈ {RN, RD, RU}.

4 IMPLEMENTATION DETAILS

The above square root method, which is summarized
in Figures 1–3, can be implemented by operating exclu-
sively on integers. We will now detail such an imple-
mentation, in C and for single precision floating-point
numbers; by “single precision” we mean the basic format
binary32 of [2], for which storage bit-width, precision,
and maximum exponent are, respectively,

k = 32, p = 24, emax = 127.

When writing the code we have essentially assumed
unbounded parallelism and that 32-bit integer arithmetic
is available. Additional assumptions on the way input
and output are encoded and on which operators are
available, are as follows.
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Input and output encoding. The operand x and
result r of sqrt are implemented as integers X, R ∈
{0, 1, . . . , 232 − 1} whose bit strings correspond to the
standard binary format encoding of floating-point data
(see [2, §3.4]). Our implementation of sqrt will thus be
a C fonction as in line 1 of Listing 1, which returns the
value of R.

Table 2 indicates some useful relationship between
x and X that are a consequence of this encoding. (Of
course the same would hold for r and R.) Also, the bit
string of X must be interpreted as follows: its first bit
X31 gives the sign of x as x = (−1)X31 |x|; the next 8 bits
encode the biased exponent E of x as E =

∑7
i=0 Xi+232

i;
the last 23 bits define the so-called trailing significand
field. Finally, if x is (sub)normal then

• the biased exponent E is related to the exponent e
in (1) as follows:

E = e + 127− [λ > 0], (31)

where [λ > 0] = 1 if x is subnormal, 0 otherwise;
• the trailing significand field carries the bits of m

in (2) as follows:

X22 . . . X0 = 0 . . . 01︸ ︷︷ ︸
λ bits

mλ+1 . . .m23. (32)

Available operators. Besides the usual operators like
+, -, <<, >>, &, |, ˆ, we assume we have a fast
way to compute the following functions for A,B ∈
{0, 1 . . . , 232 − 1}:

• max(A,B);

• the number nlz(A) of leading (that is, leftmost) zeros
of the bit string of A;

• ⌊AB/232⌋, whose bit string contains the 32 most
significant bits of the product AB.

In our C codes, the operators corresponding to these
functions will be respectively written max, nlz, and mul

for readability. More precisely, with the ST231 target in
mind, we shall assume that the latencies of max and
nlz are of 1 cycle, while the latency of mul is of 3
cycles; furthermore, we shall assume that at most 2
instructions of type mul can be launched simultaneously.
(How to implement max, nlz, and mul is detailed in
Appendix A.)

From Sections 4.2 to 4.5, the operand x will be a positive
(sub)normal number. In this case, X31 = 0 and, since
the result r is a positive normal number, R31 = 0
as well. Therefore, it suffices to determine the 8 bits
R30, . . . , R23, which give the (biased) result exponent
D =

∑7
i=0 Ri+232

i, and the 23 bits R22, . . . , R0, which
define the trailing significand field of the result.

4.1 Handling special operands

For square root the floating-point operand x is consi-
dered special when it is ±0, +∞, less than zero, or

NaN. Table 2 thus implies that x is special if and only if
X ∈ {0} ∪ [231 − 223, 232), that is,

(X − 1) mod 232 ≥ 231 − 223 − 1. (33)

All special operands can thus be detected by means
of (33).

The results required by the IEEE 754-2008 standard for
the square root of such operands are listed in Table 3.

TABLE 3

Square root results for special operands

Operand x +0 +∞ −0 less than zero NaN

Result r +0 +∞ −0 qNaN qNaN

Note that there are essentially only two cases to con-
sider: r is either x or qNaN. The first case occurs when
x ∈ {+0,+∞,−0}, which, when x is known to be special,
is a condition equivalent to

X ≤ 231 − 223 or X = 231. (34)

If condition (34) is not satisfied then a quiet NaN is
constructed by setting the bits X30, . . . , X22 to 1 while
leaving X31 and X21, . . . , X0 unchanged; this can be
done by taking the bitwise OR of X and of the constant

231 − 222 = (7FC00000)16,

whose bit string consists of 1 zero followed by 9 ones
followed by 22 zeros. Note that the quiet NaN thus
produced keeps as much of the information of X as
possible, as recommended in [2, §6.2]; in particular, the
payload is preserved when quieting an sNaN (also, if x
is a qNaN then we return x, as recommended).

Using the fact that the addition of two unsigned int

is done modulo 232 and taking the hexadecimal values of
the constants in (33) and (34), we finally get the following
C code for handling special operands:

if ( (X + 0xFFFFFFFF) >= 0x7F7FFFFF ) {
if ( (X <= 0x7F800000) || (X == 0x80000000) )

return X;
else

return ( X | 0x7FC00000 ); // qNaN
}
else
{
... // Code for non-special operands,

// detailed in Sections 4.2 to 4.5
// as well as in Listing 1.

}

In the above C code, notice that the four operations +,
<=, ==, and | on X are independent of each other.

4.2 Computing the biased value of d and parity of e′

By Property 2.1 the result r cannot be subnormal. There-
fore, by applying (31) we deduce that the biased value
D of the exponent d of r satisfies

D = d + 127.
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TABLE 2

Relationship between floating-point datum x and its encoding into integer X =
∑31

i=0 Xi2
i.

Value or range of integer X Floating-point datum x Bit string X31 . . . X0

0 +0 00000000000000000000000000000000

(0, 223) positive subnormal number 000000000X22 . . . X0 with some Xi = 1

[223, 231
− 223) positive normal number 0 X30X29X28X27X26X25X24X23︸ ︷︷ ︸

not all ones, not all zeros

X22 . . . X0

231
− 223 +∞ 01111111100000000000000000000000

(231
− 223, 231

− 222) sNaN 0111111110X21 . . . X0 with some Xi = 1

[231
− 222, 231) qNaN 0111111111X21 . . . X0

231
−0 10000000000000000000000000000000

(231, 231 + 223) negative subnormal number 100000000X22 . . . X0 with some Xi = 1

[231 + 223, 232
− 223) negative normal number 1 X30X29X28X27X26X25X24X23︸ ︷︷ ︸

not all ones, not all zeros

X22 . . . X0

232
− 223

−∞ 11111111100000000000000000000000

(232
− 223, 232

− 222) sNaN 1111111110X21 . . . X0 with some Xi = 1

[232
− 222, 232) qNaN 1111111111X21 . . . X0

In order to compute D from X , we use first the expres-
sion of d in (8) and the relation (31) to obtain

D = ⌊(E − λ + [λ > 0] + 127)/2⌋. (35)

Then, using (32) and the second and third rows of
Table 2, we deduce that the number of leading zeros
of X is λ + 8 when λ > 0, and at most 8 when λ = 0.
Hence

λ = M − 8, M = max(nlz(X), 8). (36)

An immediate consequence of this is that [λ > 0] = [M >
8]. However, more instruction-level parallelism can be
obtained by observing in Table 2 that,

for x positive (sub)normal, [λ > 0] = [X < 223].
(37)

The formula (35) for the biased exponent D thus becomes

D = ⌊(E −M + [X < 223] + 135)/2⌋. (38)

A possible C code implementing (38) is as follows:

Z = nlz(X); E = X >> 23; B = X < 0x800000;

M = max(Z,8); C = B + 135;

D = ( E - M + C ) >> 1;

Remark that in rounding-up mode Property 2.3 requires
that the integer D obtained so far be further incremented
by 1 when

m = 2− 2−23 and e is odd. (39)

(This correction has also been illustrated in Figure 2.)
Since (39) implies that x is a normal number, D must
be replaced by D + 1 if and only if X ≥ 223 and the
last 24 bits of X are 1 zero followed by 23 ones. An
implementation of this update is thus:

d1 = 0x00FFFFFF; d2 = 0x007FFFFF;

D = D + ((X >= 0x800000) & ((X & d1) == d2));

In fact, this treatment specific to rounding up can be
avoided as follows. Recall that n = ◦(ℓ) is in [1, 2] and

has at most 23 fraction bits, and that we want the bit
string 0R30 . . . R23R22 . . . R0 of the result r. Instead of
concatenating the bit string R30 . . . R23 of D and the bit
string R22 . . . R0 of the fraction field of r, one can add to
(D − 1) · 223 the integer n · 223:

• If n = (1.n1 . . . n23)2 then this addition corresponds
to (D − 1) · 223 + 223 + (0.n1 . . . n23)2 · 223 and since
no carry propagation occurs, it simply concatenates
the bit string of D and the bit string n1 . . . n23.

• If n = (10.0 . . . 0)2 then this addition corresponds to
(D−1) ·223 +2 ·223 = (D+1) ·223. Hence R encodes
the normal number r = (1.0 . . . 0)2 · 2d+1.

Consequently, we have implemented the computation
of D − 1 using the formula below, which is a direct
consequence of (38):

D − 1 = ⌊(E −M + [X < 223] + 133)/2⌋. (40)

This corresponds to the computation of variable Dm1

at line 7 of Listing 1. The only difference with the
implementation of D given below (38) occurs at line 6,
where we perform B + 133 instead of B + 135.

The parity of e′ in (5) will be needed in Sections 4.3
and 4.5. Using (31), (36) and (37), we deduce that e′ is
even if only if the last bit of E −M + [X < 223] is equal
to 1. Since the latter expression already appears in (38)
or (40), an implementation follows immediately:

even = (E - M + B) & 0x1;

An alternative code, which uses only logical operators,
consists in taking the XOR of the last bit of E+[X < 223]
and of the last bit of M :

even = ((E & 0x1) | B) ˆ (M & 0x1);

4.3 Computing the evaluation point (σ̂, τ)

In precision k = 32, rounding
√

2 to nearest gives the
Q1.31 number 1 + 889516852 · 2−31. Thus σ̂ in (28) is
given by

σ̂ = S · 2−31, (41)
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Listing 1

Square root implementation for the binary32 format, assuming a non-special operand and rounding to nearest.

1 unsigned int binary32sqrt( unsigned int X )
2 {
3 unsigned int B, C, Dm1, E, even, M, S, T, Z, P, Q, V, W;
4
5 Z = nlz(X); E = X >> 23; B = X < 0x800000;
6 M = max(Z,8); C = B + 133;
7 even = ((E & 0x1) | B) ˆ (M & 0x1); T = ( X << 1 ) << M; Dm1 = ( E - M + C ) >> 1;
8 S = 0xB504F334 & ( 0xBFFFFFFF + even );
9

10 V = poly_eval(S, T); // Bivariate polynomial evaluation: S [1.31], T [0.32], V [2.30]
11
12 W = V & 0xFFFFFFC0; // Truncation after 24 fraction bits: W [2.24]
13
14 P = mul(W, W); Q = (( T >> 1) | 0x80000000) >> (even + 2);
15 if( P >= Q )
16 return (Dm1 << 23) + (W >> 7);
17 else
18 return (Dm1 << 23) + ((W + 0x00000040) >> 7);
19 }

with S the integer in [0, 232) such that S = 231 if e′ is
even, and S = 231 + 889516852 = (B504F334)16 if e′ is
odd. This integer S will be used in our code to encode
σ̂ and its bit string has the form

S31S30S29 . . . S0 =

{
100 . . . 0, if e′ is even,

10 ∗ . . . ∗, if e′ is odd.

Since S31S30 = 10 in both cases, selecting the right bit
string can be done by taking the bitwise AND of the
constant (B504F334)16 = (10 ∗ . . . ∗)2 and of

231 + 230 − 1 + [e′ is even] =

{
110 . . . 0, if e′ is even,

101 . . . 1, if e′ is odd.

Therefore, since 231 + 230 − 1 = (BFFFFFFF )16 and
given the value of the integer even (see Subsection 4.2),
computing S can be done as shown at line 8 in Listing 1.

The number τ in (19) satisfies τ = 0.mλ+1 . . .m23.
Therefore, it can be viewed as a Q0.32 number

τ = T · 2−32, (42)

where T =
∑31

i=0 Ti2
i is the integer in [0, 232) such that

T31 . . . T0 = mλ+1 . . .m23 0 · · · 0︸ ︷︷ ︸
λ+9

. (43)

By (32) and (36), we see that T can be computed by
shifting X left M + 1 positions. Since M is not imme-
diately available, more instruction-level parallelism can
be exposed by implementing this shift as in line 7 of
Listing 1.

4.4 Computing the approximate polynomial value v

An implementation of the evaluation scheme (30) using
32-bit unsigned integers and the relation (25), is de-
scribed in Listing 2. Notice that the multiplications by
coefficients equal to a power of two (like A1, A2, and
A8) are implemented as simple shifts.

Listing 2

Bivariate polynomial evaluation code.

//--------------------------------------------
// A0 = 0x80000000;
// A1 = 0x40000000;
// A2 = 0x10000000;
// A3 = 0x07fe93e4;
// A4 = 0x04eef694;
// A5 = 0x032d6643;
// A6 = 0x01c6cebd;
// A7 = 0x00aebe7d;
// A8 = 0x00200000;
//--------------------------------------------
static inline
unsigned int poly_eval( unsigned int S,

unsigned int T )
{

unsigned int r0 = T >> 2;
unsigned int r1 = 0x80000000 + r0;
unsigned int r2 = mul(S,r1);
unsigned int r3 = 0x00000020 + r2;
unsigned int r4 = mul(T,T);
unsigned int r5 = mul(S,r4);
unsigned int r6 = r5 >> 4;
unsigned int r7 = r3 - r6;
unsigned int r8 = mul(T,0x07fe93e4);
unsigned int r9 = mul(r5,r8);
unsigned int r10 = r7 + r9;
unsigned int r11 = mul(r4,r5);
unsigned int r12 = mul(T,0x032d6643);
unsigned int r13 = 0x04eef694 - r12;
unsigned int r14 = mul(T,0x00aebe7d);
unsigned int r15 = 0x01c6cebd - r14;
unsigned int r16 = r4 >> 11;
unsigned int r17 = r15 + r16;
unsigned int r18 = mul(r4,r17);
unsigned int r19 = r13 + r18;
unsigned int r20 = mul(r11,r19);
unsigned int r21 = r10 - r20;
return r21;

}
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Assuming a latency of 1 for additions, subtractions
and shifts, a latency of 3 for multiplications, and that
at most 2 multiplications can be started simultaneously,
this code can be scheduled in at most 13 cycles, as shown
in Table 4 below. Notice that three issues are enough for
that particular polynomial evaluation code.

TABLE 4

Feasible scheduling on ST231.

Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r0 r4 r14

Cycle 1 r1 r8 r12

Cycle 2
Cycle 3 r5 r15 r16

Cycle 4 r2 r13 r17

Cycle 5 r18

Cycle 6 r6 r9 r11

Cycle 7 r3

Cycle 8 r7 r19

Cycle 9 r10 r20

Cycle 10
Cycle 11
Cycle 12 r21

The numerical quality of the code in Listing 2 has been
verified using the Gappa software (see http://lipforge.
ens-lyon.fr/www/gappa/ and [13]; see also [14, §4] for
some guidelines on how to translate a C code into
Gappa syntax). With this software, we first checked that
all variables r0, . . . r21 are indeed integers in the range
[0, 232). Then we used Gappa to compute a certified upper
bound on the final rounding error; the bound produced
is less than 2−27.93 and thus less than the sufficient
bound in (29).

4.5 Implementing the rounding tests

There the only non-trivial part is to evaluate the ex-
pressions w ≥ ℓ (used when rounding to nearest and
rounding up; see §3.2.1 and §3.2.3), and w > ℓ (used
when rounding down; see § 3.2.2). It turns out that such
comparisons can be implemented exactly by introducing
three integers P , Q, Q′ which we will define below by
considering w2 and ℓ2 instead of w and ℓ.

Truncating v = V · 2−30 after 24 fraction bits yields

w = W · 2−30, (44)

with W the integer in [0, 232) whose bit string is

[ 0 1 v1 · · · v24 0 0 0 0 0 0 ].

On the one hand let P be the integer in [0, 232) given by

P = mul(W,W ).

It then follows from (44) and the definition of mul that

w2 − 2−28 < P · 2−28 ≤ w2. (45)

On the other hand, ℓ2 = σ2m′ is equal to either

m′ = (1.mλ+1mλ+2 . . .m23)2

or

2m′ = (1mλ+1.mλ+2 . . .m23)2,

and can be represented exactly with 24 − λ bits. Since
24− λ ≤ 32, several encodings into a 32-bit unsigned
integer are possible. Because of (45) and the need to
compare ℓ2 with w2, a natural choice is to encode ℓ2

into the integer Q ∈ [0, 232) such that

ℓ2 = Q · 2−28. (46)

An implementation of the computation of Q from T
in (42-43) and from the parity of e′ can be found at line
14 of Listing 1.

4.5.1 Rounding to nearest and rounding up

Once the values of P and Q are available, the condition
w ≥ ℓ used when ◦ ∈ {RN, RU} can be evaluated thanks
to the following characterization:

Property 4.1: The inequality w ≥ ℓ holds if and only if
the expression P >= Q is true.

Proof: Since w and ℓ are non-negative, w ≥ ℓ is
equivalent to w2 ≥ ℓ2. If w2 ≥ ℓ2 then, by (46) and the left
inequality in (45), we deduce that P + 1 > Q. Since both
P and Q are integers, this latter condition is equivalent
to P ≥ Q. Conversly, if P ≥ Q then, multiplying both
sides by 2−28 gives P ·2−28 ≥ ℓ2 and thus, using the right
inequality in (45), w2 ≥ ℓ2. Therefore w ≥ ℓ if and only
if P ≥ Q or, equivalently, if and only if the C expression
P >= Q is true.

Together with the algorithm of Section 3.2.1, this prop-
erty accounts for the implementation of rounding to
nearest at lines 14 to 18 in Listing 1.

Since rounding up depends also on the condition
w ≥ ℓ (see Section 3.2.3), this rounding mode can
be implemented by simply replacing lines 15 to 18 in
Listing 1 by the following code fragment:

15if( P >= Q )
16return (Dm1 << 23) + ((W + 0x00000040) >> 7);
17else
18return (Dm1 << 23) + ((W + 0x00000080) >> 7);

4.5.2 Rounding down

According to the algorithm in Section 3.2.2 rounding
down does not rely on the condition w ≥ ℓ but on the
condition w > ℓ instead.

In order to implement the condition w > ℓ, let Q′ ∈
{0, 1} be such that Q′ = 1 if and only if equality P ·2−28 =
w2 occurs in (45), that is, if and only if P = W 2 ·2−32. The
latter equality means that W has at least 16 trailing zeros;
since the bit string of W is [ 0 1 v1 · · · v24 0 0 0 0 0 0 ] this is
equivalent to deciding whether v15 = v16 = · · · = v24 = 0
or not. Hence the code below for computing Q′:

Qprime = ( V & 0xFFC0 ) == 0x0;

Property 4.2: The inequality w > ℓ holds if and only if
the expression P >= Q + Qprime is true.



DRAFT - OCTOBER 2008. 11

Proof: Since w and ℓ are non-negative, w ≥ ℓ is
equivalent to w2 ≥ ℓ2. We consider the two cases Q′ = 1
and Q′ = 0 separately. Assume first that Q′ = 1. Then,
using the equality in (45) together with (46), we see that
w > ℓ is equivalent to P > Q, that is, since P and Q
are integers, to P ≥ Q + 1 = Q + Q′. Assume now that
Q′ = 0. In this case P ·2−28 < w2 and thus P ≥ Q implies
w2 > Q·2−28 = ℓ2; conversely, if w2 > Q·2−28 then, using
the left inequality in (45), we find P + 1 > Q and thus
P ≥ Q. Therefore, w > ℓ if and only if P ≥ Q + Q′.
Now, recalling that ℓ ∈ [1, 2), we deduce from (46) that
Q < 230. Hence Q + Q′ always fits into an unsigned
32-bit integer. Consequently, the mathematical condition
P ≥ Q + Q′ is equivalent to the C condition P >= Q +

Qprime.
Together with the algorithm of Section 3.2.2, the above

property gives the follwing implementation of rounding
down:

15 Qprime = (V & 0x0000FFC0) == 0x0;
16 if( P >= Q + Qprime )
17 return (Dm1 << 23) + ((W - 0x00000040) >> 7);
18 else
19 return (Dm1 << 23) + (W >> 7);

5 EXPERIMENTS WITH THE ST231 CORE

5.1 Some features of the ST231

The ST200 family of VLIW microprocessors originates
from the joint design of the LX by HP Labs and STMicro-
electronics [15]. The ST231 is the most recently designed
core of this family, and is widely used in STMicroelec-
tronics SOCs for multimedia acceleration.

In this processor, that executes up to four integer
instructions per cycle, all arithmetic instructions operate
on the 64 32-bit register file and on the 8 1-bit branch
register file.

Resource constraints must be observed to form proper
instruction bundles containing 1 to 4 instructions: only
one control instruction, one memory instruction and up
to two 32 × 32 → 32 multiplications of type mul are
enabled. Other instructions can be freely used, but are
limited to integer only arithmetic, without division.

Another specificity of this architecture is that any
immediate form of an instruction is by default encoded
to use small immediates (9-bit signed), but can extended
to use extended immediates (32-bit), at the cost of one
instruction per immediate extension. For instance up to
two multiplications mul each using a 32-bit immediate
can be encoded in one bundle. This makes the usage
of long immediate constants such as polynomial coeffi-
cients very efficient from a memory system standpoint.

To enable the reduction of conditional branches, the
architecture provides a partial predication support in the
form of conditional selection instructions. In the assem-
bly line below, $q, $r, $s are 32-bit integer registers,

$b is a 1-bit branch register that can be defined through
comparison or logical instructions:

slct $s = $b, $q, $r

This fragment of assembly code writes $q in $s if
$b is true, $r otherwise. An efficient if-conversion algo-
rithm based on the psi-SSA representation is used in the
Open64 compiler to generate partially predicated code
based on the slct instruction [16].

The retargeting of the Open64 compiler technology
to the ST200 family is able to generate efficient, dense,
branch-free code for all the codes described in this
article, requiring only the usage of one specific intrinsic
to select the nlz instruction (number of leading zeros,
see Section 4).

5.2 Performances on ST231

This section presents some numerical results obtained
with the complete C implementation of this paper com-
piled with the ST200 VLIW compiler, using the optimiza-
tion level -O3. The Table 5 shows the latency, the number
of integer instructions, and the number of instructions
per cycle (IPC), for all rounding modes.

For comparison, a version of our code that does not
support subnormal numbers has also been implemented.
Removing the requirement of supporting subnormal
numbers allows to simplify our code in Section 4 and
to introduce further optimizations.

Thanks to the if-conversion technique mentioned in
Section 5.1, the generated assembly code is a fully if-
converted straigh-line program. In each case, the latency
is the same regardless of the nature of the input (generic
numbers or special values). And in both cases (with or
without support of subnormal numbers) we can also
observe that the latency is the same for all rounding
modes.

Concerning the code we have detailed in Section 4,
which supports subnormal numbers, the critical path is
composed by:

• the computation of τ (second coordinate of the
evaluation point): 3 cycles;

• the computation of the value v (polynomial evalua-
tion): 13 cycles;

• the rounding algorithm (truncation into w, product,
test and selection): 1 + 3 + 1 + 1 = 6 cycles;

• and the final result selection: 1 cycle.

Consequently, the critical path gives a theoretical latency
of 23 cycles, which corresponds exactly to the latency ob-
served in practice. In other words, our C implementation
of Section 4 has been optimally scheduled by the ST200
VLIW compiler.

Now assuming that subnormal numbers are not sup-
ported, the computation of τ becomes:

T = X << 9;

This line costs 1 cycle instead of the 3 cycles needed
before. In this case the critical path gives a theoretical
latency of 21 cycles which, again, is achieved in practice.
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Subnormal numbers supported Subnormal numbers not supported

Latency Number of integer instructions IPC Latency Number of integer instructions IPC

RN 23 62 2.70 21 56 2.67

RU 23 63 2.74 21 57 2.71

RD/RZ 23 65 2.83 21 59 2.81

TABLE 5

Performances obtained for the ST231 VLIW integer processor.

Therefore, an interesting conclusion is that with our
approach and on targets like the ST231, the overhead
due to the support of subnormal numbers can be kept
fairly small.

APPENDIX A
SOFTWARE IMPLEMENTATION OF THE max,
nlz, AND mul OPERATORS

Maximum of two unsigned integers

static inline unsigned int max(unsigned int A,
unsigned int B)

{ return A > B ? A : B; }

Number of leading zeros of an unsigned integer

static inline unsigned int nlz(unsigned int X)
{
unsigned int Z = 0;
if (X == 0) return(32);
if (X <= 0x0000FFFF) {Z = Z +16; X = X <<16;}
if (X <= 0x00FFFFFF) {Z = Z + 8; X = X << 8;}
if (X <= 0x0FFFFFFF) {Z = Z + 4; X = X << 4;}
if (X <= 0x3FFFFFFF) {Z = Z + 2; X = X << 2;}
if (X <= 0x7FFFFFFF) {Z = Z + 1;}
return Z;
}

Since in the generic case x cannot be equal to zero, the
first line of the previous listing

if (X == 0) return(32);

can be skipped.

Higher half of a 32-bit integer product

static inline unsigned int mul(unsigned int A,
unsigned int B)

{
unsigned long long int t0 = A;
unsigned long long int t1 = B;
unsigned long long int t2 = (t0 * t1) >> 32;
return t2;

}
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