Gilles Villard 
email: gilles.villard@ens-lyon.fr
  
Kaltofen's division-free determinant algorithm differentiated for matrix adjoint computation

Keywords: matrix determinant, matrix adjoint, matrix inverse, characteristic polynomial, exact algorithm, division-free complexity, Wiedemann algorithm, automatic differentiation

come    

Introduction

Kaltofen has proposed in [START_REF] Kaltofen | On computing determinants without divisions[END_REF] a new approach for computing matrix determinants. This approach has brought breakthrough ideas for improving the complexity estimate for the problem of computing the determinant without divisions over an abstract ring (see [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF]). With these foundations, the algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] computes the determinant in O(n 2.7 ) additions, subtractions, and multiplications. The same ideas also lead to the currently best known bit complexity estimate of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] for the problem of computing the characteristic polynomial.

We consider the straigth-line programs of [START_REF] Kaltofen | On computing determinants without divisions[END_REF] for computing the determinant over abstract fields or rings (with or without divisions). Using the reverse mode of automatic differentiation (see [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF][START_REF] Linnainmaa | Taylor expansion of the accumulated rounding errors[END_REF], and [START_REF] Ostrowski | Über die Berechnung von Ableitungen (in German)[END_REF])), a straight-line program for computing the determinant of a matrix A can be (automatically) transformed into a program for computing the adjoint matrix A * of A. This principle, stated by Baur and Strassen (1983, Cor. 5), is also applied by Kaltofen (1992, Sec. 1.2) for computing A * . Since the adjoint program is derived by an automatic process, few is known about the way it computes the adjoint. The only available information seems to be the determinant program itself, and the knowledge we have on the differentiation process. Neither the adjoint program can be described, or implemented, without resorting to an automatic differentiation tool.

In this paper, by studying the differentiation of Kaltofen's determinant algorithm step by step, we produce an "explicit" adjoint algorithm. The determinant algorithm, that we first recall in Section 2 over an abstract field K, uses a Krylov subspace construction, hence mainly reduces to vector times matrix, and matrix times matrix products. Another operation involved is computing the minimum polynomial of a linearly generated sequence. We apply the program differentiation mechanism, reviewed in Section 3, to the different steps of the determinant program in Section 4. This leads us to the description of a corresponding new adjoint program over a field, in Section 5. The algorithm we obtain somehow calls to mind the matrix factorization of Eberly (1997, (3.4)). We note that our objectives are similar to Eberly's ones, whose question was to give an explicit inversion algorithm from the parallel determinant algorithm of [START_REF] Kaltofen | Processor efficient parallel solution of linear systems over an abstract field[END_REF].

Our motivation for studying the differentiation and resulting adjoint algorithm, is the importance of the determinant approach of [START_REF] Kaltofen | On computing determinants without divisions[END_REF], and [START_REF] Kaltofen | On the complexity of computing determinants[END_REF], for various complexity estimates. Recent advances around the determinant of polynomial or integer matrices (see [START_REF] Eberly | Computing the determinant and Smith form of an integer matrix[END_REF]; [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]; [START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF][START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF]), and matrix inversion (see [START_REF] Jeannerod | Asymptotically fast polynomial matrix algorithms for multivariable systems[END_REF][START_REF] Jeannerod | Asymptotically fast polynomial matrix algorithms for multivariable systems[END_REF][START_REF] Storjohann | On the complexity of inverting integer and polynomial matrices[END_REF]) also justify the study of the general adjoint problem.

For computing the determinant without divisions over a ring R, Kaltofen applies the avoidance of divisions of [START_REF] Strassen | Vermeidung von Divisionen[END_REF] to his determinant algorithm over a field. We apply the same strategy for the adjoint. From the algorithm of Section 5 over a field, we deduce an adjoint algorithm over an arbitrary ring R in Section 6. The avoidance of divisions involves computations with truncated power series. A crucial point in Kaltofen's approach is a "baby steps/giant steps" scheme for reducing the corresponding power series arithmetic cost. However, since we use the reverse mode of differentiation, the flow of computation is modified, and the benefit of the baby steps/giant steps is partly lost for the adjoint. This asks us to introduce an early, and lazy polynomial evaluation strategy for not increasing the complexity estimate.

The division-free determinant algorithm of [START_REF] Kaltofen | On computing determinants without divisions[END_REF] uses O˜(n 3.5 ) operations in R. The adjoint algorithm we propose has essentially the same cost. Our study may be seen as a first step for the differentiation of the more efficient algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]. The latter would require, in particular, to consider asymptotically fast matrix multiplication algorithms that are not discussed in what follows.

Especially in our matrix context, we note that interpreting programs obtained by automatic differentiation, may have connections with the interpretation of programs derived using the transposition principle. We refer for instance to the discussion of Kaltofen (2000, Sec. 6).

Cost functions. We let M(n) be such that two univariate polynomials of degree n over an arbitrary ring R can be multiplied using M(n) operations in R. The algorithm of [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF] allows

M(n) = O(n log n log log n). The function O(M(n))
also measures the cost of truncated power series arithmetic over R. For bounding the cost of polynomial gcd-type computations over a commutative field K we define the function G. Let G(n) be such that the extended gcd problem (see (von zur Gathen and Gerhard, 1999, Chap. 11)) can be solved with G(n) operations in K for polynomials of degree 2n in K[x]. The recursive Knuth/Schönhage half-Gcd algorithm (see [START_REF] Knuth | The analysis of algorithms[END_REF][START_REF] Schönhage | Schnelle Berechnung von Kettenbruchenwicklungen[END_REF][START_REF] Moenck | Fast computation of Gcds[END_REF]

) allows G(n) = O(M(n) log n).
The minimum polynomial of degree n, of a linearly generated sequence given by its first 2n terms, can be computed in (von zur Gathen and Gerhard, 1999, Algorithm 12.9)). We will often use the notation O˜that indicates missing factors of the form α(log n) β , for two positive real numbers α and β.

G(n) + O(n) operations (see

Kaltofen's determinant algorithm over a field

Kaltofen's determinant algorithm extends the Krylov-based method of [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF]. The latter approach is successful in various situations. We refer especially to the algorithms of [START_REF] Kaltofen | Processor efficient parallel solution of linear systems over an abstract field[END_REF] and [START_REF] Kaltofen | On Wiedemann's method of solving sparse linear systems[END_REF] around exact linear system solution that has served as basis for subsequent works. We may also point out the various questions investigated by [START_REF] Chen | Efficient matrix preconditioners for black box linear algebra[END_REF], and references therein.

Let K be a commutative field. We consider A ∈ K n×n , u ∈ K 1×n , and v ∈ K n×1 . We introduce the Hankel matrix H = uA i+j-2 v 1≤i,j≤n ∈ K n×n , and let h k = uA k v for 0 ≤ k ≤ 2n -1. We also assume that H is non-singular:

det H = det         uv uAv . . . uA n-1 v uAv uA 2 v . . . uA n v . . . . . . . . . . . . uA n-1 v . . . . . . uA 2n-2 v         = 0. ( 1 
)
In the applications, (1) is ensured either by construction of A, u, and v, as in [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF], or by randomization (see the above cited references around Wiedemann's approach, and [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF]).

One of the key ideas of [START_REF] Kaltofen | On computing determinants without divisions[END_REF] for reducing the division-free complexity estimate for computing the determinant, is to introduce a "baby steps/giant steps" behaviour in the Krylov subspace construction. With baby steps/giant steps parameters r = ⌈2n/s⌉ and s = ⌈ √ n⌉ (rs ≥ 2n) we consider the following algorithm.

Algorithm Det

Input: A ∈ K n×n , u ∈ K 1×n , v ∈ K n×1 step i. v 0 := v; For i = 1, . . . , r -1 do v i := Av i-1 step ii. B := A r step iii. u 0 := u; For j = 1, . . . , s -1 do u j := u j-1 B step iv. For i = 0, 1, . . . , r -1 do For j = 0, 1, . . . , s -1 do h i+jr := u j v i step v. f := the minimum polynomial of {h k } 0≤k≤2n-1 Output: det A := (-1) n f (0).
We ommit the proof of next theorem that establishes the correctness and the cost of Algorithm Det, and refer to [START_REF] Kaltofen | On computing determinants without divisions[END_REF]. We may simply note that the sequence {h k } 0≤k≤2n-1 is linearly generated. In addition, if (1) is true, then the minimum polynomial f of {h k } 0≤k≤2n-1 , the minimum polynomial of A, and the characteristic (monic) polynomial of A coincide. Hence (-1) n f (0) is equal to the determinant of A. Via an algorithm that can multiply two matrices of K n×n in O(n ω ) we have:

Theorem 1. If A ∈ K n×n , u ∈ K 1×n , and v ∈ K n×1 satisfy (1), then Algorithm Det computes the determinant of A in O(n ω log n) operations in K.
For the matrix product we may set ω = 3, or ω = 2.376 using the algorithm of [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF]. In the rest of the paper we work with a cubic matrix multiplication algorithm. Our study has to be generalized if fast matrix multiplication is introduced.

Backward automatic differentiation

The determinant of A ∈ K n×n is a polynomial ∆ in K[a 1,1 , . . . , a i,j , . . . , a n,n ] of the entries of A. We denote the adjoint matrix by A * such that AA * = A * A = (det A)I. As noticed by [START_REF] Baur | The complexity of partial derivatives[END_REF], the entries of A * satisfy

a * j,i = ∂∆ ∂a i,j , 1 ≤ i, j ≤ n. (2) 
The reverse mode of automatic differentiation allows to transform a program which computes ∆ into a program which computes all the partial derivatives in (2). Among the rich literature about the reverse mode of automatic differentiation we may refer to the seminal works of [START_REF] Linnainmaa | The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors[END_REF][START_REF] Linnainmaa | Taylor expansion of the accumulated rounding errors[END_REF] and [START_REF] Ostrowski | Über die Berechnung von Ableitungen (in German)[END_REF]. For deriving the adjoint program from the determinant program we follow the lines of [START_REF] Baur | The complexity of partial derivatives[END_REF] and [START_REF] Morgenstern | How to compute fast a function and all its derivatives, a variation on the theorem of Baur-Strassen[END_REF].

Algorithm Det is a straight-line program over K. For a comprehensive study of straight-line programs for instance see (Bürgisser et al., 1997, Chapter 4). We assume that the entries of A are stored initially in n 2 variables δ i , -n 2 < i ≤ 0. Then we assume that the algorithm is a sequence of arithmetic operations in K, or assignments to constants of K. Let L be the number of such operations. We assume that the result of each instruction is stored in a new variable δ i , hence the algorithm is seen as a sequence of instructions

δ i := δ j op δ k , op ∈ {+, -, ×, ÷}, -n 2 < j, k < i, (3) 
or

δ i := c, c ∈ K, (4) for 1 ≤ i ≤ L.
Note that a binary arithmetic operation (3) where one of the operands is a constant of K can be implemented with the aid of (4). For any 0 ≤ i ≤ L, the determinant maybe be seen as a rational function

∆ i of δ -n 2 +1 , . . . , δ i , such that ∆ 0 (δ -n 2 +1 , . . . , δ 0 ) = ∆(a 1,1 , . . . , a n,n ), (5) 
and such that the last instruction gives the result:

det A = δ L = ∆ L (δ -n 2 +1 , . . . , δ L ). ( 6 
)
The reverse mode of automatic differentiation computes the derivatives (2) in a backward recursive way, from the derivatives of ( 6) to those of ( 5). Using ( 6) we start the recursion with

∂∆ L ∂δ L = 1, ∂∆ L ∂δ l = 0, -n 2 < l ≤ L -1.
Then, writing

∆ i-1 (δ -n 2 +1 , . . . , δ i-1 ) = ∆ i (δ -n 2 +1 , . . . , δ i ) = ∆ i (δ -n 2 +1 , . . . , g(δ j , δ k )), (7) 
where g is given by ( 3) or (4), we have

∂∆ i-1 ∂δ l = ∂∆ i ∂δ l + ∂∆ i ∂δ i ∂g ∂δ l , -n 2 < l ≤ i -1, (8) 
for 1 ≤ i ≤ L. Depending on g several cases may be examined. For instance, for an addition δ i := g(δ k , δ j ) = δ k + δ j , (8) becomes

∂∆ i-1 ∂δ k = ∂∆ i ∂δ k + ∂∆ i ∂δ i , ∂∆ i-1 ∂δ j = ∂∆ i ∂δ j + ∂∆ i ∂δ i , (9) 
with the other derivatives (l = k or j) remaining unchanged. In the case of a multiplication (8) gives that the only derivatives that are modified are

δ i := g(δ k , δ j ) = δ k × δ j ,
∂∆ i-1 ∂δ k = ∂∆ i ∂δ k + ∂∆ i ∂δ i δ j , ∂∆ i-1 ∂δ j = ∂∆ i ∂δ j + ∂∆ i ∂δ i δ k . ( 10 
)
We see for instance in (10), where δ j is used for updating the derivative with respect to δ k , that the recursion uses intermediary results of the determinant algorithm. For the adjoint algorithm, we will assume that the determinant algorithm has been executed once, and that the δ i 's are stored in n 2 + L memory locations.

Recursion (8) gives a practical mean, and a program, for computing the N = n 2 derivatives of ∆ with respect to the a i,j 's. For any rational function Q in N variables δ -N +1 , . . . , δ 0 the corresponding general statement is: Theorem 2. [START_REF] Baur | The complexity of partial derivatives[END_REF]] Let P be a straight-line program computing Q in L operations in K. One can derive an algorithm ∂P that computes Q and the N partial derivatives ∂Q/∂δ l in less than 5L operations in K.

Combining Theorem 2 with Theorem 1 gives the construction of an algorithm ∂Det for computing the adjoint matrix A * (see (Baur and Strassen, 1983, Corollary 5)). The algorithm can be generated automatically via an automatic differentiation tool1 . However, it seems unclear how it could be programmed directly, and, to our knowledge, it has no interpretation of its own.

Differentiating the determinant algorithm over a field

We apply the backward recursion (8) to Algorithm Det of Section 2 for deriving the algorithm ∂Det. We assume that A is non-singular, hence A * is non-trivial. By construction, the flow of computation for the adjoint is reversed compared to the flow of Algorithm Det, therefore we start with the differentiation of step v.

Differentiation of the minimum polynomial constant term computation

At step v, Algorithm Det computes the minimum polynomial f of the linearly generated sequence {h k } 0≤k≤2n-1 . Let λ be the first instruction index at which all the h k 's are known. We apply the recursion until step λ, globally, we mean that we compute the derivatives of ∆ λ . After the instruction λ, the determinant is viewed as a function ∆ v of the h k 's only. Following (7) we have

det(A) = ∆ λ (δ -n 2 +1 , . . . , δ λ ) = ∆ v (h 1 , . . . , h 2n-1 ).
Hence we may focus on the derivatives ∂∆ v /∂h k , 0 ≤ k ≤ 2n -1, the remaining ones are zero.

Using assumption (1) we know that the minimum polynomial f of {h k } 0≤k≤2n-1 has degree n, and if

f (x) = f 0 + f 1 x + . . . + f n-1 x n-1 + x n , then f satisfies H         f 0 f 1 . . . f n-1         =         h 0 h 1 . . . h n-1 h 1 h 2 . . . h n . . . . . . . . . . . . h n-1 . . . . . . h 2n-2                 f 0 f 1 . . . f n-1         = -         h n h n+1 . . . h 2n-1         (11) 
see, e.g., [START_REF] Kaltofen | On computing determinants without divisions[END_REF], or (von zur Gathen and Gerhard, 1999, Algorithm 12.9) together with [START_REF] Brent | Fast solution of Toeplitz systems of equations and computation of Padé approximations[END_REF]. Applying Cramer's rule we see that

f 0 = (-1) n det         h 1 h 2 . . . h n h 2 h 3 . . . h n+1 . . . . . . . . . . . . h n . . . . . . h 2n-1         / det H, hence, defining H A = uA i+j-1 v 1≤i,j≤n = (h i+j-1 ) 1≤i,j≤n ∈ K n×n , we obtain ∆ v = det H A det H . ( 12 
)
Let Ku and K v be the Krylov matrices

Ku = [u T , A T u T , . . . , (A T ) n-1 u T ] T ∈ K n×n , (13) 
and

K v = [v, Av, . . . , A n-1 v] ∈ K n×n . ( 14 
) Since H = Ku K v , assumption (1) implies that both Ku and K v are non-singular. Hence, using that A is non-singular, we note that H A = Ku AK v also is non-singular.

For differentiating ( 12), let us first specialize (2) to Hankel matrices. We denote by (∂∆/∂a i,j )(H) the substitution of the a i,j 's for the entries of H in ∂∆/∂a i,j , for 1 ≤ i, j ≤ n. From (2) we have

h * j,i = ∂∆ ∂a i,j (H), 1 ≤ i, j ≤ n.
Since the entries of H are constant along the anti-diagonals, we deduce that

∂ det H ∂h k = i+j-2=k ∂∆ ∂a i,j (H) = i+j-2=k h * j,i = i+j-2=k h * i,j , 0 ≤ k ≤ 2n -2.
In other words, we may write

∂ det H ∂h k = σ k (H * ), 0 ≤ k ≤ 2n -1, (15) 
where, for a matrix M = (m ij ), we define

σ k (M ) = 0 + i+j-2=k m ij , 1 ≤ i, j ≤ n.
The function σ k (M ) is the sum of the entries in the anti-diagonal of M starting with

m 1,k+1 if 0 ≤ k ≤ n -1, and m k-n+2,n if n ≤ k ≤ 2n -2.
Shifting the entries of H for obtaining H A we also have

∂ det H A ∂h k = σ k-1 (H * A ), 0 ≤ k ≤ 2n -1. ( 16 
)
Now, differentiating (12), together with ( 15) and ( 16), leads to

∂∆ v ∂h k = (∂ det H A /∂h k ) det H - (∂ det H/∂h k ) det H det H A det H = (∂ det H A /∂h k ) det H A det H A det H -σ k (H -1 )∆ v
and, consequently, to

∂∆ v ∂h k = σ k-1 (H -1 A ) -σ k (H -1 ) ∆ v , 0 ≤ k ≤ 2n -1. ( 17 
)
With ( 17) we identify the problem solved by the first step of the ∂Det algorithm, and provide first informations for interpreting or implementing the adjoint program. Various algorithms may be used for computing the minimum polynomial (for instance see (von zur Gathen and Gerhard, 1999, Algorithm 12.9)), that will lead to corresponding algorithms for computing the left sides in (17). However, we will not discuss these aspects, since the associated costs are not dominant in the overall complexity.

We have recalled, in the introduction, that the minimum polynomial f (its constant term f (0)) can be computed from the h k 's in G(n) + O(n) operations in K. Hence Theorem 2 gives an algorithm for computing the derivatives using 5G(n) + O(n) operations.

Alternatively, in the Appendix we propose a direct approach that takes advantage of (17). Proposition 4 shows that if f , H, and H A are given, then the ∂∆ v /∂h k 's can be computed in G(n) + O(M(n)) operations in K.

Differentiation of the dot products

For differentiating step iv, ∆ is seen as a function ∆ iv of the u j 's and v i 's. The entries of u j are used for computing the r scalars h jr , h 1+jr , . . . , h (r-1)+jr for 0 ≤ j ≤ s -1. The entries of v i are involved in the computation of the s scalars h i , h i+r , . . . , h i+(s-1)r for 0 ≤ i ≤ r -1.

In ( 8), the new derivative ∂∆ i-1 /∂δ l is obtained by adding the current instruction contribution to the previously computed derivative ∂∆ i /∂δ l . Since all the h i+jr 's are computed independently according to

h i+jr = n l=0 (u j ) l (v i ) l ,
it follows that the derivative of ∆ iv with respect to an entry (u j ) l or (v i ) l is obtained by summing up the contributions of the multiplications (u j ) l (v i ) l . We obtain

∂∆ iv ∂(u j ) l = r-1 i=0 ∂∆ v ∂h i+jr (v i ) l , 0 ≤ j ≤ s -1, 1 ≤ l ≤ n, (18) 
and

∂∆ iv ∂(v i ) l = s-1 i=0 ∂∆ v ∂h i+jr (u j ) l , 0 ≤ i ≤ r -1, 1 ≤ l ≤ n. ( 19 
)
By abuse of notations (of the sign ∂), we let ∂u j be the n × 1 vector, respectively ∂v i be the 1 × n vector, whose entries are the derivatives of ∆ iv with respect to the entries of u j , respectively v i . Note that because of the index transposition in (2), it is convenient, here and in the following, to take the transpose form (column versus row) for the derivative vectors. Defining also

∂H = ∂∆ v ∂h i+jr 0≤i≤r-1, 0≤j≤s-1 ∈ K r×s ,
we deduce, from ( 18) and ( 19), that

[∂u 0 , ∂u 1 , . . . , ∂u s-1 ] = [v 0 , v 1 , . . . , v r-1 ] ∂H ∈ K n×s . ( 20 
)
and

        ∂v 0 ∂v 1 . . . ∂v r-1         = ∂H         u 0 u 1 . . . u s-1         ∈ K r×n . (21) 
Identities ( 20) and ( 21) give the second step of the adjoint algorithm. In Algorithm Det, step iv costs essentially 2rsn additions and multiplications in K. Here we have essentially 4rsn additions and multiplications using basic loops (as in step iv) for calculating the matrix products, we mean without an asymptotically fast matrix multiplication algorithm.

Differentiation of the matrix times vector and matrix products

The recursive process for differentiating step iii to step i may be written in terms of the differentiation of the basic operation (or its transposed operation)

q := p • M ∈ K 1×n , (22) 
where p and q are row vectors of dimension n, and M is an n × n matrix. We assume at this point (by construction of the recursion) that column vectors ∂p and ∂q of derivatives of the determinant with respect to the entries of p and q, are available. For instance, for differentiating step iii, we will consider the ∂u j 's. We also assume that an n × n matrix ∂M , whose transpose gives the derivatives with respect to the m ij 's, has been computed. Initially, for step iii, we will take ∂B = 0. Following the lines of previous section for obtaining ( 20) and ( 21), we see that differentiating ( 22) amounts to updating ∂p and ∂M according to

   ∂p := ∂p + M • ∂q ∈ K n , ∂M := ∂M + ∂q • p ∈ K n×n . (23)
Starting from the values of the ∂u j 's computed with (20), and from ∂B = 0, for the differentiation of step iii, (23) gives

   ∂u j-1 := ∂u j-1 + B • ∂u j , ∂B := ∂B + ∂u j • u j-1 , j = s -1, . . . , 1. (24)
For step ii, we mean B := A r , we show that the backward recursion leads to

∂A := r k=1 A r-k • ∂B • A k-1 . ( 25 
)
Here, the notation ∂A stands for the n × n matrix whose transpose gives the derivatives ∂∆ ii /∂a i,j . We may show (25) by induction on r. For r = 1, ∂A = ∂B is true. If ( 25) is true for r -1, then let C = A r-1 and B = CA. Using (23), and overloading the notation ∂A, we have

   ∂C = A • ∂B ∈ K n×n , ∂A = ∂B • C ∈ K n×n .
Hence, using (25) for r -1, we establish that

∂A = ∂A + r-1 k=1 A r-k-1 • ∂C • A k-1 , = ∂B • C + r-1 k=1 A r-k-1 • (A • ∂B) • A k-1 = ∂B • A r-1 + r-1 k=1 A r-k • ∂B • A k-1 = r k=1 A r-k • ∂B • A k-1
. Any specific approach for computing A r will lead to an associated program for computing ∂A. Let us look, in particular, at the case where step ii of Algorithm Det is implemented by repeated squaring, in essentially log 2 r matrix products. Consider the recursion

A 0 := A For k = 1, . . . , log 2 r do A 2 k := A 2 k-1 • A 2 k-1 B := A r
that computes B := A r . The associated program for computing the derivatives is

∂A r := ∂B For k = log 2 r, . . . , 1 do ∂A 2 k-1 := A 2 k-1 • ∂A 2 k + ∂A 2 k • A 2 k-1 ∂A := ∂A 0 , (26) 
and costs essentially 2 log 2 r matrix products.

From the values of the ∂v i 's computed with (21), we finally differentiate step i, and update ∂A according to

   ∂v i-1 := ∂v i-1 + ∂v i • A, ∂A := ∂A + v i-1 • ∂v i , i = r -1, . . . , 1. (27) 
Now, ∂A is the n × n matrix whose transpose gives the derivatives ∂∆ i /∂a i,j = ∂∆/∂a i,j , hence from (2) we know that A * = ∂A.

step iii and step i both cost essentially r (≈ s) matrix times vector products. From ( 24) and ( 27) the differentiated steps both require r matrix times vector products, and 2rn 2 + O(rn) additional operations in K.

The adjoint algorithm over a field

We call Adjoint the algorithm obtained from the successive differentiations of Section 4. Algorithm Adjoint is detailed below. We keep the notations of previous sections. We use in addition U ∈ K s×n and V ∈ K n×r (resp. ∂U ∈ K n×s and ∂V ∈ K r×n ) for the right sides (resp. the left sides) of ( 20) and ( 21).

The cost of Adjoint is dominated by step iv * , which is the differentiation of the matrix power computation. As we have seen with ( 26), the number of operation is essentially twice as much as for Algorithm Det. The code we give allows an easy implementation.

We note that if the product by det A is avoided in step i * , then the algorithm computes the matrix inverse A -1 . We may put this into perspective with the algorithm given by [START_REF] Eberly | Processor-efficient parallel matrix inversion over abstract fields: two extensions[END_REF]. With Ku and K v the Krylov matrices of ( 13) and ( 14), Eberly has proposed a processor-efficient inversion algorithm based on

A -1 = K v H -1 A Ku . ( 28 
)
To see whether a baby steps/giant steps version of ( 28) would lead to an algorithm similar to Adjoint deserves further investigations.

Algorithm Adjoint (∂Det) 

Input: A ∈ K n×n non-
:= σ k-1 (H -1 A ) -σ k (H -1 ) det A, 0 ≤ k ≤ 2n -1 step ii * .
/* Requires the u j 's and v i 's, see ( 20) and ( 21

) */ ∂U := V • ∂H ∂V := ∂H • U step iii * . /* Requires B = A r , see (24) */ For j = s -1, . . . , 1 do ∂u j-1 := ∂u j-1 + B • ∂u j ∂B := ∂B + ∂u j • u j-1
step iv * . /* Requires the powers of A, see ( 25) or ( 26) */

A * := r k=1 A r-k • ∂B • A k-1 step v * . /* See (27) */ For i = r -1, . . . , 1 do ∂v i-1 := ∂v i-1 + ∂v i • A A * := A * + v i-1 • ∂v i
Output: The adjoint matrix A * ∈ K n×n .

Application to computing the adjoint without divisions

Now let A be an n × n matrix over an abstract ring R. Kaltofen's algorithm for computing the determinant of A without divisions applies Algorithm Det on a well chosen univariate polynomial matrix Z(z) = C + z(A -C) where C ∈ Z n×n , with a dedicated choice of projections u = ϕ ∈ Z 1×n and v = ψ ∈ Z n×1 . The algorithm uses Strassen's avoidance of divisions (see [START_REF] Strassen | Vermeidung von Divisionen[END_REF][START_REF] Kaltofen | On computing determinants without divisions[END_REF]). Since the determinant of Z is a polynomial of degree n in z, the arithmetic operations over K in Det may be replaced by operations on power series in R

[[z]] modulo z n+1 . Once the determinant of Z(z) is computed, the evaluation (det Z)(1) = det(C + 1 × (A -C))
gives the determinant of A. The choice of C, ϕ and ψ is such that, whenever a division by a truncated power series is performed the constant coefficients are ±1. Therefore the algorithm necessitates no divisions. Note that, by construction of Z(z), the constant terms of the power series involved when Det is called with inputs Z(z), ϕ and ψ, are the intermediary values computed by Det with inputs C, ϕ and ψ.

The cost for computing the determinant of A without divisions is then deduced as follows. In step i and step ii of Algorithm Det applied to Z(z), the vector and matrix entries are polynomials of degree O( √ n). The cost of step ii dominates, and is

O(n 3 M( √ n) log n) = O˜(n 3 √ n) operations in R. step iii, iv, and v cost O(n 2 √ n) op- erations on power series modulo z n+1 , that is O(n 2 M(n) √ n) operations in R. Hence det Z(z) is computed in O˜(n 3 √ n) operations in R,
and det A is obtained with the same cost bound.

An main property of Kaltofen's approach (which also holds for the improved blocked version of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]), is that the scalar value det A is obtained via the computation of the polynomial value det Z(z). This property seems to be lost with the adjoint computation. We are going to see how Algorithm Adjoint applied to Z(z) allows to compute A * ∈ R n×n in time O˜(n 3 √ n) operations in R, but does not seem to allow the computation of Z * (z) ∈ R[z] n×n with the same complexity estimate. Indeed, a key point in Kaltofen's approach for reducing the overall complexity estimate, is to compute with small degree polynomials (degree O( √ n)) in step i and step ii. However, since the adjoint algorithm has a reversed flow, this point does not seem to be relevant for Adjoint, where polynomials of degree n are involved from the beginning. Our approach for computing A * over R keeps the idea of running Algorithm Adjoint with input Z(z) = C + z(A -C), such that Z * (z) has degree less than n, and gives A * = Z * (1). In Section 6.1, we verify that the implementation using Proposition 4, needs no divisions. We then show in Section 6.2 how to establish the cost estimate O˜(n 3 √ n). The principle we follow is to start evaluating polynomials at z = 1 as soon as computing with the entire polynomials is prohibitive.

Division-free Hankel matrix inversion and anti-diagonal sums

In Algorithm Adjoint, divisions may only occur during the anti-diagonal sums computation. We verify here that with the matrix Z(z), and the special projections ϕ ∈ Z 1×n , ψ ∈ Z n×1 , the approach described in the Appendix for computing the anti-diagonal sums requires no divisions. Equivalently, since we use Strassen's avoidance of divisions, we verify that with the matrix C and the projections ϕ, ψ, the approach necessitates no divisions. As we are going to see, this a direct consequence of the construction of [START_REF] Kaltofen | On computing determinants without divisions[END_REF].

Here we let h k = ϕC k ψ for 0 ≤ k ≤ 2n -1, a(x) = x 2n , and b(x) = h 0 x 2n-1 + h 1 x 2n-2 + . . . + h 2n-1 . The extended Euclidean scheme with inputs a and b leads to a normal sequence, and after n -1 and n steps of the scheme, we get (see (Kaltofen, 1992, Sec. 2)):

s(x)a(x) + t(x)b(x) = c(x), with deg s = n -2, deg t = n -1, deg c = n, (29) and s 
(x)a(x) + t(x)b(x) = c(x), with deg s = n -1, deg t = n, deg c = n -1. ( 30 
)
The polynomial t is such that

t = ±x n + intermediate monomials + 1 = ±f, (31) 
with f the minimum polynomial of {h k } 0≤k≤2n-1 . One may check, in particular, that the n equations obtained by identifying the coefficients of degree 2n -1 ≥ k ≥ n in (30) give the linear system (11), that defines f . The polynomial c also has leading coefficient ±1. By identifying the coefficients of degree 2n -1 ≥ k ≥ n in (29), we obtain:

H         t 0 t 1 . . . t n-1         =         h 0 h 1 . . . h n-1 h 1 h 2 . . . h n . . . . . . . . . . . . h n-1 . . . . . . h 2n-2                 t 0 t 1 . . . t n-1         = ±         0 0 . . . 1         . ( 32 
)
Therefore t = ±g with g the polynomial needed for computing ( 44)-( 47), in addition to f . Since C, ϕ, and ψ are such that the extended Euclidean scheme necessitates no divisions (see (Kaltofen, 1992, Sec. 2)), we see that both f and g may be computed with no divisions. The only remaining division in the algorithm for Proposition 4 is at (38). From ( 31), this division is by f 0 = 1.

Lazy polynomial evaluation and division-free adjoint computation

We run Algorithm Adjoint with input Z(z) ∈ R[z] n×n , and start with operations on truncated power series modulo z n+1 . We assume that Algorithm Det has been executed, and that its intermediary results have been stored.

Using Proposition 4 and previous section,

step i * requires O(G(n)M(n)) = O˜(n 2 ) operations in R for computing ∂H(z) of degree n in R[z] r×s . step ii * , step iii * , and v * cost O(n 2 √ n) operations in K,
hence, taking into account the power series operations, this gives O(n 2 M(n)

√ n) = O˜(n 3 √ n) operations in R for the division-free version. The cost analysis of step iv * , using (26) over power series modulo z n , leads to log 2 r matrix products, hence to the time bound O˜(n 4 ), greater than the target estimate O˜(n 3 √ n). As noticed previously, step iii of Algorithm Det only involves polynomials of degree O( √ n), while the reversed program for step iv * of Algorithm Adjoint, relies on ∂B(z)

whose degree is n.

Since only Z * (1) = A * is needed, our solution, for restricting the cost to O˜(n 3 √ n), is to start evaluating at z = 1 during step iv * . However, since power series multiplications are done modulo z n , this evaluation must be lazy. The fact that matrices Z k (z), 1 ≤ k ≤ r-1, of degree at most r-1 are involved, enables the following. Let a and c be two polynomials such that deg a+deg c = r -1 in R[z], and let b be of degree n ≥ r -2 in R[z]. Considering the highest degree part of b, and evaluating the lowest degree part at z = 1, we define b 

H (z) = b n z r-2 + . . . + b n-r+2 ∈ R[z] and b L = b n-r+1 + . . . + b 0 ∈ R. We then remark that a(z)b(z)c(z) mod z n+1 (1) = a(z)(b H (z)z n-r+2 + b L )c(z) mod z n+1 (1), = a(z)b H (z)c(z) mod z r-1 (1) + (a(z)b L c(z)) (1).
* := r k=1 Z r-k (z) • ∂B H (z) • Z k-1 (z) mod z r-1 (1) Z * := Z * + r k=1 Z r-k (z) • ∂B L • Z k-1 (z) (1), (34) in O˜(n 3 M(r)) = O˜(n 3 √ n) operations in R.
This leads to an intermediary value Z * ∈ R n×n before step v * . The value is updated at step v * with power series operations, and a final evaluation at z = 1 in time O˜(n 2 rM(n)) = O˜(n 3 √ n). Since only step iv * has been modified, we obtain the following result.

Theorem 3. Let A ∈ R n×n . If Algorithm Adjoint, modified according to (34), is executed with input Z(z) = C + z(A -C), power series operations modulo z n+1 , and a final evaluation at z = 1, then the matrix adjoint A * is computed in O˜(n 3 √ n) operations in R.

Concluding remarks

We have developed an explicit algorithm for computing the matrix adjoint using only ring arithmetic operations. The algorithm has complexity estimate O˜(n 3.5 ). It represents a practical alternative to previously existing solutions for the problem, that rely on automatic differentiation of a determinant algorithm. Our description of the algorithm allows direct implementations. It should help understanding how the adjoint is computed using Kaltofen's baby steps/giant steps construction. Still, a full mathematical explanation deserves to be investigated. Our work has to be generalized to the block algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] (with the use of fast matrix multiplication algorithms) whose complexity estimate is currently the best known for computing the determinant, and the adjoint without divisions.

For implementing (17), we study the computation of the anti-diagonal sums σ k of H -1 and H -1 A . We first use the formula of [START_REF] Labahn | The inverses of block Hankel and block Toeplitz matrices[END_REF] for Hankel matrices inversion. The minimum polynomial f of {h and satisfies (11). Let the last column of H -1 be given by

k } 0≤k≤2n-1 is f (x) = f 0 + f 1 x + . . . + f n-1 x n-1 + x n ,
H [g 0 , g 1 , . . . , g n-1 ] T = [0, . . . , 0, 1] T ∈ K n . (35) 
Applying [START_REF] Labahn | The inverses of block Hankel and block Toeplitz matrices[END_REF], Theorem 3.1) with ( 11) and ( 35), we know that

H -1 =         f 1 . . . f n-1 1 . . . . . . . . . f n-1 . . . 0 1              g 0 . . . g n-1 . . . . . . 0 g 0      -         g 1 . . . g n-1 0 . . . . . . . . . g n-1 . . . 0 0              f 0 . . . f n-1 . . . . . . 0 f 0      . (36) 
For deriving an analogous formula for H -1 A , using the notations of Section 4.1, we first recall that H = Ku K v and H A = Ku AK v . Multiplying (11) on the left by Ku A K-1 u gives

H A [f 0 , f 1 , . . . , f n-1 ] T = -[h n+1 , h n+2 , . . . , h 2n ] T . (37) 
We also notice that

H A H -1 = K -1 u A T K u T ,
and, using the action of A T on the vectors u T , . . . , (A T ) n-2 u T , we check that H A H -1 is the companion matrix

H A H -1 =         0 1 0 . . . . . . 0 . . . 0 1 -f 0 -f 1 . . . -f n-1         . Hence the last column [g * 0 , g * 1 , . . . , g * n-1 ] of H -1
A is the first column of H -1 divided by -f 0 . Using (36) for determining the first column of H -1 , we get

[g * 0 , g * 1 , . . . , g * n-1 ] T = - g 0 f 0 [f 1 , . . . , f n-1 , 1] T + [g 1 , . . . , g n-1 , 0] T . (38) 
Applying (Labahn et al., 1990, Theorem 3.1), now with ( 37) and ( 38), we obtain We have (43)

H -1 A =         f 1 . . .
m i,j = i+j-2 s=i-1 l s r i+j-s-2 , 1 ≤ i + j -1 ≤ n, (40) 
It remains to apply ( 42) and ( 43) to the structured matrix products in ( 36) and ( 39), for computing the σ k (H -1 ) and σ k (H -1 A )'s. Together with the minimum polynomial f = f 0 +. . .+f n-1 x n-1 +x n , let g = g 0 +. . .+g n-1 x n-1 (see ( 35)), and g * = g * 0 . . .+g * n-1 x n-1 (see ( 38)). We may now combine, respectively (36) and (39), with (42), for obtaining

f ′ g -g ′ f mod x n = n-1 k=0 σ k (H -1 ) x k , (44) 
and

f ′ g * -(g * ) ′ f mod x n = n-1 k=0 σ k (H -1 A ) x k . (45) 
Defining also rev(f ) = 1 + f n-1 x + . . . + f 0 x n , rev(g) = g n-1 x + . . . + g 0 x n , and rev(g * ) = g * n-1 x + . . . + g * 0 x n , the combination of, respectively, (36) and (39), with (43), leads to rev(g) ′ rev(f ) -rev(f ) ′ rev(g) mod Using the approach of [START_REF] Brent | Fast solution of Toeplitz systems of equations and computation of Padé approximations[END_REF] we know that computing the last column of H -1 reduces to an extended Euclidean problem of degree 2n. Hence the polynomial g is computed in G(n) + O(n) operations. From there, g * is computed using (38). Then, applying (44)-(47) leads to the cost O(M(n)).

  step iv * , we follow the definition of b H and b L , and first compute ∂B H (z) ∈ R[z] n×n of degree r-2, and ∂B L ∈ R n×n . Applying (33), the sum r k=1 Z r-k (z)• ∂B(z) • Z k-1 (z) may then be evaluated at z = 1 by the program Modified step iv * . Z

  and (39) we see that computing σ k (H -1 ) and σ k-1 (H -1 A ), for 0 ≤ k ≤ 2n-1, reduces to computing the anti-diagonal sums for a product of triangular Hankel times triangular Toeplitz matrices. Let M = LR =

l

  s r i+j-s-2 , n ≤ i + j -1 ≤ 2n -1. (41) For 0 ≤ k ≤ 2n -2, σ k (M ) is defined by summing the m i,j 's such that i + j -2 = k. Using (40) we obtain σ k (M ) = k+1 i=1 m i,k-i+2 = k+1 i=1 k s=i-1 l s r k-s , = k s=0 (s + 1)l s r k-s , 0 ≤ k ≤ n -1 (s + n -k) l s r k-s , n -1 ≤ k ≤ 2ns-1 x s ) mod x n = n-1 k=0 σ 2n-k-2 (M ) x k .

  * ) ′ rev(f ) -rev(f ) ′ rev(g * ) mod x n = n-1 k=0 σ 2n-k-2 (H A ) x k . (47)Proposition 4. Assume that the minimum polynomial f and the Hankel matrices H and H A are given. The anti-diagonal sums σ k (H -1 ) andσ k (H -1 A ), for 0 ≤ k ≤ 2n -1, can be computed in G(n) + O(M(n)) operations in K.

  singular, and the intermediary data of Algorithm Det All the derivatives are initialized to zero step i * . /* Requires the Hankel matrices H and H A , see (17) */ ∂∆ v /∂h k

We refer for instance to http://www.autodiff.org
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