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Laboratoire LIP, École normale supérieure de Lyon — 46, allée d’Italie, 69364 Lyon cedex 07, France

Compilation Expertise Center, STMicroelectronics — 12, rue Jules Horowitz BP217, 38019 Grenoble cedex, France

Abstract

This paper deals with the design and implementation of

low latency software for binary floating-point division with

correct rounding to nearest. The approach we present here

targets a VLIW integer processor of the ST200 family, and

is based on fast and accurate programs for evaluating some

particular bivariate polynomials. We start by giving ap-

proximation and evaluation error conditions that are suf-

ficient to ensure correct rounding. Then we describe the

heuristics used to generate such evaluation programs, as

well as those used to automatically validate their accuracy.

Finally, we propose, for the binary32 format, a complete

C implementation of the resulting division algorithm. With

the ST200 compiler and compared to previous implemen-

tations, the speed-up observed with our approach is by a

factor of almost 1.8.

Keywords: binary floating-point division, correct round-

ing, polynomial evaluation, code generation and validation,

VLIW integer processor.

1. Introduction

Although floating-point divisions are less frequent in ap-

plications than other basic arithmetic operations, reducing

their latency is often an issue [16]. Since low latency im-

plementations may typically be obtained by expressing and

exploiting instruction parallelism, intrinsically parallel al-

gorithms tend to be favored. Some examples are [18, 4] for

hardware, and [11, 19] for software.

In this paper we focus on designing and implementing

low latency floating-point division software for STMicro-

electronics’ ST231 processor. For this 32-bit VLIW integer

processor, various correctly-rounded binary floating-point

division algorithms have already been implemented [19].

There, the lowest latency measured is of 48 cycles; it was

obtained by exposing instruction-level parallelism (ILP) by

means of a suitable combination of univariate polynomial

evaluation and Goldschmidt’s method, in a way similar

to [18]. However, we will see in this paper that much more

ILP can in fact be exposed by relying exclusively on poly-

nomial evaluation, leading to a latency of 27 cycles and thus

a speed-up by a factor of almost 1.8. To get this result we

shall take three main steps, which we summarize now.

As a first step, we extend to division the polynomial-

based method introduced in [8] for square rooting. This

extension provides a set of approximation and evaluation

error conditions that will be proven to be sufficient to ensure

correct rounding.

The second step consists in generating an efficient poly-

nomial evaluation program, and in the automatic validation

of its accuracy. On the one hand, the generation relies on

several heuristics aimed at maximizing ILP exposure. On

the other hand, checking that such a program is accurate

enough turns out to be more involved than for square root,

and will require a specific splitting strategy.

Third, besides the polynomial evaluation program, ad-

ditional algorithms and associated C code sequences are

proposed. Those include sign and exponent computation,

rounding, and handling overflow, underflow and special va-

lues. This provides a complete division code (for rounding

to nearest and without subnormal numbers), optimized for

the ST231 processor yet portable.1

The paper is organized as follows. After some prelimi-

naries and notation in Section 2, the three contributions

above will be described in Sections 3, 4, 5, respectively.

Some experimental results obtained with the ST231 proces-

1An archive containing the complete C code, some test files, and the

assembly code produced by the ST200 compiler is available upon request.



sor and the ST200 compiler will be reported in Section 6,

and we shall conclude in Section 7.

2. Preliminaries and notation

Floating-point data and rounding. The floating-point

data we shall consider are ±0, ±∞, quiet or signaling

Not-a-Numbers (qNaN, sNaN), as well as normal binary

floating-point numbers

x = (−1)
sx · mx · 2ex , (1)

with sx ∈ {0, 1}, mx = (1.mx,1 . . .mx,p−1)2 and ex ∈
{emin, . . . , emax}. (In particular subnormal numbers [1, §3.3]

will not be considered.) The precision p and extremal expo-

nents emin and emax are assumed to be integers such that p ≥ 2
and emin = 1 − emax.

The rounding attribute chosen here is “to nearest even”

(roundTiesToEven [1, §4.3.1]) and will be referred to as RN.

Except for some special input (x, y) for which special va-

lues must be delivered as detailed in Section 5.4, the stan-

dard requires that RN(x/y) be returned whenever x and y
are as in (1).

Correctly rounded division. That RN(x/y) essentially

reduces to a correctly rounded ratio of (possibly scaled) sig-

nificands can be recalled as follows. First, using RN(−x) =
−RN(x) gives

RN(x/y) = (−1)
sr · RN(|x/y|),

where sr is the XOR of sx and sy . Then, taking c = 1 if

mx ≥ my , and 0 otherwise, one has |x/y| = ℓ · 2d, where

ℓ = 2mx/my · 2−c, d = ex − ey − 1 + c. (2)

Since both mx and my are in [1, 2), ℓ is in [1, 2) as well, and

ℓ · 2d will be called the normalized representation of |x/y|.
Tighter enclosures of ℓ can in fact be given:

Property 1. If mx ≥ my then ℓ ∈ [1, 2 − 21−p] else ℓ ∈
(1, 2 − 21−p).

Proof. If mx ≥ my then c = 1, and we deduce from 1 ≤
mx ≤ 2 − 21−p and 0 < 1/mx ≤ 1/my ≤ 1 that 1 ≤ ℓ ≤
2 − 21−p. If mx < my then mx ≤ my − 21−p and thus

ℓ ≤ 2−22−p/my . Hence, using mx ≥ 1 and 1/my > 1/2,

we obtain 1 < ℓ < 2 − 21−p as desired.

These enclosures of ℓ will be used explicitly when handling

underflow in Section 5.3. For now, we simply note that both

of them give RN(ℓ) ∈ [1, 2 − 21−p], so that

RN(|x/y|) = RN(ℓ) · 2d.

If emin ≤ d ≤ emax then we shall return the normal number

RN(x/y) = (−1)
sr · mr · 2

er , where

sr = sx ⊕ sy, mr = RN(ℓ), er = d. (3)

Else, d is either smaller than emin or greater than emax. Since

subnormals are not supported, some special values will be

returned in either case, as detailed in Section 5.3. Thus,

to get RN(x/y) the main task consists in deducing from

mx and my the correctly rounded value RN(ℓ) in (3), the

sign sr and exponent er being computable in parallel and at

lower cost (see Section 5.1).

Correct rounding from one-sided approximations.

Among the many methods known for getting RN(ℓ) (see [5,

§8.6] and the references therein), the one we focus on in

this paper uses one-sided approximations: as shown in [5,

p. 459], this method reduces the computation of RN(ℓ) to

that of an approximation v of ℓ such that

−2−p < ℓ − v ≤ 0. (4)

Here v is representable with, say, k bits while ℓ has in most

cases an infinite binary expansion (1.ℓ1 . . . ℓp−1ℓp . . .)2.

Once such a v is known, correct rounding follows easily

(see [5, p.460] and Section 5.2) and we are left with the task

of deducing from each possible pair (mx,my) a value v that

satisfies (4).

Before presenting in Sections 3 and 4 a novel approach

for computing v in a certified and efficient way, we give

next a brief description of the implementation context.

Software implementation on integer processors. Our

implementation of division is for the binary32 format of [1]:

k = 32, p = 24, emax = 127.

It will consist of a piece of C software using exclusively

32-bit integers, for input/output encoding as well as for in-

termediate variables.

Concerning the input data x, y the standard encoding into

32-bit unsigned integers X, Y is assumed [1, §3.4]. For ex-

ample, the bit string X31 . . . X0 of X =
∑31

i=0 Xi2
i is such

that X31 = sx (sign bit of x),
∑7

i=0 Xi+232
i = ex + 127

(biased exponent of x, for x normal), and Xi = mx,23−i

for i = 0, . . . , 22 (fraction bits of x). The output is encoded

similarly and our division code eventually takes the form a

C function like the one below:

unsigned int binary32div( unsigned int X ,
unsigned int Y ) {...}

Concerning the operations on input or intermediate vari-

ables, we assume available the basic arithmetic and logi-

cal operators +, &, etc. as well as a max instruction and

a multiplier mul defined for A,B ∈ {0, . . . , 232 − 1} as

mul(A,B) = ⌊A · B · 2−32⌋. Here ⌊·⌋ denotes the usual

floor function, and mul thus gives the 32 most significant

bits of the exact product A · B.

Therefore, up to emulating max and mul as shown in

Appendix A, all we need is a C compiler that implements

32-bit arithmetic. However some features of the ST231 pro-

cessor and compiler have influenced the design and opti-

mizations described in Sections 4 and 5. In particular, 4



instructions can be launched simultaneously, among which

at most two mul instructions. Also, the latency of max and

of the other basic operators is 1, while it is 3 for mul.

3 Sufficient conditions for correct rounding

This section gives sufficient conditions for (4) to hold.

To do so we extend to division the bivariate polynomial-

based framework introduced in [8] for computing correctly-

rounded floating-point square roots. A preliminary step is

to restrict (4) to the following more symmetric, but only

slightly stronger, condition

∣

∣(ℓ + 2−p−1) − v
∣

∣ < 2−p−1. (5)

Sufficient conditions to have (5) will be obtained by intro-

ducing a suitable bivariate polynomial approximant along

with approximation and evaluation error bounds. We will

rely on these conditions for designing our validation ap-

proach in Section 4.2, especially for providing hint values

to the software tools Sollya and Gappa that we use.

3.1 Polynomial approximation

We start by interpreting the rational number ℓ + 2−p−1

as the value of a suitable function of mx and my . Defining

F (s, t) = 2−p−1 + s/(1+ t), we have that ℓ+2−p−1 is the

exact value of F at the particular point

(s∗, t∗) = (2mx · 2−c,my − 1). (6)

When mx and my vary then s∗ and t∗ range in the domains

S = [1, 2−21−p]∪ [2, 4−23−p] and T = [0, 1−21−p].

(In particular, the second interval for S comes from the fact

that c = 0 implies mx ≤ 2 − 22−p.)

Then, following [8], the next step is to approximate F
over S × T by a suitable bivariate polynomial P . Since

F is linear with respect to s, one can reduce to univariate

approximation by taking

P (s, t) = 2−p−1 + s · a(t), (7)

with a(t) a polynomial approximating 1/(1 + t) over T . If

we define

α(a) = max
t∈T

|1/(1 + t) − a(t)| , (8)

then the approximation error for F at (s∗, t∗) satisfies

|F (s∗, t∗) − P (s∗, t∗)| ≤
(

4 − 23−p
)

α(a).

Since from (5) the overall error must be less than 2−p−1, we

take

α(a) < 2−p−1/
(

4 − 23−p
)

(9)

as a target approximation error bound for computing the ap-

proximant a.

The approximant construction is done using the software

environment Sollya2, from the function 1/(1 + t), the do-

main T , and the error bound (9). For reducing the final cost

we choose a polynomial of smallest degree δ that satisfies

the above constraints. For p = 24, the Sollya function

guessdegree leads to δ = 10. Then, with the additional

constraint that the coefficients should have no more than

k = 32 fraction bits, we deduce a suitable polynomial a(t)
from the remez function and by truncation. One obtains

a(t) =
∑10

i=0 ait
i, with each |ai| defined by a 32-bit un-

signed integer Ai such that |ai| = Ai · 2−32. In our case,

it turns out that 1 > |a0| > · · · > |a10| and that the signs

alternate, so that

ai = (−1)
i
· Ai · 2

−32 ∈ (−1, 1), 0 ≤ i ≤ 10. (10)

Finally, a certified bound on the actual approximation error

is obtained using Sollya’s infnorm function:

α(a) ≤ 3 · 2−29 ≈ 2−27.41 <
2−25

4 − 2−21
≈ 2−27. (11)

3.2. Subdomain-based error conditions

Once a is available, for establishing (5) we need to con-

sider the rounding errors of the evaluation of P given by (7).

In [8], for the design of a correctly-rounded square root

function in a similar context, errors have been bounded by

a single value, on the whole domain S × T . Here we ex-

tend this approach since the room left by (11) between the

actual approximation error and 2−p−1, is not sufficient for

taking into account rounding errors. (We refer to the exper-

imental data in Section 4.2.) The validation of our division

algorithm will require to see the interval T as a union of n
subintervals: T =

⋃n
i=1 T

(i) and, accordingly, the approx-

imation error α(a) of (8) will then split up into

α(i)(a) = max
t∈T (i)

|1/(1 + t) − a(t)| , 1 ≤ i ≤ n. (12)

The value v in (5) will result from the evaluation of P by

a finite precision program P that produces, for each subdo-

main S × T (i), the rounding error

ρ(i)(P) = max
(s,t)∈S×T (i)

|P (s, t) − P(s, t)| . (13)

Let i be such that (s∗, t∗) belongs to S × T (i). Then,

from (12) and (13), the overall error is eventually bounded

as
∣

∣(ℓ + 2−p−1) − v
∣

∣ ≤
(

4 − 23−p
)

α(i)(a) + ρ(i)(P), and

we arrive at the following sufficient conditions for (5):

2http://sollya.gforge.inria.fr/ and [10].



Property 2. If the approximation and rounding errors sa-

tisfy, for 1 ≤ i ≤ n,

(4 − 23−p) · α(i)(a) + ρ(i)(P) < 2−p−1 (14)

then (5) holds.

4. Evaluation code generation and validation

Here we present our strategy to produce automatically

an efficient evaluation program P along with an a posteriori

certificate on its accuracy (in the sense of Property 2).

For p = 24, the program P will implement a finite pre-

cision evaluation of P (s∗, t∗) = 2−25 + s∗ · a(t∗). Here a
is the polynomial obtained in Section 3.1 and whose coef-

ficients ai satisfy (10). The program will in fact store only

the 32-bit integers Ai, the coefficient signs being handled

through an appropriate choice of arithmetic operators (+ or

−) made when generating P . Concerning the evaluation

point (s∗, t∗) defined in (6), it can be encoded by a pair

(S, T ) of 32-bit unsigned integers such that

s∗ = S · 2−30, t∗ = T · 2−32. (15)

The computation of S and T from X and Y can be imple-

mented in C as follows:

Tx = X << 9; T = Y << 9; X8 = X << 8;

c = Tx >= T; Mx = X8 | 0x80000000;
S = Mx >> c;

The above code has been written with ILP exposure in

mind. For example, c is computed by comparing the trailing

significands mx − 1 and my − 1, rather than mx and my .

On ST231, this piece of code will typically take 3 cycles,

the delay between S and T being of 2 cycles.

Concerning the output of P , note first that by Property 1,

v in (4) must satisfy v ∈ [1, 2−2−p). Moreover, because of

the formats introduced in (10) and (15) and of the fact that

P is essentially a fixed-point code, the output of P will be

a 32-bit unsigned integer V representing v as

v = V · 2−30. (16)

(How to implement correct rounding using this format will

be detailed in Section 5.2.)

4.1. Evaluation program generation

Once the integers S, T, A0, A1, . . . , A10 are available,

we determine automatically an efficient program P for eval-

uating V by means of 32-bit additions/subtractions and mul

instructions. By efficient program we mean a way of paren-

thesizing the arithmetic expression P (s∗, t∗) that reduces

the execution latency as well as the number of mul instruc-

tions. This depends on a set of heuristics, still under devel-

opment, but that already enabled to produce an evaluation

program suitable for floating-point division on ST231.

Evaluation tree generation. Following [6], we generate

evaluation trees whose height is kept low through ILP expo-

sure, thus avoiding highly sequential schemes like Horner’s.

To do so, we proceed in two substeps. Given the polyno-

mial degree δ, the delay between S and T , and some la-

tencies for addition/subtraction and mul, we first heuristi-

cally compute a target latency τ for P , assuming unbounded

parallelism. This hint for the latency is a priori feasible,

still reasonably low. Then we generate automatically a set

of evaluation trees with height no more than this target la-

tency. An example of such a tree is given in Figure 1, whose

height corresponds to the target latency τ = 14. This la-

tency3 is more than three times lower than the latency of

(3 + 1)× 11 = 44 cycles that would result from computing

P (s∗, t∗) with Horner’s rule.

addition (1 cycle)

0x20

S

A0

T A1

r0

r1

r2

r3

S

T T

r4

r5
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T A3
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r8

r9

r4 r5

r10

A4

T A5
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r14

r15

r16

r17

r18
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r4 r4

r19

A8

T A9

r20

r21

r4 A10

r22

r23

r24

r25

V

multiplication (3 cycles)

Figure 1. Generated evaluation tree.

Our approach is heuristic in the sense that if no eval-

uation tree is found that satisfies the target latency τ , we

increase τ and restart the process. However, the practice

has shown that the number of evaluation trees found given

the target τ is usually extremely large, already for degrees

much lower than the degree δ = 10 we have here. Con-

sequently, we have implemented several filters in order to

reduce significantly this number during the generation, and

thus to speed up the whole process.

Arithmetic operator choice. A first filter consists in

restricting to evaluation trees for which all intermediate va-

lues are positive. This restriction allows to work with the

full precision k = 32, instead of loosing one bit because

of signed arithmetic. Such special trees can be found by

choosing the addition/subtraction operators appropriately,

for example considering a0 − (−a1t) rather than a0 + a1t,

3On the tree, it corresponds to computing r4, and then r22 up to V in

3 + 3 + 1 + 3 + 3 + 1 = 14 cycles.



for a1 is negative. If the sign of one of the intermediate va-

lues computed by the tree changes when the input (S, T )
varies, then that evaluation tree is rejected. This first filter

is implemented using the MPFI4 library for interval arith-

metic. (An interval containing zero is interpreted as a sign

change for the corresponding variable.)

Scheduling verification. A second filter consists in

checking if a given evaluation tree can be scheduled without

latency increase on a simplified model of the real target ar-

chitecture. In our case of division on ST231, the evaluation

tree has a latency of 14 cycles in theory (that is, assuming

unbounded parallelism) as well as in practice. In fact, the

possible scheduling displayed in Table 1 uses only 3 out of

the 4 issues offered by the ST231. For now, this second fil-

ter is implemented using a naive list scheduling algorithm.

Issue 1 Issue 2 Issue 3 Issue 4

Cycle 0 r0 r4

Cycle 1 r6 r13

Cycle 2 r11 r20

Cycle 3 r1 r5 r22

Cycle 4 r2 r14 r19

Cycle 5 r12 r15 r21

Cycle 6 r7 r10 r23

Cycle 7 r3 r8 r24

Cycle 8 r16

Cycle 9 r17

Cycle 10 r9 r25

Cycle 11

Cycle 12 r18

Cycle 13 V

Table 1. Feasible scheduling on ST231.

Evaluation code. Finally, the first evaluation tree that

passes both filters is chosen, and the corresponding evalua-

tion program is printed out as a piece of C code. In our case,

the obtained evaluation program is presented in Listing 1.

unsigned int r0 = mul( T , 0xffffe7d7 );
unsigned int r1 = 0xffffffe8 - r0;
unsigned int r2 = mul( S , r1 );
unsigned int r3 = 0x00000020 + r2;
unsigned int r4 = mul( T , T );
unsigned int r5 = mul( S , r4 );
unsigned int r6 = mul( T , 0xffbad86f );
unsigned int r7 = 0xfffbece7 - r6;
unsigned int r8 = mul( r5 , r7 );
unsigned int r9 = r3 + r8;
unsigned int r10 = mul( r4 , r5 );
unsigned int r11 = mul( T , 0xf3672b51 );
unsigned int r12 = 0xfd9d3a3e - r11;
unsigned int r13 = mul( T , 0x9a3c4390 );
unsigned int r14 = 0xd4d2ce9b - r13;
unsigned int r15 = mul( r4 , r14 );
unsigned int r16 = r12 + r15;
unsigned int r17 = mul( r10 , r16 );
unsigned int r18 = r9 + r17;
unsigned int r19 = mul( r4 , r4 );
unsigned int r20 = mul( T , 0x1bba92b3 );
unsigned int r21 = 0x525a1a8b - r20;
unsigned int r22 = mul( r4 , 0x0452b1bf );
unsigned int r23 = r21 + r22;

4http://gforge.inria.fr/projects/mpfi/

unsigned int r24 = mul( r19 , r23 );
unsigned int r25 = mul( r10 , r24 );
unsigned int V = r18 + r25;

Listing 1. Generated evaluation program.

4.2. Evaluation program validation

We have validated the above evaluation code using

Gappa5. Gappa is a software tool intended to help verifying

and formally proving properties on numerical programs. It

manipulates logical formulas involving the inclusion of ex-

pressions in intervals, and allows to bound rounding errors

in a certified way. The first validation step is to check that no

overflow can occur. This is easily done with Gappa by veri-

fying that no intermediate value can be greater than 232−1.

For proving the correct rounding inequality (5), we use

Property 2 for providing hints to Gappa. With the polyno-

mial a computed in Section 3.1, and no subdivision of the

domain T (that is, n = 1), the approximation error satisfies

α(a) ≤ θ0 = 3 · 2−29 ≈ 2−27.41. (17)

According to (14), we then take η0 = 2−25−(4−2−21)·θ0,

and use the hint

ρ(P) < η0 ≈ 2−26.99 (18)

as a sufficient condition on the rounding error during the

evaluation of the program P . This approach succeeds in the

case mx ≥ my where, with the help of Gappa, we have

checked that (18) is true. Note that the strict inequality is

checked with Gappa through an inequality ρ(P) ≤ η0 − ǫ
for a small enough ǫ.

In the case mx < my , with s∗ ∈ [2, 4 − 2−21] and

t∗ ∈ [2−23, 1 − 2−23], we need to split up the domain T .

Indeed, we find points t∗ at which (18) is not satisfied. For

example, for t∗ = 0.97490441799163818359375, with t∗

in a small enough interval T (i) (see the last row of Table 2),

we can check that ρ(P) < ρ(i)(P) < η4 ≈ 2−26.77. Nev-

ertheless, considering the approximation error on the same

interval, we can establish (14) since, in compensation, it can

be proven that α(i)(a) ≤ θ4 ≈ 2−27.49 < α(a).
For validating the division program, and finding ade-

quate subintervals T (i)’s, we have implemented a splitting

of T by dichotomy. This process has split the definition do-

main up into n = 36127 subintervals. For each of them, us-

ing Sollya, we first bound the approximation error α(i)(a).
This gives α(i)(a) ≤ θ for some rational number θ. Then

the sufficient condition (14) is established by checking that

ρ(i)(P) < η = 2−25 − (4 − 2−21) · θ. The dichotomy is

illustrated by Table 2 where “no” in the last column means

that the interval in the second column has to be split up.

5http://lipforge.ens-lyon.fr/www/gappa/ and [14].



Depth Subintervals α(·)(a) ≤ ρ(·)(P) ≤ Does (14) hold?

1 I1,1 = [2−23, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

2
I2,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

I2,2 = [0.5, 1 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 no

· · ·

j

Ij,1 = [2−23, 0.5 − 2−23] θ2 ≈ 2−27.41 η2 ≈ 2−26.99 yes

Ij,2 = [0.5, 0.75 − 2−23] θ1 ≈ 2−27.41 η1 ≈ 2−26.99 yes

Ij,19309 = [0.921875, 0.92578113079071044921875] θ3 ≈ 2−27.44 η3 ≈ 2−26.90 yes

Ij,19533 = [0.97490406036376953125, 0.97490441799163818359375] θ4 ≈ 2−27.49 η4 ≈ 2−26.77 yes

Table 2. Splitting steps.

The bounds on α(·)(a) and ρ(·)(P) (where the · stands for

the index of the interval in the subdivision) that are discov-

ered with Sollya and Gappa are given in the third and fourth

columns. For the exact values of the θj’s and ηl’s we refer

to Appendix B.

5. Implementation of a complete division code

So far we have presented an efficient way of deducing

from mx and my an integer V such that v = V · 2−30 =
(1.v1 . . . v30)2 satisfies (4). To obtain a complete code for

binary floating-point division it remains to compute the sign

and the exponent of the result, to deduce from v a correctly-

rounded significand, and to pack those three fields accord-

ing to the standard encoding of the binary32 format. If ei-

ther x or y is a special operand then a special value must be

returned, as prescribed in [1], which requires specific han-

dling. The following sections detail algorithms for each of

those tasks along with some C codes well-suited for a target

like the ST231 processor. (All the variables are unsigned

int, excepted for D which is int.)

From Section 5.1 to Section 5.2, both x and y are sup-

posed to be normal numbers, while in Section 5.4 at least

one of them is special, that is, ±0, ±∞, qNaN or sNaN.

5.1. Sign and exponent computation

The sign sr of the result r is trivially obtained by taking

the XOR of the sign bits of X and Y :

Sr = ( X ˆ Y ) & 0x80000000;

The result exponent er will be obtained by first comput-

ing the integer

D = d + emax − 1. (19)

If emin ≤ d ≤ emax then r is normal and the bits of its bi-

ased exponent Er = D + 1 will be deduced by adding the

correctly-rounded significand to D · 2p−1 (see Section 5.2);

otherwise, since subnormals are not supported, r must take

particular values like ±0, ±2emin or ±∞, and we will see in

Section 5.3 how such situations can be detected directly by

inspecting the integer D.

Let us now compute D. Since x and y are normal, their

biased exponents are Ex = ex + emax and Ey = ey + emax.

Therefore, using (19) together with the definition of d in (2),

D = Ex − Ey + emax − 2 + c. (20)

When k = 32, p = 24, and emax = 127, an implementation

of (20) that exposes ILP is:

absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF;
Ex = absX >> 23; Ey = absY >> 23;
int D = (Ex + 125) - (Ey - c);

Note that the biased exponent values Ex and Ey have

been obtained by first computing the absolute values of x
and y (by setting the sign bits to zero), and then shifting

right by p − 1 = 23 positions. Of course, there are other

ways of extracting these biased exponent values, such as,

for example for Ex,

Ex = ( X >> 23 ) & 0xFF;

or

Ex = ( X << 1 ) >> 24;

However, we tend to prefer the version involving absX

and absY, for these absolute values will be reused when

computing special values in Section 5.4.

5.2. Rounding and packing

Given v that approximates ℓ from above as in (4), the cor-

rectly rounded significand mr = RN(ℓ) can be deduced es-

sentially as in [8] and [5, p. 459] (see also [20, 15] and [17,

§3.3]): defining

w = (1.v1 . . . vp−1vp)2

as the truncated value of v to p fraction bits, one has

mr =

{

w truncated to p − 1 fraction bits if w ≥ ℓ,

w + 2−p truncated to p − 1 fraction bits if w < ℓ.



To check this, note first that by truncation to p fraction bits,

0 ≤ v − w < 2−p, which together with (4) leads to

|ℓ − w| < 2−p. (21)

Then it remains to verify for vp = 0 and for vp = 1, that the

above definition of mr always gives RN(ℓ), using in par-

ticular the classic fact that ℓ cannot be exactly halfway be-

tween two consecutive normal floating-point numbers (see

for example [12, Lemma 1] or [3, p. 229]).

To implement the above definition of mr one has to com-

pute w and to decide whether w ≥ ℓ. Since v = V · 22−k

and the bit string of V is 01v1 . . . vk−2, truncating v to p
fraction bits means zeroing out the last k − p− 2 bits of V .

For (k, p) = (32, 24) the line below sets to zero the last six

bits of the bit string 01v1 . . . v24v25v26v27v28v29v30 of V :

W = V & 0xFFFFFFC0;

The bit string of W is thus 01v1 . . . v24000000 and w =
W · 2−30. To know if w ≥ ℓ or not, let us introduce the

integer My such that my = My · 21−k. With k = 32 and S
as in (15), we have the following characterization:

Property 3. The condition w ≥ ℓ is true if and only if the

condition mul(W,My) >= (S >> 1) is true.

Proof. From w = W · 2−30, my = My · 2−31, and s∗ =
S · 2−30, we deduce that w ≥ ℓ = s∗/my is equivalent to

W ·My · 2
−32 ≥ S/2. Now, by definition of mul as a floor

function, we have that

W ·My ·2
−32−1 < mul(W,My) ≤ W ·My ·2

−32. (22)

Using both inequalities in (22) together with the fact

that mul(W,My) and S/2 are nonnegative integers repre-

sentable with 32 bits, one can check that w ≥ ℓ if and only

if mul(W,My) ≥ S/2. In C, the latter condition reads

mul(W,My) >= (S >> 1).

To deduce the value of mr = (1.mr,1 . . .mr,p−1)2 let

Mr be the integer such that mr = Mr ·2
1−p. It then follows

from w = W · 22−k that

Mr =

{

⌊W · 2−(k−p−1)⌋ if w ≥ ℓ,

⌊(W + 2k−p−2) · 2−(k−p−1)⌋ if w < ℓ.

Thus, for (k, p) = (32, 24), Mr is obtained by shifting ei-

ther W or W + 26 to the right by seven positions.

Let us now pack the bits of mr with the bits of sr and Er.

Since in Section 5.1 we have in fact computed D = Er −1,

removing the leading 1 in mr = (1.mr,1 . . .mr,p−1)2 can

be avoided: the k-bit integer that encodes the result r is

sr · 2
k−1 + D · 2p−1 + Mr. (23)

In particular D ∈ {0, . . . , 2emax −1} implies that D ·2p−1 +
Mr must be less than 2k and thus never propagates a carry

to the sign bit.

Since we expect the computation of sr and D to be much

cheaper than that of Mr, one may first take the bitwise OR

of sr · 2k−1 and D, and then only add Mr. For (k, p) =
(32, 24) and p = 24 this gives the following code sequence:

My = (Y << 8) | 0x80000000;
if( mul(W,My) >= (S >> 1) )

return (Sr | (D << 23)) + (W >> 7);
else

return (Sr | (D << 23)) + ((W + 0x40) >> 7);

5.3. Overflow and underflow detection

The value of the integer D = Er − 1 in (20) can be

used to detect overflow and underflow. Indeed, the normal-

ity assumption on x and y implies that both Ex and Ey lie

in the normal (biased) exponent range {1, . . . , 2emax}. Since

c is either 0 or 1, it follows from (20) that D ranges from

−emax−1 to 3emax−2. This range contains {0, . . . , 2emax−1},

for which the result is a normal number; it also contains two

extremal ranges, for which either overflow or underflow oc-

curs.

Let us start with overflow. If D ≥ 2emax then Er = er +
emax gives er ≥ emax + 1. Therefore |x/y| ≥ 2emax+1 and, by

definition of the rounding operator RN(·) in [1], we have

RN(x/y) = (−1)
sr∞.

For emax = 127 this case can be implemented as:

if( D >= 0xFE ) return Sr | 0x7F800000;

Now for underflow. If D < 0 then er ≤ emin − 1. Using

ℓ < 2 then gives |x/y| < 2emin . Following the approach

of [7] we round |x/y| to nearest-even as if subnormals were

supported. This rounded value can be either 2emin (the small-

est positive normal number) or a subnormal number. By

definition of RN(·) the first case occurs if and only if

(1 − 2−p) · 2emin ≤ |x/y| < 2emin , (24)

and we shall return the normal number (−1)
sr2emin . In the

second case, since we do not support subnormals, we shall

return (−1)
sr0.

Property 4. One has (24) if and only if ex − ey = −emax

and mx = 2 − 21−p and my = 1.

Proof. Assume that (24) holds. Then it follows from

|x/y| = ℓ · 2d with ℓ ∈ [1, 2) that d must be equal to

emin − 1 = −emax, and that ℓ ≥ 2− 21−p. Property 1 implies

further that ℓ = 2 − 21−p and mx ≥ my . Using the defi-

nition of ℓ in (2) then gives mx/my = 2 − 21−p and, since



1 ≤ mx,my ≤ 2 − 21−p, we conclude that the only possi-

ble value for (mx,my) is (2 − 21−p, 1). Applying (2) with

(c, d) = (1,−emax) gives furthermore ex−ey = −emax. Con-

versely, one may check that if (mx,my) = (2 − 21−p, 1)
and ex − ey = −emax then |x/y| = (1 − 2−p) · 2emin .

Using (20) with c = 1 shows that the condition ex −
ey = −emax is equivalent to D = −1. With Mx and My

computed as in Sections 4 and 5.2, Property 4 thus suggests

the following code for handling underflow:

if( D < 0x00 ) {
if( D == -1 && Mx == 0xFFFFFF00

&& My == 0x80000000 )

return Sr | 0x00800000;
else

return Sr;
}

5.4. Computing special values

Assume now that (x, y) is a special input, that is, x or

y is ±0, ±∞, qNaN, or sNaN. For each possible case the

standard [1] requires that a special value be returned. These

special values follow from those in Table 3 by adjoining the

correct sign, using x/y = (−1)sr |x|/|y|. (The standard

does not specify the sign of a NaN result [1, §6.3].)

|x|/|y|
|y|

+0 normal +∞ NaN

|x|

+0 qNaN +0 +0 qNaN

normal +∞ RN(|x|/|y|) +0 qNaN

+∞ +∞ +∞ qNaN qNaN

NaN qNaN qNaN qNaN qNaN

Table 3. Special values for |x|/|y|.

The standard binary encoding [1, §3.4] implies in par-

ticular Table 4. This table allows to reuse absX and absY,

Value or range of integer X Floating-point datum x

0 +0

[2p−1, 2k−1 − 2p−1) positive normal number

2k−1 − 2p−1 +∞

(2k−1 − 2p−1, 2k−1 − 2p−2) sNaN

[2k−1 − 2p−2, 2k−1) qNaN

Table 4. Floating-point data encoded by X.

which are X and Y modulo 2k−1 (and are computed in Sec-

tion 5.1 for k = 32), to filter out all special input (x, y).
Indeed, x or y is in {±0,±∞, qNaN, sNaN} if and only if

absX or absY is in {0} ∪ {2k−1 − 2p−1, . . . , 2k−1 − 1},

which is equivalent to

max(absXm1,absYm1) ≥ 2k−1 − 2p−1 − 1, (25)

with absXm1 = (absX − 1) mod 2k and absYm1 =
(absY− 1) mod 2k.

Assume now that (x, y) has been filtered out by (25). Ta-

ble 3 then requires that a qNaN be returned if absX equals

absY, or if max(absX,absY) > 2k−1−2p−1. Otherwise,

if x is finite (that is, absX < 2k−1−2p−1) and y is nonzero

(that is, absY is nonzero) then ±0 is returned, else ±∞ is

returned. Hence the code below when (k, p) = (32, 24):

absXm1 = absX - 1; absYm1 = absY - 1;
if( max(absXm1,absYm1) >= 0x7F7FFFFF ) {

Inf = Sr | 0x7F800000; Max = max(absX,absY);

if( absX == absY || Max > 0x7F800000 )

return Inf | 0x00400000 | Max; // qNaN
if( (absX < 0x7F800000) && absY ) return Sr;
return Inf;

}

Here absXm1 and absYm1 are unsigned int, so

that addition is done modulo 232. Note also that thanks to

the use of the Max variable the payload of the qNaN result

is one the input payloads, as recommended in [1, §6.2.3].

6. Experimental results

We report here some experiments done with the com-

plete division code that follows immediately from the C

codes of Sections 4 and 5.

Validation of the complete division code. Although our

code has not been tested exhaustively, it has been validated

using two classical test programs for IEEE binary floating-

point arithmetic, and especially for division: the Extremal

Rounding Tests Set [13] and the TestFloat package [7]. This

was done by compiling the code with Gcc under Linux and

by using the software implementations of max and mul

given in Appendix A.

Results obtained with the ST200 VLIW compiler. The

same code has then been compiled with the ST200 VLIW

compiler based on the Open64 compiler technology, re-

targeted to the ST200 family.

This compiler can produce an annotated assembly out-

put, with specific scheduling annotations giving the date at

which each bundle (a group of up to 4 instructions) is sched-

uled. In addition, one peculiarity of the ST200 architecture

is that it provides a partial predication support in the form of

conditional selection instructions, that are used by the com-

piler [2] to generate branch-free code for all the functions

described in this article.

Using optimization level -O3, the assembly produced in

our case indeed consists of fully if-converted straight-line



code in which the number of instructions as well as the la-

tency is the same regardless of the nature of the input (nor-

mal numbers or special values). The table below collects

these two values together with the number of instructions

per cycle (IPC) and the code size:

Nb. of instructions Latency IPC Code size

87 27 cycles 87/27 ≈ 3.22 424 bytes

Since the ST231 has four issues, the IPC value indicates

clearly the parallel nature of our approach.

Also, since one cycle is necessary for the last instruction

to select the value to be returned, the other 86 instructions

must have been scheduled on the 4 issues during the first 26
cycles. This value of 26 cycles is close to the ideal value of

22 = ⌈86/4⌉.

Finally, in the same context and for the same problem

(that is, software implementation of binary32 floating-point

division, correctly-rounded to nearest even and without sub-

normal numbers), the previously fastest implementation had

a latency of 48 cycles [19, p. 104]. Thus, the speed-up

brought by our approach is by a factor of 1.78.

7. Conclusion and future work

In this paper, we have focused on the binary32 format

and on a particular 32-bit architecture. However, the ap-

proach we have presented in Sections 4 and 5 for generat-

ing/validating polynomial evaluation codes and for design-

ing complete division codes, should in principle be usable

for other values of the key parameters k, p, and emax. This

could be of interest when optimizing division codes for

other processors and/or other floating-point formats (like

binary64, binary128, or smaller formats used in computer

graphics).

This work also suggests two research directions, which

we are currently investigating. First, gradual underflow is

important [9] and our division code should definitely be ex-

tended in order to support subnormal numbers while keep-

ing the latency as low as possible; similarly, all the rounding

attributes prescribed in [1] should be implemented. Sec-

ond, in some important special cases such as inversion (in-

stead of division) or faithfully rounded results (instead of

correctly rounded results), further optimizations should be

easy to implement and validate by using the generation/val-

idation tools and the design method that we have presented

here.
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A. Implementing the max and mul instructions

A C99 implementation of max and mul is as follows:

static inline
unsigned int max(unsigned int A, unsigned int B)
{ return A > B ? A : B; }

static inline
unsigned int mul(unsigned int A, unsigned int B)
{

unsigned long long int t0 = A;
unsigned long long int t1 = B;
unsigned long long int t2 = ( t0 * t1 ) >> 32;
return t2;

}

The ST200 compiler is able to generate a single instruc-

tion when compiling the max or the mul function: it gen-

erates respectively the maxu and mul64hu ST200 instruc-

tions. This is interesting, since there is no need to write

code using specific instrinsic functions, while reaching best

efficiency.

B. Exact values of error bounds

Approximation error / Rounding error bounds

θ1 = 32666224213410587279617460750040978302345 · 2−162

η1 = 91351292232540183223011219609051754040083752329 · 2−183

θ2 = 32666103655948062771727762437637439466801 · 2−162

η2 = 91352303541714218547566298100368266740699999537 · 2−183

θ3 = 15949042999768214370553488520665149430143 · 2−161

η3 = 48897450915206223329135016410664060291247987071 · 2−182

θ4 = 123256080210706428762854279532157659493459 · 2−164

η4 = 427554820082809494938604083452868552125485921363 · 2−185

C. Hexadecimal constants used in Section 5

For convenience’ sake the table below displays the dec-

imal value and/or the bit string of each of the hexadecimal

constants appearing in the code sequences of Section 5.

0x80000000 231 = (1 00 . . . 00
| {z }

31 zeros

)2

0x7FFFFFFF (0 11 . . . 11
| {z }

31 ones

)2

0xFF (00 . . . 00
| {z }

24 zeros

11111111
| {z }

8 ones

)2

0xFFFFFFC0 (11 . . . 11
| {z }

26 ones

000000
| {z }

6 zeros

)2

0x40 26

0x7F800000 231
− 223 = (0 11111111

| {z }

8 ones

00 . . . 00
| {z }

23 zeros

)2

0xFFFFFF00 232
− 28 = (11 . . . 11

| {z }

24 ones

00000000
| {z }

8 zeros

)2

0x7F7FFFFF 231
− 223

− 1

0x00400000 (00 . . . 00
| {z }

9 zeros

1 00 . . . 00
| {z }

22 zeros

)2


